Что такое разность корней уравнения

Алгебра

План урока:

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

Теорема Виета для квадратного уравнения

О чем эта статья:

Основные понятия

Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Существует три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Формула для его поиска записывается так: D = b 2 − 4ac. Его свойства:

  • если D 0, есть два различных корня.

В случае, когда второй коэффициент четный, можно воспользоваться формулой нахождения дискриминанта , где .

В математике теоремой принято называть утверждение, у которого ранее было сформулировано доказательство.

Формула Виета

Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

Рассмотрим квадратное уравнение, в котором первый коэффициент равен 1: . Такие уравнения называют приведенными квадратными уравнениями. Сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Обучение на курсах по математике помогает быстрее разобраться в новых темах и подтянуть оценки в школе.

Доказательство теоремы Виета

Дано квадратное уравнение x 2 + bx + c = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену:

Докажем, что следующие равенства верны

  • x₁ + x₂ = −b,
  • x₁ * x₂ = c.

Чтобы найти сумму корней x₁ и x₂ подставим вместо них то, что соответствует им из правой части формул корней. Напомним, что в данном квадратном уравнении x 2 + bx + c = 0 старший коэффициент равен единице. Значит после подстановки знаменатель будет равен 2.

    Объединим числитель и знаменатель в правой части.

Раскроем скобки и приведем подобные члены:

Сократим дробь полученную дробь на 2, остается −b:

Мы доказали: x₁ + x₂ = −b.

Далее произведем аналогичные действия, чтобы доказать о равенстве x₁ * x₂ свободному члену c.

    Подставим вместо x₁ и x₂ соответствующие части из формул корней квадратного уравнения:

Перемножаем числители и знаменатели между собой:

Очевидно, в числителе содержится произведение суммы и разности двух выражений. Поэтому воспользуемся тождеством (a + b) * (a − b) = a 2 − b 2 . Получаем:

Далее произведем трансформации в числителе:

Нам известно, что D = b2 − 4ac. Подставим это выражение вместо D.

Далее раскроем скобки и приведем подобные члены:

Сократим:

Мы доказали: x₁ * x₂ = c.

Значит сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком (x₁ + x₂ = −b), а произведение корней равно свободному члену (x₁ * x₂= c). Теорема доказана.

Обратная теорема Виета

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Она формулируется так:

Обратная теорема Виета

Если числа x₁ и x₂ таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа являются корнями x 2 + bx + c = 0.

Обратные теоремы зачастую сформулированы так, что их утверждением является заключение первой теоремы. Так, при доказательстве теоремы Виета стало понятно, что сумма x₁ и x₂ равна −b, а их произведение равно c. В обратной теореме это является утверждением.

Докажем теорему, обратную теореме Виета

Корни x₁ и x₂ обозначим как m и n. Тогда утверждение будет звучать следующим образом: если сумма чисел m и n равна второму коэффициенту x 2 + bx + c = 0, взятому с противоположным знаком, а произведение равно свободному члену, то числа m и n являются корнями x 2 + bx + c = 0.

Зафиксируем, что сумма m и n равна −b, а произведение равно c.

Чтобы доказать, что числа m и n являются корнями уравнения, нужно поочередно подставить буквы m и n вместо x, затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями x 2 + bx + c = 0.

    Выразим b из равенства m + n = −b. Это можно сделать, умножив обе части на −1:

Подставим m в уравнение вместо x, выражение −m − n подставим вместо b, а выражение mn — вместо c:

При x = m получается верное равенство. Значит число m является искомым корнем.

  1. Аналогично докажем, что число n является корнем уравнения. Подставим вместо x букву n, а вместо c подставим m * n, поскольку c = m * n.

    При x = n получается верное равенство. Значит число n является искомым корнем.

Мы доказали: числа m и n являются корнями уравнения x 2 + bx + c = 0.

Примеры

Для закрепления знаний рассмотрим примеры решения уравнений по теореме, обратной теореме Виета.

Дано: x 2 − 6x + 8 = 0.

Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.
2 − 6x + 8 = 0″ height=»59″ src=»https://lh6.googleusercontent.com/tFokx3SM93Hwlr7ZM9BqX1xiHKv_2dUIB9MoNa8RAwSTmQKXdCcqcFXxTZmxNGw7bOVek-RzRXqBkoCqnYMiqIYVwKhfnHeU-7mA03feEqJTlyKB7e-OsTTKgPaOlddfiaTGszcv» width=»99″>

Имея эти два равенства можно подобрать подходящие корни, которые будут удовлетворять как равенству обоим равенствам системы.

Подбор корней удобнее выполнять с помощью их произведения. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x₁ и x₂ надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x₁ + x₂ = 6. Значения 4 и 2 подходят обоим равенствам:

Значит числа 4 и 2 являются корнями уравнения x 2 − 6x + 8 = 0.
2 − 6x + 8 = 0″ height=»57″ src=»https://lh3.googleusercontent.com/rohB7Bvd-elMhTxEUuOhKqLJjqLAvo9VlJxZvOnMeDAHARfKT-SYOWb1WXTTWEN2h0oKbLl6wH7lc0IWL_vH3Si2AJGAGXVn8TPFDT_J1Wu2WeoQ-WP1qgXjCnZ99tWUkK2BOvF2″ width=»64″>

Неприведенное квадратное уравнение

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым, то есть его первый коэффициент равен единице:

ax 2 + bx + c = 0, где а = 1.

Если квадратное уравнение не является приведенным, но задание связано с применением теоремы, нужно обе части разделить на коэффициент, который располагается перед x 2 .

  1. Получилось следующее приведенное уравнение:

    Получается, второй коэффициент при x равен, свободный член —. Значит сумма и произведение корней будут иметь вид:

Рассмотрим пример неприведенного уравнения: 4x 2 + 5x + 1 = 0. Разделим обе его части на коэффициент перед x 2 , то есть на 4.

  • Получилось приведённое квадратное уравнение. Второй коэффициент которого равен, а свободный член.
  • Тогда в соответствии с теоремой Виета получаем:
  • Метод подбора помогает найти корни: −1 и
  • Квадратное уравнение. Парабола

    Квадратичная функция

    $s=\frac<2>$ — путь, которое проходит свободно падающее тело за время t с нулевой начальной скоростью.

    В общем виде эту зависимость можно записать так: $y=ax^2$. График этой функции — парабола, вершина которой находится в точке (0,0). Ветви направлены вверх. Четная функция.

    Квадратичной называется функция, которую можно задать формулой y=ax² + bx + c, причем а отлично от 0. Здесь a,b,c — некоторые числа, x — переменная.

    Корень — это значение переменной, обращающее квадратный трёхчлен в ноль, а квадратное уравнение в верное равенство.

    Vertex form

    Можно выделить квадратный двучлен, поэтому это тоже парабола со сдвигом и растяжением.

    Вершина параболы в точке (m,n), $m = \frac<-b><2a>, n = \frac<-D><4a>$

    Квадратное уравнение

    a — первый или старший коэффициент

    b — второй коэффициент или средний или коэффициент при x

    c — свободный член

    Дискриминант $D = b^2-4ac$

    Схематическое расположение параболы в зависимости от знаков первого коэффициента и дискриминанта.

    Приведённым называют квадратное уравнение, в котором старший коэффициент равен единице. Такое уравнение может быть получено делением всего выражения на старший коэффициент.

    Полным называют такое квадратное уравнение, все коэффициенты которого отличны от нуля.

    Неполным называется такое квадратное уравнение, в котором хотя бы один из коэффициентов кроме старшего (либо второй коэффициент, либо свободный член) равен нулю.

    Теорема Виета

    Теорема. Cумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

    Если приведенное квадратное уравнение $x^2 + px + q = 0$ имеет действительные корни, то их сумма равна $-p$, а произведение равно $q$, то есть

    $$x_1 + x_2 = –p, \\ x_1 \cdot x_2 = q$$

    Примечание. Любое квадратное уравнение можно привести к такому виду делением на a.

    Пример. Найти сумму корней уравнения $x^2-7x+13=0$. Корней нет, поэтому ответ «сумма корней равна 7» — неверный. Для определения количества корней необходимо найти дискриминант.

