Что такое системы логарифмических уравнений

Система логарифмических уравнений

Содержание:

Система логарифмических уравнений

При решении логарифмических систем также используют способ замены, алгебраического сложения и т.д., а также свойства логарифмических функций. Рассмотрим это на примерах:

Задача пример №169

Решите систему уравнений

Решение:

понятно, что > 0 и > 0.

Из первого уравнения системы получим = 6 — , из второго получим = 3 или = 8.

Таким образом, получаем систему Подставим = 6 — в уравнение = 8 . Тогда получим квадратное уравнение . Его корнями являются числа = 2, = 4. Подставим их в = 6 — , получим = 4, = 2.

Решением данной системы является пара (2; 4) и (4; 2).

Задача пример №170

Решите систему уравнений

Решение:

из первого уравнения системы имеем = 2. Выполним замену: во второе уравнение = 72 вместо подставим = 2 + . Тогда можно записать = 36. Отсюда и получим, что = 1. Тогда = 3.

Таким образом, решением данной системы является пара (3; 1).

Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:

Математика: полный курс решений задач в виде лекций

Другие темы которые вам помогут понять математику:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Решение логарифмических уравнений и систем уравнений. Подготовка к ЕГЭ

Разделы: Математика

Ученик проходит в несколько лет дорогу, на которую человечество употребило тысячелетие.
Однако его следует вести к цели не с завязанными глазами, а зрячим:
он должен воспринимать истину, не как готовый результат, а должен её открывать.
Учитель должен руководить этой экспедицией открытий, следовательно, также присутствовать
не только в качестве простого зрителя. Но ученик должен напрягать свои силы;
ему ничто не должно доставаться даром.
Даётся только тому, кто стремится.
(А. Дистервег)

Форма урока: комбинированный урок

Тип урока: Урок повторного контроля знаний.

Обобщение и закрепление пройденного материала.

Цели урока:

  • Образовательная — обобщение знаний учащихся по теме «Логарифмические уравнения и системы уравнений; закрепить основные приемы и методы решения логарифмических уравнений и систем уравнений; ознакомить учащихся с видами заданий повышенной сложности по данной теме в ЕГЭ.
  • Развивающая — развитие логического мышления для сознательного восприятия учебного материала, внимание, зрительную память, активность учащихся на уроке. Предоставить каждому из учащихся проверить свой уровень подготовки по данной теме.
  • Воспитывающая — воспитание познавательной активности, формирование личностных качеств: точность и ясность словесного выражения мысли; сосредоточенность и внимание; настойчивость и ответственность, положительной мотивации к изучению предмета, аккуратности, добросовестности и чувство ответственности. Осуществить индивидуальный подход и педагогическую поддержку каждого ученика через разноуровневые задания и благоприятную психологическую атмосферу.

Задачи урока:

  • выработать у учащихся умение пользоваться алгоритмом решения логарифмических уравнений.
  • осуществить формирование первоначальных знаний в виде отдельных навыков после определенной тренировки решения уравнений и систем уравнений.
  • познакомить учащихся с частными случаями и отработать навыки по решению таких уравнений и систем уравнений.

Методы и педагогические приемы:

  • Методы самообучения
  • Приемы устного опроса.
  • Приемы письменного контроля.
  • Коллективная учебная деятельность.
  • Организация работы в группах.
  • Повышение интереса к учебному материалу.

Оборудование:

  • компьютер, мультимедийный проектор и экран;
  • тетради;

Раздаточный материал: задания для самостоятельной работы.

План урока:

  1. Организационный момент (1 мин)
  2. Проверка домашнего задания (3 мин)
  3. Входной контроль (повторение теоретического материала) (15 мин)
  4. Этап обобщения знаний учащихся. Решение уравнений и систем уравнений (45 мин)
  5. Разноуровневая самостоятельная работа (проверка знаний учащихся) (20 мин)
  6. Итоги урока (4 мин)
  7. Домашнее задание (2 мин)

1. Организационный момент

Взаимное приветствие; проверка готовности учащихся к уроку, организация внимания.

