Что такое однородные уравнения определение

Однородные уравнения и неравенства

Однородные уравнения – это уравнения, в которых все слагаемые имеют одинаковую суммарную степень.

Однородные неравенства – это неравенства, в которых все слагаемые имеют одинаковую суммарную степень.

Пример. Решить уравнение \(\sin⁡x=\sqrt<3>\cos⁡x\).

Перед нами типичное однородно-тригонометрическое уравнение. Надо разделить уравнение на cos⁡x, но делить на число равное нулю нельзя, поэтому проверим, является ли \(\cos⁡x=0\) решением уравнения. Если \(\cos⁡x=0\), то \(\sin⁡x=±1\). Очевидно, что \(±1≠0\).

Теперь с чистой совестью поделим уравнение на \(\cos⁡x\)

Заметьте, что в этом примере перед тем, как делить на \(\cos⁡x\), была сделана проверка — является ли \(\cos⁡x=0\) решением уравнения. Нужно каждый раз проверять, является ли выражение, на которое вы хотите поделить, решением. Иначе вы рискуете потерять корни уравнения .

Пример. Решить уравнение \(7\cdot 9^+5\cdot 6^-48\cdot 4^=0\).

Показатели степеней в уравнении похожи – в каждом есть \(x^2-3x\). Давайте сделаем их одинаковыми.
Представим \(48\cdot 4^\) как \(12\cdot 4^1\cdot 4^\).

Получился классический вид однородного уравнения.
Поделим уравнение на \(4^\) .
Положительное число в степени никогда не будет равно нулю, поэтому проверку можно не делать.

Обратите внимание: \((\frac<3><2>)^2\) \(=\) \(\frac<9><4>\) . С учетом этого сделаем замену.

Положительное число в любой степени всегда больше нуля, поэтому \(t>0\). Отметим это в решении, чтобы не забыть.

Однородные уравнения

Разделы: Математика

Цели занятия:

  • образовательные: – научиться распознавать однородные уравнения, отработать метод решения однородных уравнений.
  • развивающие: – развивать логическое мышление, навыки самостоятельной работы и самоконтроля.
  • воспитательные: – развивать познавательный интерес к предмету, творческие способности обучающихся.

Материал для лекции.

Определение: Многочлен называется однородным, если

Многочлен от двух переменных называют однородным многочленом степени k, если все его одночлены имеют степень k.

Например: = – однородный многочлен второй степени, а – однородный многочлен третьей степени.

Определение: Уравнение вида называется однородным уравнением степени k относительно , если – однородный многочлен степени k.

Понятие однородности распространяется и на уравнения с большим числом неизвестных.

Например: – однородное уравнение третьей степени относительно неизвестных

Однородное уравнение относительно и делением на (если не является корнем уравнения) превращается в уравнение относительно неизвестного . Это свойство однородности облегчает процесс решения.

Однородные дифференциальные уравнения первого порядка

Определение

Как определить однородное дифференциальное уравнение

Для того, чтобы определить, является ли дифференциальное уравнение первого порядка однородным, нужно ввести постоянную t и заменить y на ty и x на tx : y → ty , x → tx . Если t сократится, то это однородное дифференциальное уравнение. Производная y′ при таком преобразовании не меняется.
.

Пример

Определить, является ли данное уравнение однородным

Делаем замену y → ty , x → tx .

Делим на t 2 .

.
Уравнение не содержит t . Следовательно, это однородное уравнение.

Метод решения однородного дифференциального уравнения

Однородное дифференциальное уравнение первого порядка приводится к уравнению с разделяющимися переменными с помощью подстановки y = ux . Покажем это. Рассмотрим уравнение:
(i)
Делаем подстановку:
y = ux ,
где u — функция от x . Дифференцируем по x :
y′ = ( ux ) ′ = u′ x + u ( x ) ′ = u′ x + u
Подставляем в исходное уравнение (i).
,
,
(ii) .
Разделяем переменные. Умножаем на dx и делим на x ( f ( u ) – u ) .

При f ( u ) – u ≠ 0 и x ≠ 0 получаем:

Интегрируем:

Таким образом, мы получили общий интеграл уравнения (i) в квадратурах:

Заменим постоянную интегрирования C на ln C , тогда

Опустим знак модуля, поскольку нужный знак определяется выбором знака постоянной C . Тогда общий интеграл примет вид:

Далее следует рассмотреть случай f ( u ) – u = 0 .
Если это уравнение имеет корни, то они являются решением уравнения (ii). Поскольку уравнение (ii) не совпадает с исходным уравнением, то следует убедиться, что дополнительные решения удовлетворяют исходному уравнению (i).

Всякий раз, когда мы, в процессе преобразований, делим какое-либо уравнение на некоторую функцию, которую обозначим как g ( x, y ) , то дальнейшие преобразования справедливы при g ( x, y ) ≠ 0 . Поэтому следует отдельно рассматривать случай g ( x, y ) = 0 .

Пример решения однородного дифференциального уравнения первого порядка

Проверим, является ли данное уравнение однородным. Делаем замену y → ty , x → tx . При этом y′ → y′ .
,
,
.
Сокращаем на t .

Постоянная t сократилась. Поэтому уравнение является однородным.

Делаем подстановку y = ux , где u – функция от x .
y′ = ( ux ) ′ = u′ x + u ( x ) ′ = u′ x + u
Подставляем в исходное уравнение.
,
,
,
.
При x ≥ 0 , |x| = x . При x ≤ 0 , |x| = – x . Мы пишем |x| = ± x подразумевая, что верхний знак относится к значениям x ≥ 0 , а нижний – к значениям x ≤ 0 .
,
Умножаем на ± dx и делим на .

При u 2 – 1 ≠ 0 имеем:

Интегрируем:

Интегралы табличные,
.

Применим формулу:
( a + b )( a – b ) = a 2 – b 2 .
Положим a = u , .
.
Возьмем обе части по модулю и логарифмируем,
.
Отсюда
.

Таким образом имеем:
,
.
Опускаем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C .

Умножаем на x и подставляем ux = y .
,
.
Возводим в квадрат.
,
,
.

Теперь рассмотрим случай, u 2 – 1 = 0 .
Корни этого уравнения
.
Легко убедиться, что функции y = ± x удовлетворяют исходному уравнению.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 19-07-2012 Изменено: 24-02-2015


источники:

http://urok.1sept.ru/articles/599533

http://1cov-edu.ru/differentsialnye-uravneniya/pervogo-poryadka/odnorodnye/