    Таким образом, в формулировку теоремы Виета необходимо добавить условие: если корни существуют, то … Или если дискриминант неотрицателен. Заметим, что при нулевом дискриминанте теорема Виета тоже работает (считать, что уравнение имеет два равных корня).

    Пример. (Мерзляк, Алгебра 8 углубл, 2016)

    Применения теоремы Виета

    Теорема Виета позволяет угадывать целые корни квадратного трехчлена (не решая уравнение).

    Так, находя корни квадратного уравнения x² – 5x + 6 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5. Это разложение очевидно: $$6 = 2 \cdot 3, \, 2 + 3 = 5. $$

    Отсюда должно следовать, что числа 2 и 3 являются искомыми корнями.

    Определение знаков корней

    Определение знаков корней без решения уравнения (при условии что D > 0).

    p > 0p 0Корни имеют одинаковые знаки
    оба корня отрицательныоба корня положительны
    Свободный член q 0

    Геометрический смысл теоремы Виета

    Мы привыкли произносить «икс квадрат», «квадрат суммы», «удвоенный квадрат», не придавая этим выражениям геометрического смысла. На самом деле все они отражают взгляд на алгебру, который сложился еще в глубокой древности, потому что людям приходилось решать геометрические задачи на вычисление площадей.

    В клинописных текстах древнего Вавилона (около 2000 лет до нашей эры) обнаружена такая задача. «Площадь 1000 состоит из суммы двух квадратов, и сторона меньшего составляет две трети стороны другого, уменьшенные на 10. Какова сторона бóльшего квадрата?»

    Решить такую задачу — это все равно, что решить уравнение $x^2+(\frac 2 3 x-10)^2=1000$. В клинописном тексте нет формулы для решения этого уравнения, но перечисляются необходимые этапы вычисления, которые приводят к корню $x = 30$.

    Фактически вавилонский метод дает решение системы $\beginx+y=p \\ xy= q\end$,

    которая представляет собой запись задачи нахождения сторон прямоугольника с данным периметром и площадью. Теорема Виета, с изучения которой начинается этот параграф, связывает решение этой системы с решением квадратного уравнения.

    Обобщение теоремы Виета

    Теорема Вієта для зведеного многочлена $f(x)=x^n+a_x^+\ldots+a_1x+a_0$ формулюється так: «Якщо $x_1, x_2, x_3, \ldots, x_, x_n$ — всі комплексні корені (включаючи рівні) цього многочлена степеня n, то мають місце рівності:

    $$ x_1+x_2+\ldots+x_n=-a_ $$ $$ x_1x_2+x_1x_3+\ldots+x_1x_n+x_2x_3+\ldots+x_x_n=a_ $$ $$ x_1x_2x_3+x_1x_2x_4+\ldots+x_1x_x_n+\ldots+x_x_x_n=-a_ $$ $$x_1x_2x_3 \ldots x_n=(-1)^n a_0$$

    Разность корней квадратного уравнения

    Для приведенного уравнения $$ x_1-x_2 = \sqrt $$

    $$ <(x_1-x_2)^2>= x_1^2 — 2x_1x_2 + x_2^2 = (x_1+x_2)^2-4x_1x_2$$

    Для приведенного уравнения с учетом теоремы Виета:

    $$(x_1-x_2)^2 = (-b)^2-4c = b^2-4ac = D$$

    Таким образом, если корни квадратного уравнения существуют, то расстояние между ними равно корню из дискриминанта. Грубо говоря, чем больше дискриминант, тем больше расстояние между корнями.

    Обобщение дискриминанта

    Дискриминантом многочлена $p(x)$ называется функция, задаваемая его коэффициентами.

    Если точнее, то дискриминант — это произведение квадратов разностей корней многочлена, умноженное на старший коэффициент в степени на 2 меньше удвоенной степени многочлена.

    1. Любая точка параболы равноудалена от некоторый точки, называемой фокусом параболы, и некоторой прямой, называемой ее директрисой.

    2. Если вращать параболу вокруг ее оси симметрии (например, параболу $y = x^2$ вокруг оси Oy), то получается очень интересная поверхность, которая называется параболоидом вращения.

    Поверхность жидкости, вращающейся в сосуде, имеет форму параболоида вращения. Вы можете увидеть эту поверхность, если помешаете ложечкой в неполном стакане чая, а потом вынете ложечку.

