Что такое нормальный вид дифференциального уравнения

08. Нормальные системы обыкновенных дифференциальных уравнений

Определение. Совокупность соотношений вида:

Где х — независимая переменная, у1, у2,…,уn – искомые функции, называется системой дифференциальных уравнений первого порядка.

Определение. Система дифференциальных уравнений первого порядка, разрешенных относительно производных от неизвестных функций называется нормальной системой дифференциальных уравнений.

Такая система имеет вид:

(1)

Для примера можно сказать, что график решения системы двух дифференциальных уравнений представляет собой интегральную кривую в трехмерном пространстве.

Теорема. (Теорема Коши). Если в некоторой области (n-1) –мерного пространства функции непрерывны и имеют непрерывные частные производные по , то для любой точки этой области существует единственное решение

Системы дифференциальных уравнений вида (1), определенное в некоторой окрестности точки х0 и удовлетворяющее начальным условиям

Определение. Общим решением системы дифференциальных уравнений вида (1) будет совокупность функций , , … , которые при подстановке в систему (1) обращают ее в тождество

Ряды с неотрицательными членами.

При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т. к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.

Теорема. Для сходимости ряда С неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены.

Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда и при un, vn ³ 0.

Теорема. Если un £ vn при любом n, то из сходимости ряда Следует сходимость ряда , а из расходимости ряда Следует расходимость ряда .

Доказательство. Обозначим через Sn и sn частные суммы рядов и . Т. к. по условию теоремы ряд Сходится, то его частные суммы ограничены, т. е. при всех n sn 1 ряд расходится.

Интегральный признак Коши.

Если j(х) – непрерывная положительная функция, убывающая на промежутке [1;¥), то ряд j(1) + j(2) + …+ j(n) + … = и несобственный интеграл одинаковы в смысле сходимости.

Пример. Ряд сходится при a>1 и расходится a£1 т. к. соответствующий несобственный интеграл сходится при a>1 и расходится a£1. Ряд называется общегармоническим рядом.

Следствие. Если f(x) и j(х) – непрерывные функции на интервале (a, b] и то интегралы и ведут себя одинаково в смысле сходимости.

Обыкновенные дифференциальные уравнения

Содержание:

Обыкновенные дифференциальные уравнения

При решении многих задач математики, техники, экономики и других отраслей науки бывает трудно установить закон, связывающий искомые и известные переменные величины. Но удается установить связь между производными или дифференциалами этих переменных, которая выражается уравнениями или системами уравнений. Такие уравнения называют дифференциальными уравнениями. Термин «дифференциальное уравнение» введен в 1676 году В. Лейбницом.

Мы рассмотрим только уравнения с функциями одной переменной и обычными производными, которые называют обычными дифференциальными уравнениями.

Основные понятия о дифференциальных уравнениях

Определение. Дифференциальным уравнением называется уравнение, которое связывает независимую переменную x, искомую функцию y = f (x) и еепроизводные или дифференциалы разных порядков, то есть уравнение
(7.1)

Важно понять, что искомая функция в дифференциальном уравнении входит под знак дифференциала или под знак производной.

Определение. Порядком дифференциального уравнения называется наивысший порядок производной от неизвестной функции, входящей в дифференциальное уравнение.

Так, уравнение y’ – 2 xy 2 + 5 = 0 является дифференциальным уравнением первого порядка, а уравнения y» + 2 y’ – y – sin x = 0 — дифференциальным уравнением второго порядка.

Определение. Решением дифференциального уравнения (7.1) называется такая функция y = φ (x), которая при подстановке в уравнение (7.1) превращает его в тождество.

Например, для дифференциального уравнения
y’- 2 x = 0 (7.2)
решением является функция y = x 2 . Найдем производную y’= 2x и подставим в уравнение, получим: 2x – 2x = 0, 0 ≡ 0.

Следует заметить, что y = x 2 не единственное решение уравнения. Это уравнение имеет бесконечное множество решений, которые можно записать так: y = x 2 + C.

Дифференциальные уравнения первого порядка

Определение. Дифференциальным уравнением первого порядка называется уравнение, которое связывает независимую переменную x, искомую функцию y = f (x) и ее первую производную:
F (x, y, y’) = 0.
(7.3)

Поскольку производную можно записать в виде отношения дифференциалов, то в уравнение производная может не входить, а будут входить дифференциалы неизвестной функции и независимой переменной.