2. Проверка домашнего задания

Установить правильность и осознанность выполнения домашнего задания всеми учащимися; установить пробелы в знаниях.

3. Входной контроль (повторение теоретического материала)

Организация устной фронтальной работы с классом по повторению логарифмических формул и способов решения логарифмических уравнений.

Решение простейших уравнений:

а) и

б) и

2) Найдите Х, если х>0:

[1/5]

[4]

Перечислите: основные способы решения логарифмических уравнений.

Способы решения логарифмических уравнений

  • По определению логарифма.
  • Метод потенцирования.
  • Метод введения новой переменной.
  • Решение уравнений логарифмированием его обеих частей.
  • Функционально-графический способ.

На экране уравнения:

  1. log2(3 — 6x) = 3
  2. lg(х 2 — 2х) = lg (2х + 12)
  3. 5 х + 1 — 5 х — 1 = 24
  4. х lg х = 10000
  5. 3 2х + 5 = 3 х + 2 + 2
  6. log3 2 x — log3 x = 3
  7. log2x — log4x = 3
  8. 2 x = x 2 — 2x

Среди данных уравнений выбрать логарифмические. Определить способ решения каждого уравнения. Решите уравнения.

По окончанию работы правильность решения уравнений осуществляется с помощью экрана.

Устно ответить на следующие вопросы (если имеется не один корень):

  • Найти наименьший корень уравнения.
  • Найти сумму корней уравнения.
  • Найти разность корней уравнения.
  • Найти произведение корней уравнения.
  • Найти частное корней уравнения

Самооценка и взаимооценка деятельности учащихся (результаты заносятся в листы самоконтроля).

4. Этап обобщения знаний учащихся

Решение логарифмических уравнений из заданий ЕГЭ части В и С.

№ 1 (В) Найдите корень (или сумму корней, если их несколько) уравнения log6(3x + 88) — log6 11 = log6 x. [1]

№ 2 (B) Найдите произведение всех корней уравнения

. [1]

№ 3 (B) Найдите сумму корней уравнения = log4 (x — 3) + 2. [2]

№ 4 (C) найти наибольший корень уравнения: log2(2+5)+ log0,5(-х-0,5) = 1 [-4]

№ 5 (C) Решите уравнение — log6 x + 34 = () 2 + x. [2]

Уравнения №1-3 решает по два ученика на обратных крыльях доски с последующей проверкой решения всем классом.

Уравнение №4,5 решает ученик с подробным комментарием.

По окончании самооценка и взаимооценка учащихся (результаты заносятся в листы самоконтроля).

Простейшими логарифмическими уравнениями будем называть уравнения следующих видов:

log a x = b, a > 0, a 1.

log a f(x) = b, a > 0, a 1.

Эти уравнения решаются на основании определения логарифма: если logb a = c, то a = b c .

Решить уравнение log2 x = 3.

Решение. Область определения уравнения x > 0. По определению логарифма x = 2 3 , x = 8 принадлежит области определения уравнения.

Уравнения вида loga f(x) = b, a > 0, a 1.

Уравнения данного вида решаются по определению логарифма с учётом области определения функции f(x).

Обычно область определения находится отдельно, и после решения уравнения f(x) = a b проверяется, принадлежат ли его корни области определения уравнения.

Пример. Решить уравнение log3(5х — 1) = 2.

ОДЗ: 5х — 1 > 0; х > 1/5.

Пример. Решить уравнение

Решение. Область определения уравнения находится из неравенства 2х 2 — 2х — 1 > 0. Воспользуемся определением логарифма:

Применим правила действий со степенями, получим 2х 2 — 2х — 1 = 3. Это уравнение имеет два корня х = -1; х = 2. Оба полученные значения неизвестной удовлетворяют неравенству 2х 2 — 2х — 1 > 0, т.е. принадлежат области определения данного уравнения, и, значит, являются его корнями.