    3. Если в пустоте бросить камень под некоторым углом к горизонту, то он полетит по параболе.

    4. Если пересечь поверхность конуса плоскостью, параллельной какой-либо одной его образующей, то в сечении получится парабола.

    5. В парках культуры устраивают иногда забавный аттракцион «Параболоид чудес». Каждому из стоящих внутри вращающегося параболоида кажется, что он стоит на полу, а остальные люди каким-то чудом держатся на стенках.

    6. В зеркальных телескопах тоже применяют параболические зеркала: свет от далекой звезды, идущий параллельным пучком, упав на зеркало телескопа, собирается в фокусе.

    7. У прожекторов зеркало обычно делается в форме параболоида. Если поместить источник света в фокусе параболоида, то лучи света, отразившись от параболического зеркала, образуют параллельный пучок.

    Опыты, описанные в пунктах 2 и 5, основаны на одном и том же свойстве параболоида: если вращать параболоид с подходящей скоростью вокруг его оси, расположенной вертикально, то равнодействующая центробежной силы и силы тяготения в любой точке параболоида направлена перпендикулярно к его поверхности.

    Солнечные концентраторы

    Солнечные концентраторы используют энергию солнечной радиации, которая попадает на параболическую поверхность зеркала, в фокусе которой обычно располагается трубка с циркурирующим по ней теплоносителем. Как правило в качестве теплоносителя выступает масло. Теплоноситель нагревает воду, которая испаряясь поступает в турбогенератор в виде пара.

    Параболические концентраторы с двигателем Стирлинга представляют собой СЭС с параболическими концентраторами, которые фокусируются на двигатель Стирлинга. Такие электростанции характеризуются высоким КПД (более 31%). В качестве рабочего тела двигателя Стирлинга используется, как правило, водород, или гелий.

    Согласно известной исторической легенде, Архимед почти полностью сжег флот римского полководца Марка Марцелла, используя медные параболические зеркала.

    8-этажное сооружение, включающее около 10 тысяч отдельных параболических зеркал. На сегодняшний день Солнечная Печь, выстроенная в 1970 году в Восточных Пиренеях – крупнейшая в мире. Массив зеркал действует в качестве параболического отражателя. Свет фокусируется в одном центре. И температура там может достигать 3500 градусов по Цельсию. При такой температуре можно плавить сталь. Но температуру можно регулировать, устанавливая зеркала под разными углами.

    Подвесные мосты

    Вантовый мост — тип висячего моста, состоящий из одного или более пилонов, соединённых с дорожным полотном посредством прямолинейных стальных тросов — вантов. В отличие от висячих мостов, где дорожное полотно поддерживается вертикальными тросами, прикреплёнными к протянутым по всей длине моста основным несущим тросам, у вантовых мостов тросы (ванты) соединяются непосредственно с пилоном.

    Русский мост (Владивосток) — вантовый мост с самым длинным основным пролётом в мире (1104 м), при общей длине в 1886 м

    Висячий мост — мост, в котором основная несущая конструкция выполнена из гибких элементов (кабелей, канатов, цепей и др.), работающих на растяжение, а проезжая часть подвешена.

    Висячие мосты находят наиболее удачное применение в случае большой длины моста, невозможности или опасности установки промежуточных опор (например в судоходных местах).

    Золотые Ворота (Сан-Франциско) — один из самых узнаваемых мостов в мире. Мост был самым большим висячим мостом в мире с момента открытия в 1937 году и до 1964 года. Общая длина моста — 2737 м, длина основного пролёта — 1280 м, высота опор — 227 м над водой, масса — 894 500 т. В среднем, по мосту проезжают сто тысяч автомобилей в сутки. 6 полос.

    Основные несущие тросы (или цепи) подвешивают между установленными по берегам пилонами. К этим тросам крепят вертикальные тросы или балки, на которых подвешивается дорожное полотно основного пролёта моста. Основные тросы продолжаются за пилонами и закрепляются на уровне земли. Продолжение тросов может использоваться для поддержки двух дополнительных пролётов.