Если уравнение (7.2) решить относительно у’, то оно будет иметь вид:
y’= f (x, y) или . (7.4)

Простые примеры показывают, что дифференциальное уравнение может иметь бесконечное множество решений. Это мы видим на примере уравнения (7.2). Легко убедиться также, что дифференциальное уравнение имеет решениями функции y = Cx, а дифференциальное уравнение — функции где C — произвольное число.

Как видим, в решение указанных дифференциальных уравнений входит произвольное число C. Предоставляя постоянной C различные значения, будем получать различные решения дифференциального уравнения.

Определение. Общим решением дифференциального уравнения (7.3) называется функция
у = φ (х, С), (7.5)
которая зависит от одной произвольной постоянной и удовлетворяет дифференциальное уравнение при произвольном значении C.

Если функция (7.5) выражается неявно, то есть в виде
Ф (х, у, С) = 0, (7.6)
то (7.6) называется общим интегралом дифференциального уравнения.

Определение. Частным решением дифференциального уравнения (7.3) называется такое решение, которое получается из общего решения (7.5) при некотором конкретном значении постоянной C.

Ф (х, у, С0) называется частным интегралом дифференциального уравнения.

На практике при решении конкретных задач часто приходится находить не все решения, а решение, которое удовлетворяет определенным начальным условиям. Одной из таких задач является задача Коши, которая для дифференциального уравнения первого порядка формулируется так: среди всех решений дифференциального уравнения (7.3) найти такое решение y, которое при заданном значении независимой переменной x = x0 равна заданному значению y0 , то есть y (x0) = y0 или (7.7)

Условие (7.7) называется начальным условием решения.

Покажем на примере, как найти частное решение дифференциального уравнения, когда известно общее решение и задано начальное условие.

Мы видим, что дифференциальное уравнение имеет общее решение y = Cx. Зададим начальное условие . Подставим эти значения в общее решение, получим 6 = 2С, откуда С = 3. Следовательно, функция y = 3x удовлетворяет и дифференциальное уравнение, и начальное условие.

Ответ на вопрос о том, при каких условиях уравнение (7.4) имеет
решение, дает теорема Коши.

ТЕОРЕМА (о существовании и единственности решения). Если функция f (x, y) и ее частная производная определены и непрерывные в области G, которая содержит точку M0 (x0; y0) , то существует единственное решение y = φ (x) уравнения (7.4), которое удовлетворяет начальному условию: y (x0) = y0.

Теорема Коши дает достаточные условия существования единого решения дифференциального уравнения (7.4). Заметим, что в условии теоремы не требуется существования частной производной .

График произвольного частного решения дифференциального уравнения называется интегральной кривой. Общему решению отвечает семья кривых. Так мы проверили, что уравнение имеет общее решение y = Cx, то ему соответствует семья прямых,
которые проходят через начало координат (рис. 1).

Уравнение имеет общее решение, ему соответствует семья равносторонних гипербол (рис. 2).

Если задано начальное условие то это означает, что задана точка M0 (x0;y0), через которую должна проходить интегральная кривая, отвечающая искомому частному решению. Таким образом, отыскание частного решения дифференциального уравнения по заданному начальному условию геометрически означает, что из семьи
интегральных кривых мы выбираем проходящую через точку M0 (x0; y0).

Надо заметить, что нахождение решения дифференциального уравнения часто называют интегрированием уравнения. При этом операцию интегрирования функций называют квадратурой.

Общего метода решения дифференциальных уравнений первого порядка не существует. Рассмотрим некоторые методы решения отдельных типов дифференциальных уравнений.

Дифференциальные уравнения с разделенными переменными

Определение. Уравнение вида
f1 (y) dy = f2 (x) dx,
(7.8)
где f1 (y) и f2 (x) — заданные функции, называется дифференциальным уравнением с разделенными переменными.

В этом уравнении каждая из переменных находится только в той части уравнения, где находится ее дифференциал. Уравнение dy = f (x) dx является частным случаем уравнения (7.8). Чтобы решить уравнение (7.8), надо проинтегрировать обе его части:
.

Понятно, что произвольную постоянную С можно записывать в любой части равенства.

Пример 1. Решить дифференциальное уравнение:
, удовлетворяющее начальному условию

Решение. Проинтегрируем левую и правую части уравнения, причем для удобства потенцирования, произвольную постоянную запишем в виде ln |C| получим:


— это общее решение дифференциального уравнения.
Подставляя в общее решение начальное условие, найдем С: 2 = С.
Итак,
является частным решением данного уравнения.