Уравнения этого вида решаются по определению логарифма с учётом области определения уравнения. Данное уравнение равносильно следующей системе

Чаще всего, область определения логарифмического уравнения находится отдельно, и после решения уравнения (f(x)) c = b или равносильного уравнения проверяется, принадлежат ли его корни найденной области.

Пример. Решить уравнение

Решение. Данное уравнение равносильно системе

Суть метода заключается в переходе от уравнения

На основании свойства монотонности логарифмической функции заключаем, что f(x) = g(x).

Нужно отметить, что при таком переходе может нарушиться равносильность уравнения. В данном уравнении f(x) > 0, g(x) > 0, а в полученном после потенцирования эти функции могут быть как положительными, так и отрицательными. Поэтому из найденных корней уравнения f(x) = g(x) нужно отобрать те, которые принадлежат области определения данного уравнения. Остальные корни будут посторонними.

Решение. Область определения уравнения найдётся из системы неравенств:

х> -1,5+ , х 2 — 3х — 5 = 7 — 2х,

х 2 — х — 12 = 0, откуда х1 = -3, х2 = 4. Число 4 не удовлетворяет системе неравенств.

Cведение уравнений к виду log a f(x) = log a g(x) с помощью свойств логарифмов по одному основанию.

Если уравнение содержит логарифмы по одному основанию, то для приведения их к виду log a f(x) = log a g(x) используются следующие свойства логарифмов:

logb a + logb c = logb (a*c), где a > 0; c > 0; b > 0, b 1,

logb a — logb c = logb (a/c), где a > 0; c > 0; b > 0, b 1,

m logb a = logb a m , где a > 0; b > 0, b 1; m R.

Пример 1. Решить уравнение log6 (x — 1) = 2 — log6 (5x + 3).

Решение. Найдём область определения уравнения из системы неравенств

Применяя преобразования, приходим к уравнению

log6 ((x — 1)(5x + 3)) = 2, далее, потенцированием, к уравнению

(х — 1)(5х + 3) = 36, имеющему два корня х = -2,6; х = 3. Учитывая область определения уравнения, х = 3.

Пример 2. Решить уравнение

Решение. Найдём область определения уравнения, решив неравенство (3x — 1)(x + 3) > 0 методом интервалов.

Учитывая, что разность логарифмов равна логарифму частного, получим уравнение log5 (x + 3) 2 = 0. По определению логарифма (х + 3) 2 = 1, х = -4, х = -2. Число х = -2 посторонний корень.

Пример 3. Решить уравнение log2 (6 — x) = 2 log6 x.

Решение. На области определения 0 2 , откуда х = -3, х = 2. Число х = -3 посторонний корень.

Метод потенцирования применяется в том случае, если все логарифмы, входящие в уравнение, имеют одинаковое основание. Для приведения логарифмов к общему основанию используются формулы:

Пример 1. Решить уравнение

Решение. Область определения уравнения 1 1. Приведём логарифмы к основанию 3, используя формулу (4).

Пример 3. Решить уравнение

Решение. Область определения уравнения x > -1, x 0. Приведём логарифмы к основанию 3, используя формулу (2).

Умножим обе части уравнения на log 3(x + 1) ? 0 и перенесем все слагаемые в левую часть уравнения. Получим (log 3(x + 1)-1) 2 = 0, откуда log 3(x + 1) = 1 и x = 2.

3. Введение новой переменной

Рассмотрим два вида логарифмических уравнений, которые введением новой переменной приводятся к квадратным.

где a > 0, a 1, A, В, Сдействительные числа.

Пусть t = loga f(x), t R. Уравнение примет вид t 2 + Bt + C = 0.

Решив его, найдём х из подстановки t = loga f(x). Учитывая область определения, выберем только те значения x, которые удовлетворяют неравенству f(x) > 0.

Пример 1. Решить уравнение lg 2 x — lg x — 6 = 0.

Решение. Область определения уравнения — интервал (0; ).Введём новую переменную t = lg x, t R.

Уравнение примет вид t 2 — t — 6 = 0. Его корни t1 = -2, t2 = 3.

