Что такое уравнение электродных процессов

Электролиз

Электролиз

Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну .

Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды .

Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы . Положительно заряженный электрод ( анод ) притягивает отрицательно заряженные частицы ( анионы ). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.

Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины , или графита .

Электролиз растворов

Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :

Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал , тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H + .

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный ( до Al 3+ включительно в ряду напряжений ), то вместо металла на катоде восстанавливается (разряжается) водород , т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH — , среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH —

Например , при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли – средней активности (между Al 3+ и Н + ) , то на катоде восстанавливается (разряжается) и металл , и водород , так как потенциал таких металлов сравним с потенциалом водорода:

Me n+ + nē → Me 0

2 H + 2O +2ē → H2 0 + 2OH —

Например , при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe 2+ + 2ē → Fe 0

2 H + 2O +2ē → H2 0 + 2OH —

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов) , то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Me n+ + nē → Me 0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu 2+ + 2ē → Cu 0

4. Если на катод попадают катионы водорода H + , то они и восстанавливаются до молекулярного водорода:

2H + + 2ē → H2 0

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H 2 O -2 ).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток , то он окисляется до свободного состояния (до степени окисления 0):

неМе n- – nē = неМе 0

Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl — – 2ē = Cl2 0

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение . Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы :

2H2 O -2 – 4ē → O2 0 + 4H +

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион , то окислению подвергается вода с выделением молекулярно-го кислорода:

2H2 O -2 – 4ē → O2 0 + 4H +

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

4 O -2 H – – 4ē → O2 0 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.

Например , при электролизе растворов ацетатов выделяется углекислый газ и этан:

2 CH3 C +3 OO – –2ē → 2 C +4 O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например , электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются молекулы воды:

Анод (+): 2H2 O -2 – 4ē → O2 + 4H +

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2 Cu 2+ SO4 + 2H2 O -2 → 2 Cu 0 + 2H2SO4 + O2 0

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются хлорид-ионы:

Анод (+): 2 Cl – – 2ē → Cl2 0

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия :

2 H + 2O +2Na Cl – → H2 0 + 2NaOH + Cl2 0

Следующий пример : электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2 O -2 – 4ē → O2 0 + 4H +

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2 H2 + O -2 → 2 H2 0 + O2 0

Еще один пример : электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются хлорид-ионы до молекулярного хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu 2+ Cl2 – → Cu 0 + Cl2 0

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4 O -2 H – – 4ē → O2 0 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

2 H2 + O -2 → 2 H2 0 + O2 0

Электролиз расплавов

При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавли-ваются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются анионы хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Суммарное уравнение электролиза расплава хлорида натрия:

2 Na + Cl → 2 Na 0 + Cl2 0

Еще один пример: электролиз расплава гидроксида натрия. На катоде восстанавливаются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются гидроксид-ионы:

Анод (+): 4 OH – – 4ē → O2 0 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4 Na + OH → 4 Na 0 + O2 0 + 2H2O

Многие металлы получают в промышленности электролизом расплавов.

Например , алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100 о С), чем оксид алюминия (2050 о С). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

На катоде восстанавливаются катионы алюминия:

Катод (–): Al 3+ + 3ē → Al 0

На аноде окисляются алюминат-ионы:

Анод (+): 4Al O 3 3 – – 12ē → 2Al2O3 + 3 O2 0

Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2 Al 2 О 3 = 4 Al 0 + 3 О 2 0

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C 0 + О2 0 = C +4 O2 -2

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например , рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются частицы меди из электрода :

Анод (+): Cu 0 – 2ē → Cu 2+

Электролиз расплавов и растворов

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Электролиз — это окислительно-восстановительная реакция, которая протекает на электродах и основана на пропускании электрического тока через раствор или расплав.

Не менее важными участниками электролиза являются электроды: катод и анод. Если вы вдруг забыли, что такое катод и анод в химии, напомним.

Катод — это отрицательно заряженный электрод, который притягивает положительно заряженные ионы (катионы). А анод — это положительно заряженный электрод, который притягивает к себе отрицательно заряженные ионы (анионы). Таким образом, на катоде всегда происходит процесс восстановления, а на аноде всегда происходит процесс окисления.