Дифференциальные уравнения с разделяющимися переменными

Определение. Уравнение вида
f1 (x) f2 (y) + g1 (x) g2 (y) = 0
(7.9)
называется дифференциальным уравнением с разделяющимися переменными.

В этом уравнении переменные еще не разделены, но, поделив обе части уравнения на произведение f2 (y) g1 (x), получим уравнение с разделенными переменными:

Интегрируя это уравнение, запишем
.

Получили общий интеграл данного уравнения.

Пример 2. Решить дифференциальное уравнение
x (y + 1) dx – (x 2 + 1) ydy = 0.

Решение. Поделим обе части этого уравнения на (y + 1) (x 2 + 1), после чего получим
.

Интегрируя, получим

— общий интеграл дифференциального уравнения.

Пример 3. Найти частное решение дифференциального уравнения (1 + x 2 ) dy + ydx = 0, удовлетворяющее начальному условию y (0) = 1.

Решение. Отделим переменные, поделив уравнение на y ⋅ (1 + x 2 ), и проинтегрируем данное уравнение:

Получили общий интеграл дифференциального уравнения.

Используя начальное условие, найдем произвольную постоянную С:
ln 1 + arctg 0 = C, откуда C = 0.

Найденную постоянную подставим в общий интеграл и отыщем частное решение:
откуда

Однородные дифференциальные уравнения

Определение. Функция двух переменных f (x, y) называется однородной n- го измерения, если выполняется условие

Например, f (x, y) = x 2 + y 2 , f (tx, ty) = t 2 f (x 2 + y 2 ) — однородная функция второго измерения.

Определение. Дифференциальное уравнение
y ‘= f (x, y) (7.10)
называется однородным, если функция f (x, y) однородная нулевого измерения.

Покажем, что это уравнение можно свести к уравнению с разделенными переменными.
Рассмотрим функцию f (tx, ty). Сделаем замену будем иметь:

Тогда уравнение (7.10) запишется в виде (7.11)
В общем случае переменные в однородном уравнение не разделяются сразу. Но, если ввести вспомогательную неизвестную функцию u = u (x) по формуле
или y = xu, (7.12)
то мы сможем превратить однородное уравнение в уравнение с разделенными переменными.

Из формулы (7.12) найдем y’ = u + xu’ и уравнение примет вид: u + xu’ = φ (u),
то есть , откуда .

После интегрирования получим
Отсюда находим выражение для функции u, возвращаемся к переменной y = xu и получим решение однородного уравнения.

Чаще всего не удается найти функцию u явно выраженной, тогда, после интегрирования, в левую часть следует подставить вместо u.
В результате получим решение уравнения в неявном виде.

Пример 1. Найти решение однородного уравнения

Решение. Заменой y = xu сведем заданное уравнение к уравнению
или .

Отделяя переменные, найдем
откуда или , то есть
.
Возвращаясь к переменной y, получим общее решение: .

Линейные дифференциальные уравнения

Определение. Линейным дифференциальным уравнением первого порядка называется уравнение, которое содержит искомую функцию и ее производную в первой степени без их произведения:
y’ + P (x) y = Q (x). (7.13)

Здесь P (x), Q (x) — известные функции независимой переменной x. Например, y’ + 2 xy = x 2 .

Если Q (x) = 0, то уравнение (7.13) называется линейным однородным и является уравнением с разделяющимися переменными.

Если Q (x) ≠ 0, то уравнение (7.13) называется линейным неоднородным, которое можно решить несколькими способами.

Рассмотрим метод Бернулли, с помощью которого уравнение (7.13) можно свести к интегрированию двух дифференциальных уравнений первого порядка с разделяющимися переменными.

Решение дифференциального уравнения (7.13) ищем в виде y = u (x) v (x) или y = uv, (7.14)
где u (x), v (x) — неизвестные функции. Одну из этих функций можно взять произвольную, а другая определяется из уравнения (7.13).

Из равенства y = uv найдем производную y’:
y’= u’ ⋅ v + u⋅ v’.

Подставим y и y’ в уравнение (7.13):
u’v + uv’ + P (x) ⋅ u⋅ v = Q (x) или u’v + u (v’ + P (x) ⋅ v) = Q (x).

Выберем функцию v такой, чтобы v’ + P (x) v = 0. (7.15)
Тогда для отыскания функции u получим уравнение:
u’v = Q (x). (7.16)

Сначала найдем v из уравнения (7.15).
Отделяя переменные, имеем , откуда

Под неопределенным интегралом здесь будем понимать какую-то одну первообразную от функции P (x), то есть v будет определенной функцией от x.

