Что такое однородные уравнения человеческим языком

Однородные уравнения и неравенства

Однородные уравнения – это уравнения, в которых все слагаемые имеют одинаковую суммарную степень.

Однородные неравенства – это неравенства, в которых все слагаемые имеют одинаковую суммарную степень.

Пример. Решить уравнение \(\sin⁡x=\sqrt<3>\cos⁡x\).

Перед нами типичное однородно-тригонометрическое уравнение. Надо разделить уравнение на cos⁡x, но делить на число равное нулю нельзя, поэтому проверим, является ли \(\cos⁡x=0\) решением уравнения. Если \(\cos⁡x=0\), то \(\sin⁡x=±1\). Очевидно, что \(±1≠0\).

Теперь с чистой совестью поделим уравнение на \(\cos⁡x\)

Заметьте, что в этом примере перед тем, как делить на \(\cos⁡x\), была сделана проверка — является ли \(\cos⁡x=0\) решением уравнения. Нужно каждый раз проверять, является ли выражение, на которое вы хотите поделить, решением. Иначе вы рискуете потерять корни уравнения .

Пример. Решить уравнение \(7\cdot 9^+5\cdot 6^-48\cdot 4^=0\).

Показатели степеней в уравнении похожи – в каждом есть \(x^2-3x\). Давайте сделаем их одинаковыми.
Представим \(48\cdot 4^\) как \(12\cdot 4^1\cdot 4^\).

Получился классический вид однородного уравнения.
Поделим уравнение на \(4^\) .
Положительное число в степени никогда не будет равно нулю, поэтому проверку можно не делать.

Обратите внимание: \((\frac<3><2>)^2\) \(=\) \(\frac<9><4>\) . С учетом этого сделаем замену.

Положительное число в любой степени всегда больше нуля, поэтому \(t>0\). Отметим это в решении, чтобы не забыть.

Однородные уравнения

Разделы: Математика

Цели занятия:

  • образовательные: – научиться распознавать однородные уравнения, отработать метод решения однородных уравнений.
  • развивающие: – развивать логическое мышление, навыки самостоятельной работы и самоконтроля.
  • воспитательные: – развивать познавательный интерес к предмету, творческие способности обучающихся.

Материал для лекции.

Определение: Многочлен называется однородным, если

Многочлен от двух переменных называют однородным многочленом степени k, если все его одночлены имеют степень k.

Например: = – однородный многочлен второй степени, а – однородный многочлен третьей степени.

Определение: Уравнение вида называется однородным уравнением степени k относительно , если – однородный многочлен степени k.

Понятие однородности распространяется и на уравнения с большим числом неизвестных.

Например: – однородное уравнение третьей степени относительно неизвестных

Однородное уравнение относительно и делением на (если не является корнем уравнения) превращается в уравнение относительно неизвестного . Это свойство однородности облегчает процесс решения.

Однородные уравнения

Однородные уравнения

Алгебраический многочлен f(x,y) с двумя переменными x и у называется однородным многочленом n -й степени относительно этих переменных , если при любом имеет место тождество

Это означает, что однородный многочлен n-й степени f (х, у) можно представить в виде

где — коэффициенты многочлена, одновременно не обращающиеся в нуль.

Уравнение f(x,y) = 0 называется однородным алгебраическим уравнением n -й степени с двумя неизвестными x,у, если f(x,y) — однородный многочлен n-й степени относительно этих переменных.

Например, уравнение вида является однородным уравнением 2-й степени относительно неизвестных x и у . Действительно, достаточно проверить выполнение условия (1). При одновременной замене , получим

т.е. условие (1) из определения выполняется (n = 2).

Аналогично, уравнение есть однородное уравнение 2-й степени по отношению к неизвестным x,y,z , поскольку при замене получаем

Итак, однородное алгебраическое уравнение — это уравнение, не меняющее своего вида при одновременном умножении всех его неизвестных на одно и то же число, отличное от нуля. Можно распространить понятие однородности на случай неалгебраических уравнений.

Пусть р(х) и q(x) — две произвольные функции, определённые на одном и том же множестве, .

Однородным уравнением n -й степени относительно функций р(х), q(x) называется уравнение вида

В частности, если функции р(х) и q(x) являются целыми алгебраическими многочленами, то и уравнение (2) будет относиться к аналогичному классу. В качестве другого примера рассмотрим уравнение вида

Оно является однородным тригонометрическим уравнением 2-й степени относительно функций

Перейдём к процедуре решения уравнения (2).

Если хотя бы один из коэффициентов или обращается в нуль, то левая часть уравнения легко раскладывается на множители. В результате уравнение оказывается равносильно на ОДЗ совокупности двух уравнений. Например, если , то получим совокупность

Если же и , то для решения однородного уравнения (2) необходимо рассмотреть два возможных случая.

1) Если то, поделив обе части уравнения на и обозначив после этого отношение p(x)/q(x) через t , получим алгебраическое уравнение n -й степени относительно t:

решив которое и сделав обратную подстановку, найдём часть решений однородного уравнения.

2) Если q(х) = 0. то, подставив в уравнение вместо q(x) нуль, получим, что тогда и р(х) должно обращаться в нуль. Таким образом, этот случай сводится к решению системы уравнений

Осталось объединить все найденные решения. Уравнение (2) решено. Обратимся к примерам.

Пример №185.

Решить уравнение

Решение:

Перепишем уравнение: Видно, что это однородное уравнение 2-й степени относительно функций и1) Пусть х + 1 = 0 , но система решений не имеет.

2) Пусть теперь . Поделив на и обозначив , придём к квадратному уравнению . Оно имеет два корня , . Возвращаясь к переменной x , приходим к совокупности двух уравнений

Пример №186.

Решить в целых числах уравнение

Решение:

Заметим, что если у = 0, то x = 0, и, значит, пара (0;0) удовлетворяет уравнению. Пусть , тогда поделим обе части уравнения на :

Обозначим t = x/у, тогда имеем кубическое уравнение Подбором находим корень t = — 1. Делением многочлена получаем: Убеждаемся в том, что данное кубическое уравнение имеет единственный корень t = — 1, что соответствует у = — x . Положим x = р, где р — произвольное целое число, не равное 0. Тогда у = — р , и имеем бесконечно много решений в виде пар чисел (р;- р), , . Объединяя все полученные решения, приходим к ответу.

Ответ: где .

Пример №187.

Для каждого действительного значения параметра а решить уравнение

Решение:

Заметим, что данное уравнение можно рассмотреть как однородное алгебраическое уравнение 4-й степени относительно x и а.

1) Если а = 0 , то х = 0 .

2) Если , то поделим на , и положим :

Первый сомножитель в нуль не обращается, а второй имеет два корня

Ответ: при а = 0 единственное решение x = 0 ;

при два решения

Пример №188.

Найти действительные корни уравнения

Решение:

Данное уравнение в исходном виде не является однородным, но может быть сведено преобразованиями к однородному. Действительно, достаточно привести его к виду

Получили однородное уравнение 2-й степени относительно x + 1 и у — 1.

1) Если , то, поделив на и обозначив , получим нет решений.

2) Если у = 1, то, подставляя в уравнение, находим x = — 1 .

Ответ:

Эта лекция взята со страницы, где размещён подробный курс лекций по предмету математика:

Эти страницы возможно вам будут полезны:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://urok.1sept.ru/articles/599533

http://lfirmal.com/odnorodnyie-uravneniya-v-matematike/