Электроды бывают растворимые и инертные. Растворимые изготавливаются из металлов, например, меди и подвергаются химическим превращениям в ходе электролиза. А вот инертные или нерастворимые электроды не подвергаются химическим превращениям и остаются в неизменном виде как до реакции, так и после нее. Как правило, такие электроды изготавливают из графита или платины.

Виды электролиза

Различают два вида электролиза:

Электролиз водного раствора.

Прежде чем мы рассмотрим каждый процесс отдельно, давай познакомимся с общими для двух видов процессами на электродах.

Процесс на катоде K (−)

Катион принимает электроны и восстанавливается:

Me +n + ne − → Me 0 (восстановление).

Процесс на аноде A (+)

Анион отдает электроны и окисляется:

неMe −n − ne − → неMe 0 (окисление).

Процессы, протекающие при электролизе в общем случае:

К − : Ме +n + ne − → Ме 0 ;

А + : неМе −n − ne − → неМе 0 .

Суммарное уравнение электролиза:

Электролиз расплава

Рассмотрим электролиз расплава пищевой соли — хлорида натрия. При сильном нагревании кристаллический твердый хлорид натрия плавится. Полученный расплав содержит подвижные ионы хлора и натрия, освободившиеся из кристаллической решетки, и проводит электрический ток.

К − : 2Na + + 2e − = 2Na 0

А + : 2Cl − − 2e − = Cl2

Суммарное уравнение электролиза:

При опускании в расплав угольных (инертных) электродов, присоединенных к источнику тока, ионы приобретают направленное движение: катионы движутся к отрицательно заряженному электроду (катоду), анионы — к положительно заряженному электроду (аноду) и отдают электроны.

Теперь давайте рассмотрим электролиз расплава гидроксида калия.

На катоде происходит восстановление калия за счет принятия электронов. А на аноде протекает более сложная реакция. Гидроксогруппы отдают свой электрон и становятся нейтральными, но такое состояние для них крайне невыгодно, так как неустойчиво, и они объединяются в группы, чтобы потом разложиться с выделением газообразного кислорода и воды

Итог электролиза расплава — металлический калий на катоде, газообразный кислород и пары воды на аноде.

Электролиз раствора

Основным отличием водного раствора от расплава является присутствие молекул воды и ионов H + и OH — как продуктов диссоциации воды. В связи с этим возле катода и анода скапливаются ионы, которые конкурируют как друг с другом, так и с молекулами воды. Рассмотрим электролиз на примере водного раствора KF:

К − : 4H2O + 4e − = 2H2 0 + 4OH −

Суммарное уравнение электролиза:

Как видно, ни калий, ни фтор не фигурируют в продуктах электролиза. Почему так происходит?

Наиболее активные металлы — сильные восстановители. Калий — как раз такой металл, поэтому обратный процесс восстановления активных металлов из соединений осуществить сложно. При электролизе водных растворов солей активных металлов на катоде протекает восстановление не катионов этих металлов, а воды с образованием водорода.

Разберем порядок восстановления катионов металлов на катоде в зависимости от их активности.

Последовательность разрядки катионов зависит от положения металла в электрохимическом ряду напряжения.

Если у катода накапливаются молекулы воды и катионы металла, который находится в ряду напряжения после водорода, то восстанавливаются ионы металла.

Если у катода накапливаются молекулы воды и катионы металла, который стоит в начале ряда напряжения от лития до алюминия включительно, то восстанавливаются ионы водорода из молекул воды. Катионы металла не восстанавливаются, остаются в растворе.

Если у катода накапливаются молекулы воды и катионы металла, который расположен в ряду напряжения между алюминием и водородом, то восстанавливаются и ионы металла, и частично ионы водорода из молекул воды.

Если в растворе находится смесь катионов разных металлов, то сначала восстанавливаются катионы менее активного металла.

При электролизе раствора кислоты на катоде восстанавливаются катионы водорода до газообразного водорода.

Для удобства мы собрали информацию об электролизе в таблице:

Теперь разберемся, что происходит с анионами в водных растворах при электролизе. Для начала познакомимся с последовательностью восстановления анионов на аноде:

Чем меньше выражена восстановительная активность, тем хуже анионы могут окисляться на аноде. К тому же процесс на аноде зависит от материала анода и от природы аниона.

Если анод инертный или нерастворимый, то на нем протекают следующие реакции:

При электролизе растворов солей бескислородных кислот (кроме фторидов!), на аноде происходит процесс окисления аниона.