Зная v, находим u из уравнения (7.16):

откуда

Здесь мы уже берем для u все первообразные.

Найденные функции u и v подставляем в (7.14) и получаем общее решение линейного дифференциального уравнения:
(7.17)

При решении конкретных примеров проще выполнять эти выкладки, чем применять громоздкую формулу (7.17).

Пример 1. Решить дифференциальное уравнение .
Решение. Решение ищем в виде y = uv, тогда y’= u’ ⋅ v + u⋅ v’.
Подставим y и y’ в уравнение: или
. (7.18)

Выражение, стоящее в скобках, приравниваем к нулю, имеем
или

Отделим переменные, домножив обе части уравнения на , тогда .
После интегрирования, получим ln |v| = ln |x| (здесь ограничимся одной первообразной), откуда v = x.
Подставим v = x в уравнение (7.18):

Общее решение запишется:
y = x (x + C) = x 2 + Cx.

Пример 2. Найти частное решение дифференциального уравнения который удовлетворяет начальному условию y (0) = 0.

Решение. Заданное уравнение — это линейное неоднородное уравнение первого порядка, решение которого ищем в виде y = u⋅v.
Тогда

Подставим v в уравнение и найдем u:

Общее решение дифференциального уравнения будет:

Подставляем начальные условия в найденное решение и находим С:

Из общего решения получаем частное решение
.

Дифференциальное уравнение Бернулли

Определение. Уравнения вида
(или )
называется дифференциальным уравнением Бернулли.

Данное уравнение отличается от уравнения (7.13) только множителем (или ) в правой части. Для того, чтобы права часть данного уравнения была такой, как в (7.13), разделим его левую и праву часть на :

Сделаем замену:
Домножим левую и правую части полученного уравнения на (n + 1) и, используя замену, получим:

Мы получили линейное дифференциальное уравнение относительно новой переменной

Пример 1. Найти общее решение дифференциального уравнения xy’ + y = y 2 ln x.

Решение. .
Сделаем замену Тогда

Данное уравнение решим, сделав замену z = u (x) ⋅ v (x).

Выбираем функцию v (x) так, чтобы выражение в скобках равнялось нулю, и эта функция была бы частным решением уравнения

Тогда .

Проинтегрировав правую часть этого уравнения по частям, получим , а при y -1 = z = uv, имеем

Обыновенное дефференциальное уравнение

Обыкновенным дифференциальным уравнением называется любое соотношение, связывающее независимую переменную искомую функцию и производные искомой функции до некоторого порядка включительно.

Обыкновенное дифференциальное уравнение может быть приведено к виду

Здесь — известная функция, заданная в некоторой области

Число т. е. наивысший из порядков производных, входящих в (1), называется порядком уравнения.

Обыкновенные дифференциальные уравнения первого порядка, разрешенные относительно производной. уравнения, интегрируемые в квадратурах

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Основные понятия и определения

Понятие об уравнении первого порядка, разрешенном относительно производной. В соответствии со сказанным во введении, уравнение первого порядка имеет вид

В этой главе мы будем рассматривать уравнение, разрешенное относительно производной:

Наряду с этим уравнением мы всегда будем рассматривать перевернутое уравнение

используя последнее в окрестности тех точек, в которых обращается в бесконечность.

Во многих случаях оказывается целесообразным «место уравнении (2) и (2′) рассматривать одно равносильное им дифференциальное уравнение

Обе переменные и входят в это уравнение уже равноправно, и любую из них мы можем принять за независимую переменную.

Умножая обе части уравнения (3) на некоторую функцию получаем более симметричное уравнение:

где Обратно, всякое уравнение вида (4) можно переписать в виде уравнений (2) или (2′), разрешая его относительно или так что уравнение (4) равносильно следующим двум уравнениям:

Иногда уравнение записывают *з так называемой симметрической форме:

Возможно вам будут полезны данные страницы:

Решение уравнения. Предположим, что правая часть уравнения (2), определена на некотором подмножестве вещественной плоскости Функцию определенную в интервале мы будем называть решением уравнения (2) в этом интервале*, если:

  1. Существует производная для всех значений из интервала (Отсюда следует, что решение представляет собою функцию, непрерывную ею всей области определения).
  2. Функция обращает уравнение (2) в тождество:

справедливое для всех значений из интервала Это означает, что при любом из интервала точка принадлежит множеству и

Так как наряду с уравнением (2) рассматривается перевернутое уравнение (2′), то и решения этого перевернутого уравнения естественно присоединять к решениям уравнения (2).