    Под действием сосредоточенной нагрузки несущая конструкция может изменять свою форму, что уменьшает жёсткость моста. Для избежания прогибов в современных висячих мостах дорожное полотно усиливают продольными балками или фермами, распределяющими нагрузку.

    Используются также конструкции, в которых дорожное полотно поддерживается системой прямолинейных канатов, закреплённых непосредственно на пилонах. Такие мосты называются вантовыми.

    Основной пролёт можно сделать очень длинным при минимальном количестве материала. Поэтому использование такой конструкции очень эффективно при строительстве мостов через широкие ущелья и водные преграды. В современных висячих мостах широко применяют проволочные тросы и канаты из высокопрочной стали с пределом прочности около 2—2,5 ГПа(200-250 кгс/мм²), что существенно снижает собственный вес моста.

    Отсутствует необходимость ставить промежуточные опоры, что даёт большие преимущества, например, в случае горных разломов или рек с сильным течением.

    Будучи относительно податливыми, висячие мосты могут, без ущерба для целостности конструкции, изгибаться под действием сильного ветра или сейсмических нагрузок, тогда как более жёсткие мосты нужно строить более крепкими и тяжёлыми.

    Полотно моста сильно прогибается, если на одном участке сосредоточена нагрузка существенно больше, чем на других. Из-за этого висячие мосты реже используются в качестве железнодорожных, чем другие типы.

    Основные напряжения в висячем мосте — это напряжения растяжения в основных тросах и напряжения сжатия в опорах, напряжения в самом пролёте малы. Почти все силы в опорах направлены вертикально вниз и стабилизируются за счёт тросов, поэтому опоры могут быть очень тонкими. Сравнительно простое распределение нагрузок по разным элементам конструкции упрощает расчёт висячих мостов.

    Под действием собственного веса и веса мостового пролёта тросы провисают и образуют дугу, близкую к параболе. Ненагруженный трос, подвешенный между двумя опорами, принимает форму т. н. «цепной линии», которая близка к параболе в почти горизонтальном участке. Если весом тросов можно пренебречь, а вес пролёта равномерно распределён по длине моста, тросы принимают форму параболы. Если вес троса сравним с весом дорожного полотна, то его форма будет промежуточной между цепной линией и параболой.

    Клифтонский мост близ Бристоля (инженер Изамбард Кингдом Брюнель, 1864).

    Акаси-Кайкё — самый длинный подвесной мост в мире. Полная длина составляет 3911 м. Пилоны имеют высоту 298 м, что выше 90-этажного дома.

    Вначале были построены два бетонных основания для пилонов на дне пролива Акаси. Для строительства этого моста был разработан специальный бетон, который не растворяется в воде при заливке. Следующим этапом было протягивание тросов. Для этого нужно было с одного пилона на другой протянуть направляющий канат. Он был протянут с помощью вертолёта. Когда в 1995 году оба троса были протянуты, и можно было приступать к монтажу дорожного полотна, произошло непредвиденное: город Кобе стал жертвой крупного землетрясения магнитудой в 7,3 балла. Пилоны выдержали землетрясение, но из-за изменения рельефа дна пролива один из пилонов сдвинулся на 1 м в сторону, таким образом нарушив все расчёты. Инженеры предложили удлинить балки дорожного полотна и увеличить расстояние между вантами, свисающими с основных тросов. Строительные работы, задержанные не более чем на месяц, возобновились. Монтаж дорожного полотна закончился в 1998 году.

    В конструкции моста имеется система двухшарнирных балок жёсткости, позволяющая выдерживать скорости ветра до 80 м/с, землетрясения магнитудой до 8,5 и противостоять сильным морским течениям. Для уменьшения действующих на мост нагрузок имеется система динамических гасителей колебаний.

    Если вытянуть в длину все стальные нити (диаметром 5,23 мм) несущих тросов моста Акаси-Кайкё, то ими можно опоясать земной шар более семи раз.

    Модель параболы

    Легко получить параболу с помощью обычного карманного фонарика. Световое пятно от вертикально расположенного фонаря будет кругом. Немного повернём его, и пятно будет иметь форму эллипса. При дальнейшем повороте фонарика эллипс будет всё больше и больше вытягиваться, а в некоторый момент его наиболее удалённая точка уйдёт в бесконечность. Кривая, ограничивающая такое пятно, называется параболой. Неограниченные кривые, которые получаются при дальнейшем вращении фонарика, называются гиперболами. Все получившиеся кривые – окружность, эллипс, парабола, гипербола – конические сечения. Такое название они получили заслуженно, поскольку световой столб, выходящий из фонарика, является конусом.