При электролизе растворов солей кислородсодержащих кислот и фторидов на аноде выделяется газообразный кислород вследствие окисления молекул воды. Анион при этом не окисляется, оставаясь в растворе.

При электролизе растворов щелочей происходит окисление гидроксид-ионов.

Если анод растворимый, то на нем всегда происходит окисление металла анода — независимо от природы аниона.

Исключением является электролиз солей карбоновых кислот. Таблица выше не описывает происходящее на аноде. Давайте рассмотрим, что же там происходит.

В результате электролиза водных растворов солей щелочных металлов карбоновых кислот происходит образование углеводородов вследствие рекомбинации углеводородных радикалов.

В общем виде электролиз солей карбоновых кислот можно записать так:

На катоде образуется газообразный водород, а на аноде — углекислый газ, углеводород, полученный удвоением радикала. В катодном пространстве накапливается щелочь.

В случае разделения катодного и анодного пространства углекислый газ реагирует со щелочью с образованием гидрокарбоната.

Применение электролиза

А теперь самое главное: зачем вообще нужен электролиз? Рассмотрим применение этого вида ОВР:

С помощью электролиза расплавов природных соединений в металлургической промышленности получают активные металлы (калий, натрий, бериллий, кальций, барий). С помощью электролиза растворов солей — цинк, кадмий, кобальт и другие.

В химической промышленности электролиз используют для получения фтора, хлора, водорода, кислорода, щелочей, бертолетовой соли и других веществ.

Электролиз с растворимым анодом используют для нанесения металлических покрытий (из хрома, золота, никеля, серебра), что предохраняет металлические изделия от коррозии и придает им декоративный вид.

Вопросы для самопроверки

1. Выберите верное продолжение фразы «катод — это. »:

Положительно заряженный электрод, к которому притягиваются положительно заряженные ионы.

Положительно заряженный электрод, к которому притягиваются отрицательно заряженные ионы.

Отрицательно заряженный электрод, к которому притягиваются положительно заряженные ионы.

Отрицательно заряженный электрод, к которому притягиваются отрицательно заряженные ионы.

2. Продолжите фразу «электролиз — это…»:

ОВР с применением тока.

Реакция без изменения степеней окисления с применением тока.

ОВР с применением катализаторов.

3. Как заряжен анион?

Не имеет заряда.

4. Чем отличается электролиз раствора от электролиза расплава?

В расплаве плавится твердое.

Присутствием молекул воды и продуктов ее диссоциации.

5. Если металл стоит в ряду активности металлов между алюминием и водородом, что выделится на катоде?

Металл и водород.

При электролиза водного раствора фторида лития что на аноде выделится?

Электродные процессы

К электродным процессам относятся, в частности, химические реакции, протекающие на поверхности электрода, погруженного в электролит, приводящие к возникновению определенного значения электродного потенциала. Разность потенциалов между двумя электродами в электрохимической системе является причиной протекания в ней электрохимических процессов.

1.29.1 Скачок потенциала на границе «металл – электролит»

Рассмотрим систему, состоящую из металлического электрода, погруженного в раствор, содержащий катионы того же металла (раствор соли). Если металл находится в контакте, например, с водным раствором электролита небольшой концентрации, то на границе раздела фаз «металл – электролит» протекают следующие процессы (рис.8.2).

1. В результате физико-химического взаимодействия между диполями воды и поверхностными ионами металла происходит его растворение. Особенности химической связи в металлах приводят к тому, что в раствор переходят только ионы металла, а электроны остаются в кристалле. В результате электрод приобретает избыточный отрицательный, а раствор – избыточный положительный заряды.

Рис. 8‑2 Схема возникновения обменного двойного электрического слоя на границе «металл – раствор электролита»

Самопроизвольное протекание этого процесса обусловлено как энтальпийным, так и энтропийным факторами. Переход ионов металла из кристалла в раствор приводит к уменьшению энтальпии системы(DH 0) вследствие разупорядочивания системы. Этот процесс можно записать как реакцию окисления металла:

2. Наличие катионов металла в растворе и отрицательный заряд электрода за счет избыточных электронов обусловливает протекание обратного процесса: катионы металла переходят из раствора на поверхность электрода. При этом они теряют свою гидратную оболочку и встраиваются в кристаллическую решетку, что приводит к уменьшению величин отрицательного заряда электрода и положительного заряда раствора. Этот процесс можно записать как реакцию восстановления металла:

В результате протекания этих процессов система придет в состояние равновесия. Скорости первого и второго процессов будут равны:

При этом потенциал электрода и концентрация катионов в растворе сохранят постоянное равновесное значение.