В этом смысле в дальнейшем мы будем для краткости называть решения уравнения (2′) решениями уравнения (2).

Примеры с решением

Пример 1.

является решением уравнения

в интервале ибо она определена и дифференцируема в эгои интервале, и, подставляя се в уравнение (9), получаем тождество:

справедливое при всех значениях

Пример 2.

Функция есть решение равнения в интервале

Пример 3.

является решением уравнения

в интервале

Иногда функцию обращающую уравнение (2) в тождество (7), т. е. решение уравнения (2), называют интегралом этого уравнения. Мы будем употреблять термин интеграл только в смысле п. 16.

Системы обыкновенных дифференциальных уравнений

При решении многих задач нужно найти функции y1 = y1 (x), y2 = y2 (x), . yn = yn (x), которые удовлетворяют системе дифференциальных уравнений, содержащих независимую переменную x , искомые y1 , y2 , . yn и их производные.

Пример. Пусть материальная точка массы m имеет криволинейную траекторию движения в пространстве. Определить положение точки в любой момент времени t, когда на нее действует сила .

Положение точки в любой момент времени t определяется ее координатами x, y, z; следовательно, x, y, z являются функциями от t. Проекциями вектора скорости точки на оси координат будут производные x’ , y’ , z’.
Положим, что сила, а соответственно и ее проекции Fx, Fy, Fz зависят от времени t, от положения x, y, z точки и от скорости движения точки, то есть от . Искомыми неизвестными функциями в этой задаче будут три функции x = x (t), y = y (t), z = z (t). Эти
функции определяются из уравнений динамики:

Мы получили систему трех дифференциальных уравнений второго порядка. В случае движения, когда траектория является плоской кривой, лежит, например, в плоскости Оxy, получим систему двух уравнений для определения неизвестных функций x (t) и y (t):

Рассмотрим простейшие системы дифференциальных уравнений.

Системы дифференциальных уравнений первого порядка

Система n уравнений первого порядка с n неизвестными функциями имеет вид:
(7.38)

где x — независимая переменная, y1, y2, . yn — неизвестные функции.

Если в левой части уравнений системы стоят производные первого порядка, а правые части уравнений вовсе не содержат производных, то такая система уравнений называется нормальной.

Решением системы называется совокупность функций y1, y2, . yn, которые превращают каждое уравнение системы в тождество относительно x.

Задача Коши для системы (7.38) состоит в нахождении функций y1, y2, . yn , удовлетворяющих систему (7.38) и заданные начальные условия:
(7.39)

Интегрирование системы (7.38) делают следующим образом. Дифференцируем по x первое уравнение системы (7.38):

Заменим производные
их выражениями f1, f2, . fn из уравнений системы (7.38), получим уравнение

Дифференцируем полученное уравнение и, подставив в это равенство значения производных из системы (7.38), найдем

Продолжая дальше таким образом, получим

В результате получаем следующую систему уравнений:
(7.40)

Из первых (n-1) уравнений определим y2, y3, . yn:
(7.41)

и подставим их значения в последнее уравнение системы (7.40) для определения y1:

Продифференцируем это выражение (n-1) раз, определим
как функции от x, C1, C2, . Cn. Подставим эти функции в (7.41), найдем
(7.43)

Для того, чтобы полученное решение удовлетворяло заданным начальным условиям, остается только найти значение произвольных постоянных из уравнений (7.42) и (7.43) так, как мы это делали для одного дифференциального уравнения.

Пример 1. Проинтегрировать систему

когда заданы начальные условия
Решение. Дифференцируем по x первое уравнение, имеем:
. Подставляем сюда значение и из системы, получим

Из первого уравнения системы найдем и подставим в полученное нами уравнение:
или

Общим решением этого уравнения является
(*)
и тогда (**)

Подберем постоянные С1 и С2 так, чтобы выполнялись начальные условия. На основании (*) и (**) имеем:
1 = С1 – 9; 0 = С2 – 2С1 + 14, откуда С1 = 10, С2 = 6.
Таким образом, решением системы, которое удовлетворяет заданным начальным условиям, будет:

Системы линейных дифференциальных уравнений с постоянными коэффициентами

Система дифференциальных уравнений:
(7.44)
где коэффициенты aij — постоянные числа, t — независимая переменная, x1 (t), . xn (t)
неизвестные функции, называется системой линейных дифференциальных уравнений с постоянными коэффициентами.

Эту систему можно решать путем сведения к одному уравнению n-го порядка, как это было показано выше. Но эту систему можно решить и другим способом. Покажем, как это делается.

