Что такое нелинейность в уравнении

Разница между линейными и нелинейными дифференциальными уравнениями

Разница между линейными и нелинейными дифференциальными уравнениями — Наука

Содержание:

Линейные и нелинейные дифференциальные уравнения

Уравнение, содержащее хотя бы один дифференциальный коэффициент или производную неизвестной переменной, называется дифференциальным уравнением. Дифференциальное уравнение может быть линейным или нелинейным. Задача этой статьи — объяснить, что такое линейное дифференциальное уравнение, что такое нелинейное дифференциальное уравнение и в чем разница между линейными и нелинейными дифференциальными уравнениями.

С момента развития исчисления в 18 веке математиками, такими как Ньютон и Лейбниц, дифференциальное уравнение сыграло важную роль в истории математики. Дифференциальные уравнения имеют большое значение в математике из-за их диапазона приложений. Дифференциальные уравнения лежат в основе каждой модели, которую мы разрабатываем для объяснения любого сценария или события в мире, будь то физика, инженерия, химия, статистика, финансовый анализ или биология (список бесконечен). Фактически, до тех пор, пока исчисление не стало устоявшейся теорией, надлежащие математические инструменты были недоступны для анализа интересных проблем природы.

Уравнения, получаемые в результате конкретного применения математического анализа, могут быть очень сложными и иногда неразрешимыми. Однако есть проблемы, которые мы можем решить, но они могут выглядеть одинаково и сбивать с толку. Поэтому для упрощения идентификации дифференциальные уравнения классифицируются по их математическому поведению. Линейный и нелинейный — одна из таких категорий. Важно определить разницу между линейными и нелинейными дифференциальными уравнениями.

Что такое линейное дифференциальное уравнение?

Предположим, что f: X → Y и f (x) = y, а дифференциальное уравнение без нелинейных членов неизвестной функции y и его производные известны как линейное дифференциальное уравнение.

Это налагает условие, что y не может иметь более высокие индексные члены, такие как y 2 , y 3 ,… И кратные производные финансовые инструменты, такие как

Он также не может содержать нелинейные термины, такие как Sin y, е y^-2 , или ln y. Это принимает форму,

где y и грамм являются функциями Икс. Уравнение представляет собой дифференциальное уравнение порядка п, который является индексом производной высшего порядка.

В линейном дифференциальном уравнении дифференциальный оператор является линейным оператором, а решения образуют векторное пространство. В результате линейного характера набора решений линейная комбинация решений также является решением дифференциального уравнения. То есть, если y1 и y2 являются решениями дифференциального уравнения, то C1 y1+ C2 y2 тоже решение.

Линейность уравнения — это только один параметр классификации, и его можно в дальнейшем разделить на однородные или неоднородные, а также обыкновенные или дифференциальные уравнения в частных производных. Если функция грамм= 0, то уравнение является линейным однородным дифференциальным уравнением. Если ж является функцией двух или более независимых переменных (е: X, T → Y) и f (x, t) = y , то уравнение является линейным уравнением в частных производных.

Метод решения дифференциального уравнения зависит от типа и коэффициентов дифференциального уравнения. Самый простой случай возникает, когда коэффициенты постоянны. Классическим примером для этого случая является второй закон движения Ньютона и его различные приложения. Второй закон Ньютона дает линейное дифференциальное уравнение второго порядка с постоянными коэффициентами.

Что такое нелинейное дифференциальное уравнение?

Уравнения, содержащие нелинейные члены, известны как нелинейные дифференциальные уравнения.

Все это нелинейные дифференциальные уравнения. Нелинейные дифференциальные уравнения сложно решить, поэтому для получения правильного решения требуется тщательное изучение. В случае уравнений с частными производными большинство уравнений не имеют общего решения. Следовательно, каждое уравнение следует рассматривать независимо.

Уравнение Навье-Стокса и уравнение Эйлера в гидродинамике, полевые уравнения Эйнштейна общей теории относительности являются хорошо известными нелинейными уравнениями в частных производных. Иногда применение уравнения Лагранжа к системе переменных может привести к системе нелинейных уравнений в частных производных.

В чем разница между линейными и нелинейными дифференциальными уравнениями?

• Дифференциальное уравнение, которое имеет только линейные члены неизвестной или зависимой переменной и ее производных, известно как линейное дифференциальное уравнение. Он не имеет члена с зависимой переменной индекса больше 1 и не содержит кратных его производных. Он не может иметь нелинейных функций, таких как тригонометрические функции, экспоненциальные функции и логарифмические функции по отношению к зависимой переменной. Любое дифференциальное уравнение, содержащее вышеупомянутые члены, является нелинейным дифференциальным уравнением.