Необходимо отметить, что концентрация катионов металла в растворе будет различной в зависимости от расстояния до поверхности электрода (рис.7.3). Максимальным ее значение будет непосредственно у поверхности электрода (C 0 ). За счет процесса диффузии ионы металла будут двигаться от поверхности электрода в объем раствора, при этом их концентрация уменьшится до величины C в глубине раствора. Таким образом, в состоянии равновесия установится постоянный градиент концентрации катионов.

Примечание. С точки зрения термодинамики, в состоянии равновесия энергия (химический потенциал) поверхностных атомов металла равна энергии (химическому потенциалу) гидратированных ионов металла в растворе.

На границе «электрод – электролит» возникает обменный двойной электрический слой, образованный с одной стороны избыточными электронами в электроде, а с другой – избыточными положительными ионами металла в растворе (противоионами). Он рассматривается как единая электронейтральная система: заряд электрода равен сумме зарядов противоионов.

Поскольку существует разделение зарядов в пространстве, то между металлом и раствором возникает разность потенциалов j. Говорят, что при контакте металла с электролитом на границе раздела возникает скачок электрического потенциала – электродный потенциал.

Ионы металла, образующие двойной электрический слой, распределены в растворе следующим образом (рис.8.3).

1. Часть ионов располагается на расстоянии порядка радиуса гидратированного иона от поверхности металла, образуя плотный слой, толщина которого составляет величину dп

10 –10 м. Концентрация ионов металла в нем равна C 0 , падение потенциала (jп) происходит линейно.

Рис. 8‑3 Распределение концентрации ионов Ме n + (а) и потенциала (б) в ионной части двойного электрического слоя: а) – изменение концентрации ионов Ме n + в электролите в зависимости от расстояния до электрода; C 0 – концентрация в плотном слое; C – концентрация в объеме электролита; б) –изменение электродного потенциала в зависимости от расстояния до электрода; jп – падение потенциала в плотном слое, jд – падение потенциала в диффузном слое; dп – толщина плотного слоя; dд – толщина диффузного слоя

2. Другая часть ионов за счет диффузии перемещается в глубь раствора, образуя диффузный слой. Концентрация ионов уменьшается от C 0 до величины концентрации ионов металла в электролите C. Толщина диффузного слоя зависит от концентрации ионов металла в электролите и составляет величину порядка dд

10 –9 ÷10 –5 м. Падение потенциала в диффузном слое (jд) происходит нелинейно. С увеличением концентрации катионов в электролите диффузия уменьшается, соответственно уменьшается и толщина диффузного слоя. В растворах с концентрацией 0,1 ÷ 1,0 моль/л он практически отсутствует.

Очевидно, что величина скачка потенциала на границе раздела «металл – электролит» (j) равна сумме величин падения потенциала в плотном (jп) и диффузном (jд) слоях двойного электрического слоя.

Примечание. При большой концентрации ионов металла в растворе, малой энергии их гидратации, большой работе выхода ионов из металла, а также адсорбции на электродах поверхностно-активных ионов и молекул, которые могут содержаться в электролите, система придет в равновесие при преобладании перехода ионов металла из раствора на электрод. В этом случае двойной электрический слой и скачок потенциала соответственно образуют катионы, адсорбированные на металле и избыточные анионы в растворе.

Электродный потенциал возникает и в случае, если металл находится в контакте с неводным раствором электролита. Поскольку равновесие зависит от энергии сольватации иона металла, то величина потенциала будет зависеть от природы растворителя.

Уравнение Нернста

При определении величины электродного потенциала и его зависимости от внешних условий могут быть использованы как термодинамические, так и кинетические модели.

Определить величину электродного потенциала можно, рассмотрев термодинамические условия равновесия системы «металл – раствор электролита», содержащего катионы того же металла. В этом случае в системе протекает обратимая реакция:

При ее записи обычно молекулы воды не указывают, не забывая, что они играют здесь основную роль:

На границе раздела «металл – электролит» образуется двойной электрический слой и возникает скачок потенциала.