Будем искать решение системы (7.44) в виде:
(7.45)

Надо определить постоянные α1, α2, . αn и k так, чтобы функции (7.45) удовлетворяли систему (7.44). Подставим функции (7.45) в систему (7.44):

Сократим на e kt и преобразуем систему, сведя ее к такой системе:
(7.46)

Это система линейных алгебраических уравнений относительно α1, α2, . αn. Составим определитель системы:

Мы получим нетривиальные (ненулевые) решения (7.45) только при таких k, при которых определитель превратится в ноль. Получаем уравнение n-го порядка для определения k:

Это уравнение называется характеристическим уравнением для системы (7.44).

Рассмотрим отдельные случаи на примерах:

1) Корни характеристического уравнения действительны и различны. Решение системы записывается в виде:

Пример 2. Найти общее решение системы уравнений:

Решение. Составим характеристическое уравнение:
или k 2 – 5k + 4 = 0, корни которого k1 = 1, k2 = 4.

Решение системы ищем в виде

Составим систему (7.46) для корня k1 и найдем и :
или

Откуда Положив получим
Итак, мы получили решение системы:

Далее составляем систему (7.46) для k = 4:

Откуда
Получим второй решение системы:
Общее решение системы будет:

2) Корни характеристического уравнения различны, но среди них есть комплексные:

k1 = α + iβ, k2 = α – iβ. Этим корням будут отвечать решения:

(7.47)

(7.48)

Можно доказать также, что истинные и мнимые части комплексного решения также будут решениями. Таким образом, получим два частных решения:
(7.49)
где — действительные числа, которые определяются через .

Соответствующие комбинации функций (7.49) войдут в общий решение системы.

Пример 3. Найти общее решение системы

Решение. Составляем характеристическое уравнение:
или k 2 + 12k + 37 = 0, корни которого k1 = –6 + i, k2 = –6 – i .

Подставляем поочередно k1, k2 в систему (7.46), найдем

Запишем уравнение (7.47) и (7.48) для наших данных

Перепишем эти решения в таком виде:

За частные решения можно взять отдельно действительные и отдельно мнимые части:

Общим решением системы будет

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Что такое нормальный вид дифференциального уравнения

Lv 1 = f, Lv 2 = f,

То есть сумма решений линейного однородного и линейного неоднородного уравнений (с тем же L) есть решение того же неоднородного уравнения; разность двух решений линейного неоднородного уравнения есть решение линейного однородного уравнения.

2.3. Линейная зависимость вектор-функций.

Вектор-функции x 1 (t), . x k (t) называются линейно зависимыми на интервале (или на множестве) М , если найдутся такие постоянные числа c1. ck, из которых хотя бы одно не равно нулю, что при всех t Î M имеем

Вектор-функции линейно независимы на M , если они не являются линейно зависимыми на M, то есть если равенство (12) (при всех t Î M одновременно) возможно лишь в случае c1 = . = сk = 0.

Понятие линейной зависимости вектор-функций на данном множестве M, содержащем более одной точки, отличается от известного из алгебры понятия линейной зависимости векторов.

Если вектор-функции x 1 (t), . x k (t) линейно зависимы на M, то при каждом t Î M их значения являются линейно зависимыми векторами, это следует из (12). Обратное неверно.

x 1 (t) = (1,1) и x 2 (t) = (t, t)

при любом t являются линейно зависимыми векторами.

Но как вектор-функции, они на любом интервале ( α, β) линейно независимы, так как при постоянных с1 и c2 равенство

на всем интервале ( α, β) возможно лишь при с1 = с2 = 0.

Действительно, c1x 1 (t) + c2 x 2 (t) = 0 эквивалентно выполнению равенства

2.3. Детерминант Вронского.

Детерминант Вронского W (t) или вронскиан для n-мерных вектор-функций

х 1 (t). , x n ( t ) — это детерминант n-го порядка, столбцы которого состоят из координат этих вектор-функций.

Если вектор-функции x 1 (t), . x n (t) линейно зависимы, то их вронскиан W(t) ≡ 0.

Если вронскиан W(t) ≠ 0 ( $ t ), то вектор-функции x 1 (t), . x n (t) линейно независимы.

Если вектор-функции x 1 (t), . x n (t) являются решениями системы х’ = A(t)x с непрерывной матрицей A ( t ), и их вронскиан равен нулю хотя бы при одном значении t , то эти вектор-функции линейно зависимы и их вронскиан W(t) ≡ 0.