• Решения линейных дифференциальных уравнений создают векторное пространство, и дифференциальный оператор также является линейным оператором в векторном пространстве.

• Решения линейных дифференциальных уравнений относительно проще, и существуют общие решения. Для нелинейных уравнений в большинстве случаев общего решения не существует, и решение может быть специфическим для конкретной задачи. Это делает решение намного более сложным, чем решение линейных уравнений.

Нелинейные уравнения и системы уравнений. Методы их решения.

Нелинейные уравнения и системы уравнений. Методы их решения.

Одной из важных задач прикладной математики является задача решения нелинейных уравнений, встречающихся в разных областях научных исследований.

Под нелинейными уравнениями ( nonlinear equations ) понимаются алгебраические и трансцендентные уравнения с одним неизвестным в следующем виде:

,

где — действительное число, — нелинейная функция.

Под системой нелинейных уравнений понимается система алгебраических и трансцендентных уравнений в следующем виде:

где < > — действительные числа, < > — нелинейные функции.

Алгебраическое уравнение — это уравнение содержащие только алгебраические функции, которое можно представить многочленом n ‐ ой степени с действительными коэффициентами (целые, рациональные, иррациональные) в следующем виде:

.

Трансцендентное уравнение – это уравнение содержащие в своем составе функции, которые являются не алгебраическими. Простейшими примерами таких функций служат показательная функция, тригонометрическая функция, логарифмическая функция и т.д.

Решением нелинейного уравнения (или системы нелинейных уравнений) называют совокупность (группа) чисел , которые, будучи подставлены на место неизвестных , обращают каждое уравнение (или систему уравнений) в тождество:

.

Для решения нелинейных уравнений (или систем нелинейных уравнений) существует несколько методов решения: графические, аналитические и численные методы.

Графические методы наименее точны, но позволяют в сложных уравнениях определить наиболее приближенные значения, с которых в дальнейшем можно начинать находить более точные решения уравнений.

Аналитические методы (или прямые методы) позволяют определить точные значения решения уравнений. Данный метод позволяет записать корни в виде некоторого соотношения (формул). Подобные методы развиты для решения простейших тригонометрических, логарифмических, показательных, а также алгебраических уравнений. Однако подавляющее большинство нелинейных уравнений, встречающихся на практике, не удается решить прямыми методами. В таких случаях обращаются к численным методам, позволяющим получить приближенное значение корня с любой заданной точностью .

Численные методы решения нелинейных уравнений – это итерационный процесс расчета, который состоит в последовательном уточнении начального приближения значений корней уравнения (системы уравнений). При численном подходе задача о решении нелинейных уравнений разбивается на два этапа:

— локализация (отделение) корней

› Под локализацией корней понимается процесс отыскания приближенного значения корня или нахождение таких отрезков, в пределах которых содержится единственное решение

› Под уточнением корней понимается процесс вычисления приближенных значений корней с заданной точностью по любому численному методу решения нелинейных уравнений.

Недостатком почти всех итерационных методов нахождения корней является то, что они при однократном применении позволяют найти лишь один корень функции, к тому же, мы не знаем какой именно. В случае повторения итерационного процесса при изменении стартовых точек отсутствуют гарантии, что найдется новый корень уравнения, так как итерационный процесс может сойтись к найденному корню.

Для поиска других корней используется метод удаления корней. Данный метод основан на принципе создания новой функции путем деление основной функции на найденный корень уравнения:

.

Так, например, если — корень функции то, чтобы произвести удаление найденного корня и поиск оставшихся корней исходной функции необходимо создать функцию . Точка будет являться корнем функции на единицу меньшей кратности, чем , при этом все остальные корни у функций и совпадают с учетом кратности. Повторяя указанную процедуру, можно найти все корни с учетом кратности.

Следует обратить внимание, что когда производим деление на тот или иной корень , то в действительности мы делим лишь на найденное приближение , и, тем самым, несколько сдвигаем корни вспомогательной функции относительно истинных корней функции . Это может привести к значительным погрешностям, если процедура отделения применялась уже достаточное число раз. Чтобы избежать этого, с помощью вспомогательных функций вычисляются лишь первые итерации, а окончательные проводятся по исходной функции , используя в качестве стартового приближения, последнюю итерацию, полученную по вспомогательной функции.

Локализация корней.