Изменение свободной энергии Гиббса в состоянии равновесия (DG=0) будет равно изменению энергии Гиббса химической реакции (DrG) плюс работа электрических сил по переносу ионов (Me n+ ) через двойной электрический слой:

Работа, осуществляемая по переносу одного моля положительно заряженных ионов через двойной электрический слой, равна:

где j – электродный потенциал [В]; NA = 6,02×10 23 [моль -1 ] – число Авогадро; ē = 1,6×10 -19 [Кл] – заряд электрона; n – заряд иона (в единичных электрических зарядах); F = ē×NA » 96500 Кл/моль – число Фарадея.

Следовательно, изменение энергии Гиббса при образовании двойного электрического слоя равно:

При изобарно-изотермическом процессе Me n+ + nē ↔Me 0 изменение энергии Гиббса, согласно уравнению изотермы реакции, равно:

DrG = ; ( )

здесь R = 8,314 Дж/моль×К – универсальная газовая постоянная; Т – температура, К; Кр – константа равновесия реакции, – концентрация ионов металла в растворе (за пределами диффузного слоя). Поэтому

n×F×j = → j = .

В стандартных условиях при Т = 298 К и = 1 моль/л величина электродного потенциала зависит только от природы вещества, из которого изготовлен электрод: j = = j 0 . Величина j 0 называется стандартным электродным потенциалом. Его значение нельзя рассчитать теоретически, поскольку неизвестно абсолютное значение Кр. Его невозможно определить и экспериментально, так как не существует прямых способов измерения разности потенциалов между проводниками первого (металл) и второго рода (электролит).

Зависимость электродного потенциала от температуры и концентрации катионов металла в растворе имеет вид

j = j 0 + .

Это уравнение получило название уравнение Нернста (Nernst) для электродного потенциала.

1. В общем случае для электродной реакции Ox + nē ↔Red уравнение Нернста записывается как

.

2. Для точных расчетов электродных потенциалов в уравнении Нернста вместо концентрации ионов (Ci) в растворах электролитов необходимо использовать их активность (ai). В общем случае . Для металла в растворе электролита .

Определить величину электродного потенциала можно также из кинетической модели образования двойного электрического слоя.

При контакте металла с электролитом двойной электрический слой и соответственно электродный потенциал возникают в результате протекания двух процессов: перехода ионов металла из кристалла в раствор –Me 0 +xH2O®Me n + (H2O)x+ – реакция окисления и перехода катионов из раствора на поверхность электрода – Me n + (H2O)x+®Me 0 +xH2O — реакция восстановления. В состояние равновесия система придет при выравнивании скоростей этих процессов (см. кинетическое условие равновесия). В результате установившегося равновесия реакции

на границе «электрод – электролит» возникнет электродный потенциал j.

Скорости реакций восстановления и окисления, согласно закону действующих масс, будут зависеть от концентрации реагирующих веществ. Для прямой реакции (восстановление ионов металла) скорость пропорциональна их концентрации в растворе: , для обратной реакции (окисление атомов металла) пропорциональна концентрации молекул воды: , где и – константы скоростей реакций. Их величины, согласно уравнению Аррениуса, определяются энергиями активации и температурой: , где Еа – энергия активации, k0 – предэкспоненциальный множитель.

Величины энергий активации можно оценить, рассмотрев энергетическую диаграмму процесса Me n + (H2O)x + ↔ Me 0 + xH2O (рис.8-4).

Представим реакцию восстановления как процесс дегидратации иона металла (образование свободного иона) и последующее встраивание его в кристаллическую решетку металла. Реакцию окисления представим как два последовательных процесса: выход иона металла (Me n + ) из кристаллической решетки электрода в вакуум и его гидратация с образованием в растворе иона Me n + (H2O)x.

Рис. 8‑4 Энергетическая диаграмма процесса Me n+ (H2O)x + ↔ Me 0 + xH2O

Пусть E0 – энергия свободного иона металла в вакууме; EM – энергия поверхностного атома металла; Eaq – энергия гидратированного иона металла в растворе. В состоянии равновесия, в результате возникновения скачка потенциала на границе «электрод – электролит», энергия поверхностного иона металла изменяется на величину DE = n·F·j. На рис.7-4 показано изменение энергии поверхностных ионов при концентрации катионов в электролите меньше равновесной.

Из энергетической диаграммы видно, что для перехода в раствор ион металла должен обладать энергией, равной , а для перехода из раствора в кристаллическую решетку – . Обе они являются, по сути, энергиями активации реакций окисления (Me 0 +xH2O®Me n + (H2O)x+) и восстановления (Me n + (H2O)x+®Me 0 +xH2O).