Для вектор-функций, не являющихся решениями, утверждение леммы 3 неверно. В частности, для вектор-функций примера 2

x 1 (t) = (1,1) и x 2 (t) = (t, t)

имеем: W(t) ≡ 0, а они линейно независимы.

Далее рассматриваются решения линейной системы

Фундаментальной системой решений называется любая система n линейно независимых решений.

Покажем, что фундаментальные системы существуют. Возьмем t0 Î ( α, β) и любые n линейно независимых векторов b 1 , …, b n Î R n

Пусть х 1 (t). ,x n (t) — решения системы х’ = A(t)x с начальными условиями x j (t 0 ) = b j , j = 1. ,n.

Эти решения линейно независимы, так как при t = t0 их значения — линейно независимые векторы b 1 . b n , и равенство (12) возможно только при c1 = . = cn = 0.

Общим решением системы дифференциальных уравнений называют множество функций, содержащее все решения этой системы и только их (или формулу, представляющую это множество при всевозможных значениях произвольных постоянных).

Теорема 5 (об общем решении).

Пусть x l (t). x n (t) — какие-нибудь n линейно независимых решений системы

Общее решение системы есть

Теорема 5 означает, что множество решений системы х’ = A(t)x (х Î R n ) есть n-мерное линейное пространство.

Базисом в этом пространстве служит любая фундаментальная система решений. Равенство (13) есть представление любого элемента этого пространства в виде линейной комбинации элементов базиса.

Фундаментальной матрицей системы х’ = A(t)x называется матрица X(t), столбцы которой составляют фундаментальную систему решений.

Из леммы 3 следует, что det X(t) = W(t) ≠ 0.

С помощью фундаментальной матрицы X(t) общее решение (13) записывается в виде

где с — вектор-столбец с произвольными координатами c1. сn (так как X(t)c — линейная комбинация столбцов матрицы X(t), равная правой части (13) с коэффициентами с1. сn.

Найти линейно независимые решения и фундаментальную матрицу для системы

Из второго уравнения имеем у = с1 (произвольная постоянная). Подставляя в первое уравнение, получаем х’ = с1. Отсюда х = c1t + c2.

Общее решение есть х = c1t + c2,

Полагая с1 = 1, с2 = 0, находим частное решение х1 = t,

y1 = 1, а полагая с1 = 0, с2 = 1, находим другое решение х2 = 1,

y2 = 0. Их вронскиан W(t) = -1 ≠ 0. И в силу следствия леммы 2 эти решения линейно независимы. Поэтому фундаментальной является матрица

X T = x 1 x 2 y 1 y 2 .

Теорема 6 (переход от одной фундаментальной матрицы к другой).

Пусть X(t) — фундаментальная матрица, С — неособая (det С ≠ 0) постоянная матрица n x n. Тогда Y(t) = X(t)C — фундаментальная матрица той же системы. По этой формуле из данной фундаментальной матрицы X(t) можно получить любую фундаментальную матрицу Y(t), подбирая матрицу С.

Теорема 7 . Общее решение линейной неоднородной системы (10)

есть сумма ее частного решения и общего решения линейной однородной системы

3. ПРИМЕНЕНИЕ ТЕОРИИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЗАДАЧАХ ЭКОНОМИКИ.

Дифференциальные уравнения занимают особое место в ма­тематике и имеют многочисленные приложения в большом спектре наук. Исследования природных процессов и изучение закономерностей общественных процессов приводят к построе­нию математических моделей, основой которых являются диф­ференциальные уравнения.

В дифференциальных уравнениях неизвестная функция со­держится вместе со своими производными. Основной задачей теории дифференциальных уравнений является изучение функ­ций, представляющих собой решения этих уравнений.

На этой лекции мы рассмотрим пример примене­ния теории дифференциальных уравнений в непрерывной мо­дели экономики, где независимой переменной является вре­мя t . Такие модели достаточно эффективны при исследовании эволюции экономических систем на длительных интервалах времени; они являются предметом исследования экономичес­кой динамики.

3.1. Модель рынка с прогнозируемыми ценами.

Рассмотрим модель рынка с прогнозируемыми ценами. В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. Однако спрос и предложение в реальных ситуациях зависят еще и от тен­денции ценообразования и темпов изменения цены. В моделях с непрерывными и дифференцируемыми по времени t функци­ями эти характеристики описываются соответственно первой и второй производными функции цены P ( t ).

