Что такое однородное уравнение с 1 неизвестной

Однородные уравнения и неравенства

Однородные уравнения – это уравнения, в которых все слагаемые имеют одинаковую суммарную степень.

Однородные неравенства – это неравенства, в которых все слагаемые имеют одинаковую суммарную степень.

Пример. Решить уравнение \(\sin⁡x=\sqrt<3>\cos⁡x\).

Перед нами типичное однородно-тригонометрическое уравнение. Надо разделить уравнение на cos⁡x, но делить на число равное нулю нельзя, поэтому проверим, является ли \(\cos⁡x=0\) решением уравнения. Если \(\cos⁡x=0\), то \(\sin⁡x=±1\). Очевидно, что \(±1≠0\).

Теперь с чистой совестью поделим уравнение на \(\cos⁡x\)

Заметьте, что в этом примере перед тем, как делить на \(\cos⁡x\), была сделана проверка — является ли \(\cos⁡x=0\) решением уравнения. Нужно каждый раз проверять, является ли выражение, на которое вы хотите поделить, решением. Иначе вы рискуете потерять корни уравнения .

Пример. Решить уравнение \(7\cdot 9^+5\cdot 6^-48\cdot 4^=0\).

Показатели степеней в уравнении похожи – в каждом есть \(x^2-3x\). Давайте сделаем их одинаковыми.
Представим \(48\cdot 4^\) как \(12\cdot 4^1\cdot 4^\).

Получился классический вид однородного уравнения.
Поделим уравнение на \(4^\) .
Положительное число в степени никогда не будет равно нулю, поэтому проверку можно не делать.

Обратите внимание: \((\frac<3><2>)^2\) \(=\) \(\frac<9><4>\) . С учетом этого сделаем замену.

Положительное число в любой степени всегда больше нуля, поэтому \(t>0\). Отметим это в решении, чтобы не забыть.

Однородные уравнения первого порядка

Вы будете перенаправлены на Автор24

Понятие однородного уравнения

Дифференциальное уравнение первого порядка, представленное в стандартном виде $y’=f\left(x,y\right)$, является однородным, если его правая часть зависит не просто от переменных $x$ и $y$, а от отношения функции $y$ к независимой переменной $x$, то есть $ f (x,y) = f (x/y)$.

Зависимость функции от отношения $\frac $ следует понимать так, что функция не изменяется при замене в ней данного отношення на любое другое, имеющее вид $\frac$. Например, именно такое свойство имеет функция $f\left(x,y\right)=\frac \cdot \cos \frac $. Действительно, $f\left(x,y\right)=\frac \cdot \cos \frac =\frac\cdot \cos \frac$. После замены переменных $x$ и $y$ на $t\cdot x$ и $t\cdot y$ соответственно и последующего сокращения на $t$ данная функция приобретает свой исходный вид. В этом и состоит основное свойство однородного дифференциального уравнения.

Общий метод решения

Однородное дифференциальное уравнение $y’=f (x/y)$ решают посредством применения замены $\frac =u$, где $u=u\left(x\right)$ — новая неизвестная функция. Идея состоит в том, что найдя функцию $u$ и умножив её на $x$, можно будет найти и нужную функцию $y$.

Представим замену в виде $y=u\cdot x$ и продифференцируем её: $\frac =\frac \cdot x+u\cdot \frac =\frac \cdot x+u$. Подставим $y$ и $\frac $ в данное дифференциальное уравнение: $\frac \cdot x+u=f\left(u\right)$.

Полученное дифференциальное уравнение представляет собой уравнение с разделяющимися переменными. Действительно, после элементарных преобразований его можно представить в виде $\frac =\frac $, где $f_ <1>\left(x\right)=\frac<1> $ — функция, зависящая только от $x$, и $f_ <2>\left(u\right)=f\left(u\right)-u$ — функция, зависящая только от $u$. Применим к этому дифференциальному уравнению метод решения дифференциальных уравнений с разделяющимися переменными.

Готовые работы на аналогичную тему

Сначала вычисляем интеграл $I_ <1>=\int f_ <1>\left(x\right)\cdot dx $. Получаем: $I_ <1>=\int \frac<1> \cdot dx=\ln \left|x\right| $. Теперь записываем интеграл $I_ <2>=\int \frac \left(u\right)> $. Получаем: $I_ <2>=\int \frac $. Общее решение записываем в форме $I_ <2>=I_ <1>+C$, то есть $\int \frac =\ln \left|x\right|+C$. Правую часть полученного решения можно упростить, если представить произвольную постоянну в более удобной форме $\ln \left|C\right|$. При этом получим: $\ln \left|x\right|+\ln \left|C\right|=\ln \left|x\cdot C\right|$.

Окончательно получаем: $\int \frac =\ln \left|x\cdot C\right|$. После вычисления интеграла $\int \frac $ и замены $u$ на $\frac $ общее решение данного однородного дифференциального уравнения будет найдено.

Общий метод решения можно представить в виде следующего алгоритма:

  1. В первую очередь убеждаемся, что решаемое дифференциальное уравнение является однородным. Для этого нужно представить его в стандартном виде $y’=f\left(x,y\right)$, после чего в функции $f\left(x,y\right)$ переменные $x$ и $y$ заменить на $t\cdot x$ и $t\cdot y$ соответственно. Если после элементарных тождественных преобразований удается вернуться к той же функции $f\left(x,y\right)$, то данное дифференциальное уравнение является однородным и $ f (x,y) = f (x/y)$. Если добиться этого оказалось невозможным, то данное дифференциальное уравнение должно решаться иным методом.
  2. Находим $f\left(u\right)$, выполнив для функции $f (x/y)$ замену $y=u\cdot x$, после чего записываем функцию $f\left(u\right)-u$.
  3. Находим интеграл $I=\int \frac$ и записываем общее решение в виде $I=\ln \left|x\cdot C\right|$.
  4. Выполняем обратную замену $u=\frac$ и проводим упрощающие тождественные преобразования.
  5. Находим особые решения, которые могли быть утрачены при разделении переменных.