В состоянии равновесия скорости прямой и обратной реакций будут равны: , следовательно,

.

Если предположить, что предэкспоненциальные множители для прямой и обратной реакций имеют величину одного порядка , и учесть, что — величина постоянная, то, прологарифмировав это выражение, получаем уравнение Нернста:

,

где — стандартный электродный потенциал.

Из кинетической модели следует, что стандартный электродный потенциал главным образом определяется соотношением энергии гидратированного иона металла в растворе и энергии поверхностного атома металла электрода.

Электроды

Из уравнения Нернста следует, что потенциал электрода при данной температуре определяется стандартным электродным потенциалом (j 0 ) и концентрацией (активностью) ионов, участвующих в реакции. В зависимости от особенностей электродных реакций различают несколько типов электродов.

Электроды первого рода. К электродам первого рода относятся металлические электроды, находящиеся в контакте с раствором, содержащим катионы этого же металла. Схематически электрод первого рода можно представить как Me n + |Me 0 . Электродная реакция, протекающая на нем:

Потенциал электрода первого рода зависит от концентрации ионов металла, которые являются потенциалопределяющими:

.

Пример. 1. Медный электрод погружен в раствор сульфата меди Cu 2+ |Cu 0 :

электродная реакция Cu 2+ + 2ē Û Cu 0 ;

электродный потенциал .

2. Серебряный электрод погружен в раствор нитрата серебра Ag + |Ag 0 : электродная реакция Ag + + ē ↔ Ag 0 ,

электродный потенциал

Электроды первого рода являются обратимыми: изменение направления тока в цепи изменяет лишь направление реакцииMe n + + ↔ Me 0 , не изменяя саму реакцию:

(Me n + + ® Me 0 – процесс восстановления;

Me 0 ® Me n + + – процесс окисления).

Примечание. Существуют электроды первого рода, обратимые относительно аниона, например,Se 2- |Se 0 :

электродная реакция Se 0 +2ē ↔ Se 2-

электродный потенциал .

Электроды второго рода. К электродам второго рода относятся металлические электроды, покрытые слоем труднорастворимого соединения этого же металла (MeAn), находящиеся в контакте с электролитом, содержащим такие же анионы (An n- ).

Схематически электрод можно представить как

Электродная реакция, протекающая на нем:

MeAn+ ↔ Me 0 + An n

Потенциал электрода второго рода определяется равновесием двух процессов:

1. Равновесие «труднорастворимое соединение – раствор электролита», которое определяет концентрацию иона металла:

MeAn↔ Me n + + An n — ; ®

где ПР – произведение растворимости труднорастворимого соединения MeAn.

2. Равновесие «металл — катион металла» Me n + + ↔ Me 0 , которое определяет возникновение электродного потенциала:

.

Потенциал электрода будет определяться суммарным уравнением MeAn+ ↔ Me 0 + An n — :

=

Таким образом, потенциал электрода второго рода зависит от концентрации аниона (потенциалопределяющий ионAn n — ):

,

где .

Пример. Хлорсеребряный электрод AgCl,Ag 0 | Cl — .

Металлический серебряный электрод, на поверхность которого нанесен тонкий слой труднорастворимой соли хлорида серебра (ПРAgCl=1,8×10 -10 ), контактирует с раствором сильного электролита хлорида калия (КCl ® К + + Cl — ) (рис. 8.5).

Рис. 8‑5 Схема хлорсеребряного электрода

AgCl + ē ↔ Ag 0 + Cl —

.

Газовые электроды. Газовый электрод представляет собой металлический проводник, на поверхности которого адсорбированы молекулы газа, который находится в контакте с электролитом, содержащим ионы этого же газа. В системе устанавливается равновесие между молекулами газа, находящимися на поверхности металлического электрода, и ионами этого газа в электролите. Металлический проводник служит только для передачи электронов между внешней цепью и раствором (создает электропроводящий контакт между газом и раствором). При этом материал электрода не должен участвовать в электрохимическом равновесии. Как правило, такими материалами являются металлы платиновой группы, в частности сама платина. Они не принимают непосредственного участия в реакциях с раствором и в то же время, являясь гетерогенными катализаторами, ускоряют установление электродного равновесия.

Наиболее важными с практической точки зрения являются водородный и кислородный электроды.