Рассмотрим конкретный пример. Пусть функции спроса D и предложения S имеют следующие зависимости от цены Р и ее производных:

D(t) = 3P′′ – P′ – 2P +18,

S(t) = 4P′′ + P′ + 3P + 3. (14)

Принятые в (14) зависимости вполне реалистичны: поясним это на слагаемых с производными функции цены.

1. Спрос «подогревается» темпом изменения цены: если темп растет ( Р» > 0), то рынок увеличивает интерес к то­вару, и наоборот. Быстрый рост цены отпугивает покупателя, поэтому слагаемое с первой производной функции цены входит со знаком минус.

2. Предложение в еще большей мере усиливается темпом изменения цены, поэтому коэффициент при Р» в функции S ( t ) больше, чем в D ( t ) . Рост цены также увеличивает предложе­ние, потому слагаемое, содержащее Р’ , входит в выражение для S ( t ) со знаком плюс.

Требуется установить зависимость цены от времени. По­скольку равновесное состояние рынка характеризуется равен­ством D = S , приравняем правые части уравнений (14). После приведения подобных получаем

Соотношение (15) представляет линейное неоднородное дифференциальное уравнение второго порядка относительно функции P ( t ) . Как было установлено в предыдущем пункте, общее решение такого уравнения состоит из суммы какого-либо его частно­го решения и общего решения соответствующего однородного уравнения

Характеристическое уравнение имеет вид

Его корни — комплексно-сопряженные числа: k 1,2 = -1 ± 2 i, и, следовательно, общее решение уравнения (16) дается фор­мулой

где С1 и С2 — произвольные постоянные.

В качестве частно­го решения неоднородного уравнения (15) возьмем решение Р = P st — постоянную величину как установившуюся цену. Подстановка в уравнение (15) дает значение P st :

Таким образом, общее решение уравнения (15) имеет вид

Нетрудно видеть, что P ( t ) P st = 3 при t , т.е. все интегральные кривые имеют горизонтальную асимптоту Р = 3 и колеблются около нее. Это означает, что все цены стремятся к установившейся цене P st с колебаниями около нее, причем амплитуда этих колебаний затухает со временем.

3.2. Частные решения: задача Коши и смешанная задача.

Приведем частные решения этой задачи в двух вариантах: задача Коши и смешанная задача.

1. Задача Коши. Пусть в начальный момент времени из­вестна цена, а также тенденция ее изменения: При t =0

Подставляя первое условие в формулу общего решения (17), получаем

P(t) = 3 + e –t (cos 2t + C2 sin 2t). (18)

Дифференцируя , имеем отсюда

Теперь реализуем второе условие задачи Коши:

Р’ (0) = 2 C2 — 1 = 1, откуда C 2 = 1 . Окончательно получаем, что решение задачи Коши имеет вид

P(t) = 3 + e –t (cos 2t + sin 2t).

или в более удобной форме:

P t = 3+ 2 e — t cos 2 t — π 4 .

2. Смешанная задача. Пусть в начальный момент времени известны цена и спрос:

Поскольку первое начальное условие такое же, как и в преды­дущем случае, то имеем и здесь решение (18). Тогда произ­водные функции Р( t ) выражаются формулами

Отсюда Р’(0) =2 C 2 — 1 и Р»( 0 ) = —4 C 2 — 3 . Подставляя эти равенства во второе условие задачи, т.е. D ( 0 ) = 16 , имеем с учетом вида D ( t ) из первой формулы (14): С2 = -1. Итак, решение данной задачи имеет вид

или в более удобной форме:

P t = 3- 2 e — t sin 2 t — π 4 .

Интегральные кривые, соответствующие задачам 1 и 2, изоб­ражены на рисунке 1.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

[1] Клюшин В. Л. Высшая математика для экономистов: Учебное пособие. — М.: ИНФРА-М, 2009. — 448 с. — (Учебники РУДН).

[2] Колемаев В. А. Экономико-математическое моделирование. Моделирование макроэкономических процессов и систем: Учебник. М.: ЮНИТИ-ДАНА, 2005. — 295 с.

[3] Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании: Учебник. — 2-е изд., испр. — М.: Дело, 2001. — 688 с.

[4] Красс М.С., Чупрынов Б.П. Математика для экономистов. СПб.: Питер, 2005. – 464, ил. (Серия «Учебное пособие»).

[5] Филиппов А. Ф. Введение в теорию дифференциальных уравнений: Учебник. Изд. 2-е, испр. М.: КомКнига, 2007. — 240 с.


источники:

http://natalibrilenova.ru/obyiknovennyie-differentsialnyie-uravneniya/

http://bodrenko.org/dru/dru-l2.htm