Вернёмся к первоначальной переменной lg x = -2 или lg x = 3, х = 10 -2 или х = 10 3 .

Оба значения x удовлетворяют области определения данного уравнения (х > 0).

Пример 2. Решить уравнение

Решение. Найдём область определения уравнения

Применив формулу логарифма степени, получим уравнение

Так как х 2 — 4t + 4 = 0

имеет два равных корня t1,2 = 2. Вернёмся к первоначальной переменной log3 (-x) = 2, отсюда —х = 9, х = -9. Значение неизвестной принадлежит области определения уравнения.

где a > 0, a 1, A, В, Сдействительные числа, A 0, В 0.

Уравнения данного вида приводятся к квадратным умножением обеих частей его на loga f(x) 0. Учитывая, что loga f(x) logf(x) a=1

(свойство logb a = 1/ loga b), получим уравнение

Замена loga f(x)=t, t R приводит его к квадратному At 2 + Ct + B = 0.

Из уравнений loga f(x)= t1, logb f(x)= t2 найдем значения x и выберем среди них принадлежащие области определения уравнения:

f(x) > 0, f(x) 1.

Пример. Решить уравнение

Решение. Область определения уравнения находим из условий x+2>0, x+2 1, т.е. x >-2, x -1.

Умножим обе части уравнения на log5 (x+2) 0, получим

или, заменив log5 (x+2) = t, придем к квадратному уравнению

Возвращаемся к первоначальной переменной:

Оба корня принадлежат области определения уравнения.

ОДЗ: x > 0, х 1

Используя формулу перехода к новому основанию, получим

Ответ:

4. Приведение некоторых уравнений к логарифмическим логарифмированием обеих частей.

Переход от уравнения вида f(x) = g(x) к уравнению loga f(x) = loga g(x), который возможен если f(x) >0, g(x) >0, a >0, a 1, называется логарифмированием.

Методом логарифмирования можно решать:

Уравнения вида

Область определения уравнения — интервал (0, ). Прологарифмируем обе части уравнения по основанию a, затем применим формулы логарифма степени и произведения

Приведем подобные и получим линейное уравнение относительно loga x.

Пример. Решить уравнение 3 2log 4 x+2 =16x 2 .

Решение. Область определения x >0. Прологарифмируем обе части по основанию 4.

Используя свойства логарифмов, получим

Область определения уравнения — интервал (0, ). Прологарифмируем обе части уравнения по основанию a, получим

Применим формулы логарифма степени и логарифма произведения

Введем новую переменную t=loga x , t R. Решив квадратное уравнение At 2 + (B-а)t-loga C=0, найдем его корни t1 и t2. Значение x найдем из уравнений t1 = loga x и t2=loga x и выберем среди них принадлежащие области определения уравнения.

Пример 1. Решить уравнение

Решение. Область определения уравнения х > 0. Так как при х > 0 обе части уравнения положительны, а функция y = log3 t монотонна, то

Введём новую переменную t, где t = log3 x, t R.

Пример 2. Решить уравнение

Решение. Область определения уравнения х >1. Обе части уравнения положительны, прологарифмируем их по основанию 2, получим

Применим формулы логарифма степени и логарифма частного:

Введем новую переменную t=log2x, получим квадратное уравнение t 2 — 3t + 2 = 0,

1) Найти наибольший корень уравнения: lq(x+6) — 2 = 1 /2lq(2x -3) — lq25

3) Пусть (х0;y0) — решение системы уравнений

4) Пример .Решите систему уравнений

Решение. Решим эту систему методом перехода к новым переменным:

Заметим, что x>0 и у R является областью определения данной системы.

Логарифмируя обе части второго уравнения по основанию 3, получим:

Тогда по обратной теореме Виета переменные и и v являются корнями квадратного уравнения

z 2 -z-12 = 0

Следовательно, решения данной системы найдем как множество решений совокупности двух систем а) и б):

а) б)

Решениями указанных систем являются соответственно пары (27;4), (; -3).

Ответ: (27; 4), (; -3).