1. Водородный электрод (2H + |H2 0 ,Pt) представляет собой платиновый электрод, помещенный в раствор, содержащий ионы водорода (раствор серной кислоты), через который пропускают газообразный водород (рис. 8.6).

На границе раздела «платина – раствор серной кислоты» устанавливается равновесие 2H + + 2ē ↔ H2, и возникает электродный потенциал, величина которого зависит от относительного парциального давления газа и концентрации ионов водорода:

Рис. 8‑6 Схема водородного электрода

При стандартном давлении газообразного водорода (р 0 =1,013×10 5 Па) электродный потенциал водородного электрода зависит только от концентрации ионов водорода: . При постоянной температуре ее можно выразить как зависимость потенциала от pH раствора ( ):

,

где – константа. Для стандартной температуры (Т 0 = 298 К) А»0,059.

Потенциал водородного электрода в стандартных условиях (стандартный водородный электрод) условно принимается равным нулю: В. Для данной системы стандартными условиями будут парциальное давление водорода р 0 =1,013×10 5 Па; активность ионов водорода в электролите а = 1 моль/л; Т 0 = 298 К. Стандартный водородный электрод используется в качестве электрода сравнения при измерении потенциалов других электродов.

В случае нейтрального и щелочного электролита (pH ³7) уравнение реакции электродного процесса водородного электрода записывается как

2. Кислородный электрод (OH — |O2,Pt). Если в устройстве, схема которого приведена на рис.7.6, вместо водорода пропускать газообразный кислород (О2), а в качестве электролита использовать не кислоту, а раствор щелочи, то на границе раздела «платина – электролит» устанавливается равновесие: О2 + 2H2O + 4ē ↔ 4OH — . Величина электродного потенциала в данном случае зависит от относительного парциального давления кислорода и концентрации гидроксо-ионов:

.

При стандартных условиях потенциал кислородного электрода зависит только от концентрации ионов OH — . Эту зависимость представляют обычно как зависимость потенциала от pH раствора ( ):

, где А » 0,059.

В случае электролита с pH + + 4ē ↔ 2H2O

Примечание. Необходимо отметить, что при электролизе и электрохимической коррозии металлов могут образовываться воородный и кислородный газовые электроды.

Окислительно-восстановительные электроды (редокс-электроды). В рассмотренных до сих пор типах электродов одной из форм веществ, между которыми за счет реакции Ox + nē ↔ Red возникает потенциал, является материал электрода или вещество, адсорбированное поверхностью электрода. Металлический электрод, контактирующий с электролитом, содержащим одновременно как окисленную (Ox), так и восстановленную (Red) форму вещества, называется окислительно-восстановительным или редокс-электродом.

Материалы, используемые в редокс-электродах, должны удовлетворять требованиям, рассмотренным для газовых электродов. Таким материалом является, например, платина.

Схематически такой электрод можно представить как Ox,Red|Pt. Электродная реакция, протекающая на поверхности платины, Ox + nē ↔ Red.

В состоянии равновесия потенциал электрода определяется соотношением концентраций окисленной и восстановленной формы вещества в электролите:

.

Этот потенциал называется равновесным редокс-потенциалом окислительно-восстановительной системы.

Пример1. Простые окислительно-восстановительные системы.

В растворе, контактирующем с платиновым электродом, одновременно находятся катионы олова Sn 2+ и Sn 4+ (например, раствор хлоридов олова SnCl2 и SnCl4) − Sn 4+ ,Sn 2+ |Pt. В результате реакции Sn 4+ + 2ē ↔ Sn 2+ устанавливается равновесие. Редокс-потенциал будет равен:

.

Пример 2. Сложные окислительно-восстановительные системы. В электродной реакции принимают участие молекулы воды, ионы H + или OH — . Например, для системы Cr2O7 2- ,Cr 3+ ,H + |Pt реакция, за счет которой возникает электродный потенциал, может быть представлена в виде

где Cr2O7 2- – окисленная, а Cr 3+ – восстановленная формы вещества.

Редокс-потенциал будет равен:

.

Из уравнения видно, что редокс-потенциал сложной окислительно-восстановительной системы зависит не только от соотношения концентраций окисленной и восстановленной форм вещества, но и от концентрации ионов водорода (рН раствора).

Ионселективные электроды. Ионселективный (ионообменный) электрод состоит из электрода второго рода, контактирующего с внутренним раствором, и тонкой мембраны, отделяющей внутренний раствор электрода от внешнего раствора.