Решение типичных задач

Найти общее решение дифференциального уравнения $y’=2+\frac $.

По внешнему виду данного дифференциального уравнения его можно сразу отнести к однородному.

Для функции $f (x/y)=2+\frac $ выполняем замену $y=u\cdot x$ и находим $f\left(u\right)=2+\frac =2+u$. Записываем функцию $f\left(u\right)-u=2+u-u=2$.

Записываем общее решение в виде $\frac <2>=\ln \left|x\cdot C\right|$.

Выполняем обратную замену $u=\frac $ и получаем $\frac <2\cdot x>=\ln \left|x\cdot C\right|$ или $y=2\cdot x\cdot \ln \left|x\cdot C\right|$.

Так как $f\left(u\right)-u=2$, то особых решений данное дифференциальное уравнение не имеет.

Найти общее решение дифференциального уравнения $x\cdot y’=5\cdot y+x$.

Приводим данное дифференциальное уравнение к стандартному виду $y’=5\cdot \frac +1$, после чего можно сделать вывод, что оно является однородным.

Для функции $f (x/y)=5\cdot \frac +1$ выполняем замену $y=u\cdot x$ и находим $f\left(u\right)=5\cdot \frac +1=5\cdot u+1$.

Записываем функцию $f\left(u\right)-u=5\cdot u+1-u=4\cdot u+1$.

Находим интеграл $I=\int \frac =\int \frac <4\cdot u+1>=\frac<1> <4>\cdot \ln \left|4\cdot u+1\right|$.

Записываем общее решение в виде $\frac<1> <4>\cdot \ln \left|4\cdot u+1\right|=\ln \left|x\cdot C\right|$, откуда $\ln \left|4\cdot u+1\right|=\ln \left|x\cdot C\right|^ <4>$; $4\cdot u+1=x^ <4>\cdot C^ <4>$ или просто $4\cdot u+1=C\cdot x^ <4>$.

Выполняем обратную замену $u=\frac $ и получаем $4\cdot \frac +1=C\cdot x^ <4>$.

Таким образом, общее решение имеет вид: $4\cdot y+x=C\cdot x^ <5>$.

Решая уравнение $f\left(u\right)-u=4\cdot u+1=0$ или $4\cdot \frac +1=0$, находим особое решение $y=-\frac <4>$. Проверка подстановкой в данное дифференциальное уравнение $x\cdot \left(-\frac<1> <4>\right)=5\cdot \left(-\frac <4>\right)+x$ показывает, что особое решение $y=-\frac <4>$ удовлетворяет данному дифференциальному уравнению.

Однако это же решение можно получить из общего решения $4\cdot y+x=C\cdot x^ <5>$, положив в нём $C=0$.

Таким образом, окончательный результат: $4\cdot y+x=C\cdot x^ <5>$.

Уравнения, приводящиеся к однородным

При определенных условиях дифференциальное уравнение вида $y’=\frac \cdot x+b_ <1>\cdot y+c_ <1>> \cdot x+b_ <2>\cdot y+c_ <2>> $, в котором $a_ <1>$, $b_ <1>$, $c_ <1>$, $a_ <2>$, $b_ <2>$, $c_ <2>$ — постоянные коэффициенты, может быть приведено к однородному.

Если $\Delta \equiv \left|\begin > & > \\ > & > \end\right|\ne 0$, то приведение его к однородному достигается с помощью замен $x=m+\alpha $ и $y=n+\beta $, где постоянные $\alpha $ и $\beta $ следует выбрать как результат решения системы $\left\<\begin \cdot \alpha +b_ <1>\cdot \beta =-c_ <1>> \\ \cdot \alpha +b_ <2>\cdot \beta =-c_ <2>> \end\right. $.

Так как $\Delta \ne 0$, то эта система имеет единственное решение, которое проще всего найти по формулам Крамера.

Используя найденные выражения для $x=m+\alpha $ и $y=n+\beta $, получим дифференциальное уравнение $\frac =\frac \cdot m+b_ <1>\cdot n> \cdot m+b_ <2>\cdot n> $, которое является однородным.

Однородные уравнения

Разделы: Математика

Цели занятия:

  • образовательные: – научиться распознавать однородные уравнения, отработать метод решения однородных уравнений.
  • развивающие: – развивать логическое мышление, навыки самостоятельной работы и самоконтроля.
  • воспитательные: – развивать познавательный интерес к предмету, творческие способности обучающихся.

Материал для лекции.

Определение: Многочлен называется однородным, если

Многочлен от двух переменных называют однородным многочленом степени k, если все его одночлены имеют степень k.

Например: = – однородный многочлен второй степени, а – однородный многочлен третьей степени.

Определение: Уравнение вида называется однородным уравнением степени k относительно , если – однородный многочлен степени k.

Понятие однородности распространяется и на уравнения с большим числом неизвестных.

Например: – однородное уравнение третьей степени относительно неизвестных

Однородное уравнение относительно и делением на (если не является корнем уравнения) превращается в уравнение относительно неизвестного . Это свойство однородности облегчает процесс решения.


источники:

http://spravochnick.ru/matematika/differencialnye_uravneniya/odnorodnye_uravneniya_pervogo_poryadka/

http://urok.1sept.ru/articles/599533