5) Пример. Решите систему уравнений

Перейдем к новым переменным:

x = 2 u >0, 1оg2 у = v, у = 2 v >0.

В новых переменных данная система имеет вид:

Следовательно, и и v являются корнями квадратного уравнения :

z 2 -42 + 3 = 0

Отсюда следует, что достаточно решить систему

Другое решение найдем из-за симметричности х и у, т. е. если (х; y) — решение, то (у; х) также является решением.

5. Самостоятельная работа.

1. Вычислите значение выражения: 11-3log3

2. Решите уравнения:

3.Решите систему уравнений :

1. Вычислите значение выражения: 13-3log2

2. Решите уравнения:

6.Подведение итогов урока:

Учитывая контингент учащихся данного класса, можно сделать вывод о том, что в целом учащиеся усвоили материал по данной теме.

Логарифмические уравнения и их системы

Уравнение, содержащее неизвестное под знаком логарифма или (и) в его основании, называется логарифмическим уравнением.

Простейшим логарифмическим уравнением является уравнение вида \(\log_a x = b\) .

Утверждение 1. Если \(a > 0, a ≠ 1\) , уравнение \(\log_a x = b\) при любом действительном \(b\) имеет единственное решение \(x = a^b\) .

Утверждение 2. Уравнение \(\log_a f(x) = \log_a g(x) \ (a > 0, a ≠ 1)\) равносильно одной из систем (очевидно, выбирается та система, неравенство которой решается проще): \(\begin f(x)=g(x) \\ f(x)>0 \\ \end \ или \ \begin f(x)=g(x) \\ g(x)>0 \\ \end\) .

Утверждение 3. Уравнение \(\log_ <\varphi (x)>f(x) = \log_ <\varphi (x)>g(x) \ (a > 0, a ≠ 1)\) равносильно системе \(\begin f(x)=g(x) \\ f(x)>0 \\ \varphi(x)>0 \\ \varphi(x)\ne1 \end \ или \ \begin f(x)=g(x) \\ g(x)>0 \\ \varphi(x)>0 \\ \varphi(x)\ne1 \end \) .

При решении логарифмических уравнений во многих случаях приходится использовать свойства логарифма произведения, частного, степени. В тех случаях, когда в одном логарифмическом уравнении имеются логарифмы с различными основаниями, применение указанных свойств возможно лишь после перехода к логарифмам с равными основаниями. Кроме того, решение логарифмического уравнения следует начинать с нахождения области допустимых значений (О.Д.З.) заданного уравнения, т. к. в процессе решения возможно появление посторонних корней. Завершая решение, не забудьте проверить найденные корни на принадлежность О.Д.З. Решать логарифмические уравнения можно и без использования О.Д.З. В этом случае проверка является обязательным элементом решения.

При решении логарифмических уравнений часто приходится логарифмировать или потенцировать обе части уравнения, что не всегда может привести к равносильным уравнениям.

Логарифмировать алгебраическое выражение – значит выразить его логарифм через логарифмы отдельных чисел, входящих в это выражение.

Метод потенцирования – переход от уравнения с логарифмами к уравнениям, которые их не содержат.

Приведем основные способы решения логарифмических уравнений.

Использование определения логарифма

Пример 1. Решить уравнение: \(\log_<0,1>x=3\) .

Для нахождения решения возведем основание логарифма в степень, равную 3 (правая часть уравнения), получим: \(x=(0,1)^3 \Rightarrow x=0,001\) . Полученное решение принадлежит ОДЗ, поэтому \(x=0,001\) – решение исходного уравнения.

Использование свойств логарифма

Пример 2. Решить уравнение: \(\log_2(x − 2) +\log_2(x − 3) = 1\) .

Решение: Оба логарифма одновременно определены при выполнении системы неравенств: \(\begin x-2>0, \\ x-3>0. \\ \end \)

ОДЗ нашего уравнения есть множество \(x > 3\) . Найдя ОДЗ, переходим к преобразованиям уравнения. Имеем: \(\log_2 (x − 2)(x − 3) = 1 \Rightarrow\log_2 (x − 2)(x − 3) = \log_22 \Rightarrow\)

\((x-2)(x-3)=2 \Rightarrow x^2-5x+4=0 \Rightarrow x_1=1, x_2=4\) .