    Парабола, как огибающая

    Параболу можно рассматривать, как огибающую семейства прямых.

    См. также Конические сечения — Параболическое зеркало. Параболический бильярд

    Цепочки окружностей, вписанных в кривую 2-го порядка

    Если радиус окружности, вписанной в параболу $y=x^2$ равен 1, то радиус второй окружности, вписанной в эту же параболу и касающейся первой окружности, равен 2, радиус аналогичной 3-й окружности равен 3 и т. д.

    Интересно, что радиусы подобной цепочки окружностей, вписанных в угол, образуют геометрическую прогрессию.

    Фокус и директриса параболы

    Задача. Постройте график функции $y = x^2$. Масштаб возьмите покрупней: 1 = 4 клетки. Отметьте на оси Oy точку F(0; 1/4). Полоской бумаги измерьте расстояние от точки F до какой-нибудь точки M параболы. Затем приколите полоску в точке M и поверните ее вокруг этой точки так, чтобы она стала вертикальной. Конец полоски опустится немного ниже оси абсцисс. Отметьте на полоске, насколько она выйдет за ось абсцисс. Возьмите теперь другую точку на параболе и повторите измерение еще раз. Насколько теперь опустился край полоски за ось абсцисс?

    Результат мы Вам сможем сказать заранее: какую бы точку на параболе вы ни взяли, расстояние от этой точки до точки (0; 1/4) будет больше расстояния от той же точки до оси абсцисс всегда на одно и то же число — на 1/4. Можно сказать иначе: расстояние от любой точки параболы $y = x^2$ до точки (0; 1/4) равно расстоянию от той же точки параболы до прямой y = −1/4, параллельной оси Ox.

    Замечательная точка F(0; 1/4) называется фокусом параболы, а прямая y = −1/4 — директрисой (по-русски направляющая) этой параболы. Директриса и фокус есть у всякой параболы.

    Геометрический смысл параболы

    Парабола — это множество точек, равноудалённых от данной прямой (директрисы параболы) и не лежащей на директрисе данной точки (фокуса параболы).

    Парабола — это множество центров окружностей, касающихся данного круга и данной прямой, касающейся этого круга.

    Источник — подробнее, больше картинок

    Задача. Свободно падающее тело

    Тело, свободно падающее без начальной скорости с некоторой высоты, за последнюю секунду падения проходит путь в 7 раз больший чем за первую секунду движения. Найдите высоту, с которой падает тело.

    За первую секунду тело пройдёт расстояние равное: $S=\frac<2>=10 \cdot 1/2=5 $ м.

    Тогда за последнюю секунду тело пройдёт расстояние равное 35 м. С другой стороны, за последнюю секунду тело пройдет расстояние: $$ \frac <2>— \frac<2>= 35$$

    Решив это уравнение получим t = 4 с, откуда S = 80 м

    t, с123456
    s общий, м5204580125180
    s за последнюю секунду515=20-525=45-2035=80-4545=125-8055

    Таким образом, любое падающее тело за первую секунду проходит 5м, за вторую секунду — в 3 раза больше, за третью — в 5 раз больше, за четвертую — в 7 раз больший путь, за пятую — в 9 раз, за шестую — в 11 раз. Арифметическая прогрессия, физики называют это закон нечетных чисел. Путь, пройденный за секунду, тоже образует арифметическую прогрессию с разность 10, что соответствует ускорению свободного падения g.

    Задача. Тело, падающее без начальной скорости, за последнюю секунду падения прошло путь s = 35 м. Какую скорость имело тело в момент падения на землю? Сопротивлением воздуха пренебречь.

    Решение. Время падения = 4 с. Скорость $v = s’ = gt = 40$ м/с.


    источники:

    http://skysmart.ru/articles/mathematic/teorema-vieta-formula

    http://xlench.bget.ru/doku.php/mat/algebra/sq-equ?do=export_xhtml