› Локализация корней аналитическим способом

Для отделения корней уравнения необходимо иметь критерий, позволяющий убедится, что, во-первых, на рассматриваемом отрезке имеется корень, а, во-вторых, что этот корень единственный на указанном отрезке. Если функция непрерывна на отрезке , а на концах отрезка её значения имеют разные знаки , то на этом отрезке расположен, по крайней мере, один корень. Дополнительным условием, обеспечивающем единственность корня на отрезке является требование монотонности функции на этом отрезке. В качестве признака монотонности функции можно воспользоваться условием знакопостоянства первой производной . Таким образом, если на отрезке функция непрерывна и монотонна, а ее значения на концах отрезка имеют разные знаки, то на рассматриваемом отрезке существует один и только один корень.

› Локализация корней табличным способом

Допустим, что все интересующие нас корни уравнения находятся на отрезке . Выбор этого отрезка (интервала поиска корней) может быть сделан, например, на основе анализа конкретной физической или иной задачи. Будем вычислять значения , начиная с точки , двигаясь вправо с некоторым шагом h . Как только обнаруживается пара соседних значений , имеющих разные знаки, так соответствующие значения аргумента x можно считать границами отрезка, содержащего корень.

Надежность рассмотренного подхода к отделению корней уравнений зависит как от характера функции , так и от выбранной величины шага h. Действительно, если при достаточно малом значении h ( ) на границах текущего отрезка функция принимает значения одного знака, то естественно ожидать, что уравнение корней на этом отрезке не имеет. Однако, это не всегда так: при несоблюдении условия монотонности функции на отрезке могут оказаться корни уравнения (рис. 1, а). Также несколько корней на отрезке могут оказаться и при выполнении условия (рис. 1, б). Предвидя подобные ситуации, следует выбирать достаточно малые значения h .

Рис. 1. Варианты поведения функции на интервале локализации корня

Поскольку данный способ предполагает выполнение лишь элементарных арифметических и логических операций, количество которых может быть велико при малых значениях h , для его реализации целесообразно использовать вычислительные возможности компьютера.

Отделяя, таким образом, корни, мы, по сути, получаем их приближенные значения с точностью до выбранного шага. Так, например, если в качестве приближенного значения корня взять середину отрезка локализации, то абсолютная погрешность этого значения не будет превосходить половины шага поиска ( h /2). Уменьшая шаг в окрестности каждого корня, можно, в принципе, повысить точность отделения корней до любого наперед заданного значения. Однако такой способ требует большого объема вычислений. Поэтому при проведении численных экспериментов с варьированием параметров задачи, когда приходится многократно осуществлять поиск корней, подобный метод не годится для уточнения корней и используется только для отделения (локализации) корней, т.е. определения начальных приближений к ним. Уточнение корней проводится с помощью других, более экономичных методов.

Уточнение корней.

На данном этапе задача состоит в получении приближенного значения корня, принадлежащего отрезку , с заданной точностью (погрешностью) e . Это означает, что вычисленное значение корня должно отличаться от точного не более чем на величину e :

Существует большое количество численных методов решения нелинейных уравнений для уточнения корней, которые условно можно разделить:

› Методы решение уравнений с одним неизвестным. Основными представителями являются:

— метод половинного деления;

— метод простой итерации;

— метод Ньютона для уравнения с одним неизвестным;

НЕЛИНЕ́ЙНОЕ УРАВНЕ́НИЕ

  • В книжной версии

    Том 22. Москва, 2013, стр. 345-346

    Скопировать библиографическую ссылку:

    НЕЛИНЕ́ЙНОЕ УРАВНЕ́НИЕ, ал­геб­раи­че­ское или транс­цен­дент­ное урав­не­ние ви­да $$f(x)=0,\tag1$$ где $x$ – дей­ст­ви­тель­ное чис­ло, $f(x)$ – не­ли­ней­ная функ­ция. Сис­те­мой Н. у. на­зы­ва­ет­ся сис­те­ма $$\beginf_1(x_1, x_2. x_n)=0,\\ f_2(x_1, x_2. x_n)=0,\\ . \\ f_n(x_1, x_2. x_n)=0,\end\tag2$$ не яв­ляю­щая­ся сис­те­мой ли­ней­ных ал­геб­ра­ич. урав­не­ний. Урав­не­ние (1) и сис­те­ма (2) мо­гут трак­то­вать­ся как не­ли­ней­ное опе­ра­тор­ное урав­не­ние $$L (u)=g\tag3$$ с не­ли­ней­ным опе­ра­то­ром $L$ , дей­ст­вую­щим из ко­неч­но­мер­но­го век­тор­но­го про­стран­ст­ва $R^n$ в $R^n$ .


    источники:

    http://simenergy.ru/math-analysis/solution-methods/40-nle-intro

    http://bigenc.ru/mathematics/text/2258043