При этом число 1 не принадлежит ОДЗ и поэтому не является корнем исходного уравнения. Число 4 входит в ОДЗ и, следовательно, будет корнем исходного уравнения.

Метод подстановки

Пример 3. Решить уравнение: \(\log_2^2(3-x)+3\log_2(3-x)=4\) .

Решение: Введем замену \(\log_2(3-x)=t\) , тогда получим: \(t^2+3t=4 \Rightarrow t^2+3t-4=0\) .

Решая полученное квадратное уравнение, будем иметь: \(D=3^2-4\cdot 1\cdot (-4)=25=5^2 \Rightarrow t_1=1, t_2=-4\) .

Делаем обратную замену:

\(1) \ \log_2(3-x)=1 \Rightarrow 3-x=2^1 \Rightarrow x_1=1; \\2) \ \log_2(3-x)=-4 \Rightarrow 3-x=2^ <-4>\Rightarrow x_2=2\frac<15><16>.\)

Метод логарифмирования

Прологарифмируем обе части уравнения по основанию 6: \(\log_6x^<\log_6x>=\log_66\) .

В левой части уравнения показатель степени выносим за знак логарифма, в правой – вычисляем значение логарифма: \(\log_6x\cdot \log_6x=1 \Rightarrow \log_6^2x=1\) . Пусть \(\log_6x=t \Rightarrow t^2=1 \Rightarrow t_1=1,t_2=-1\) .

Обратная замена: \(1) \ \log_6x=1 \Rightarrow x_1=6^1=6; \\2) \ \log_6x=-1\Rightarrow x_2=6^<-1>=\frac16.\)

Метод потенцирования

Пример 5. Решить уравнение: \(\log_3 (x^2 – 3x – 5) = \log_3 (7 – 2x)\) .

Поскольку основания в левой и правой частях одинаковые (равны 3), то мы можем освободиться от знаков логарифмов: \(x^2-3x-5=7-2x\) .

Приравниваем уравнение к нулю и получаем квадратное уравнение: \(x^2-3x-5-7+2x=0 \Rightarrow x^2-x-12=0\) .

Решив квадратное уравнение, находим его корни: \(x_1=4, x_2=-3\) .

4 не является решением уравнения, так как не входит в ОДЗ. Значит, –3 является единственным решением уравнения.

При решении систем логарифмических уравнений применяются те же способы и приемы, что и при решении систем алгебраических уравнений и неравенств.

Пример 6. Решить систему уравнений: \(\begin x+y=4, \\ \log_2x+\log_2y=\log_23. \\ \end\)

Решение: ОДЗ: \(x > 0, y > 0\) .

Из первого уравнения можно сделать подстановку:

\(\begin x+y=4 \\ \log_2x+\log_2y=\log_23 \\ \end \Rightarrow \begin y=4-x \\ \log_2x+\log_2(4-x)=\log_23 \\ \end \Rightarrow\) \(\begin y=4-x \\ x(4-x)=3 \\ \end \Rightarrow\begin y=4-x \\ x^2-4x+3=0 \\ \end \Rightarrow x_1=1, x_2=3\) .

Находим соответствующие значения у: \(y_1 = 4 – 1 = 3, y_2 = 4 – 3 = 1\) .

Все найденные решения входят в ОДЗ.

Решите систему уравнений.

\(\begin \log_9(3x+4y)+\log_3x=\log_316 \\ \log_9x+\log_3y=\log_32 \\ \end\)

Решите систему уравнений.

\(\begin \log_2(x^2+y^2)=5 \\ 2\log_4x+\log_2y=4 \\ \end\)


источники:

http://urok.1sept.ru/articles/604860

http://itest.kz/ru/ent/matematika/11-klass/lecture/logarifmicheskie-uravneniya-i-ih-sistemy