Рис. 8‑7 Схема стеклянного электрода

Материал мембраны обменивается своими ионами с ионами внутреннего и внешнего растворов электролитов. В результате этого процесса поверхность мембраны и раствор приобретают электрические заряды противоположного знака – возникает скачок потенциала. Как правило, преимущественно происходит обмен ионами одного вида, поэтому эти электроды называют ионоселективными.

В состоянии равновесия величина электродного потенциала линейно зависит от концентрации ионов во внешнем растворе. Это позволяет использовать данные электроды для определения концентрации ионов в анализируемом растворе. В настоящее время созданы ионселективные электроды для нескольких десятков катионов и анионов. Важнейшим из них является стеклянный электрод (рис. 8.7). Его потенциал зависит от концентрации ионов водорода: j =j 0 + А×рН, где А – const, поэтому он используется для определения рН растворов.

Определение концентрации ионов водорода (рН анализируемого раствора) сводится к измерению разности потенциалов между стеклянным электродом и электродом сравнения, погруженными в анализируемый раствор. В качестве электрода сравнения используют электроды, потенциал которых не зависит от концентрации ионов водорода, например хлорсеребряный электрод. В этом случае величина измеряемой разности потенциалов пропорциональна рН анализируемого раствора.

Способов экспериментального определения и расчета абсолютных величин электродных потенциалов не существует. С достаточной степенью точности можно измерить разность потенциалов Dj между двумя электродами в электрохимической системе. Если равновесие в такой системе достигнуто в стандартных условиях: активность (концентрация) потенциалопределяющих ионов 1 моль/л; температура Т 0 =298 К; давление газов р 0 =1,013×10 5 Па; ток во внешней цепи I=0 А, то измеряемая Dj равна разности между стандартными электродными потенциалами: Dj= j 0 1-j 0 2.

Если один из электродов принять в качестве электрода сравнения, стандартный потенциал которого условно считать равным нулю, то измеренная разность потенциалов будет являться потенциалом второго электрода относительно первого. В качестве электрода сравнения часто используют стандартный водородный электрод.

В рассматриваемой паре электродов потенциал стандартного водородного электрода может быть как больше, так и меньше стандартного потенциала измеряемого. Например, для электродов первого рода электрохимические могут быть записаны как

Таким образом, потенциал измеряемого электрода относительно водородного может быть отрицательным: или положительным . За стандартный электродный потенциал принимается измеренная разность потенциалов соответственно j 0 = ± Dj.

Измеренные относительно водородного электрода величины стандартных электродных потенциалов сведены в таблицу в порядке их возрастания (см. пример). Такую последовательность называют рядом стандартных электродных потенциалов окислительно-восстановительных систем. Из общего ряда выделяют последовательность для электродов первого рода – металлы, находящиеся в контакте с раствором, содержащим катион этого же металла (Me n + |Me 0 ). Она называется электрохимическим рядом напряжений металлов.

Пример. Стандартные электродные потенциалы (j 0 , В) и их электродные реакции. Жирным шрифтом выделены электроды первого рода.

ЭлектродЭлектродная реакцияj 0 , В
Li + |Li 0Li + + ē ↔ Li 0-3,02
K + |K 0K + + ē ↔ K 0-2,92
Ca 2+ |Ca 0Ca 2+ + 2ē ↔ Ca 0-2,87
Na + |Na 0Na + + ē ↔ Na 0-2,71
Mg 2+ |Mg 0Mg 2+ + 2ē ↔ Mg 0-2,34
Al 3+ |Al 0Al 3+ + 3ē ↔ Al 0-1,67
Zn 2+ |Zn 0Zn 2+ + 2ē ↔ Zn 0-0,76
Cr 3+ |Cr 0Cr 3+ + 3ē ↔ Cr 0-0,74
Cr 3+ ,Cr 2+ |PtCr 3+ + ē ↔ Cr 2+ pH £ 7-0,41
Fe 2+ |Fe 0Fe 2+ + 2ē ↔ Fe 0-0,44
Cd 2+ |Cd 0Cd 2+ + 2ē ↔ Cd 0-0,40
Ni 2+ |Ni 0Ni 2+ + 2ē ↔ Ni 0-0,25
Sn 2+ |Sn 0Sn 2+ + 2ē ↔ Sn 0-0,14
Pb 2+ |Pb 0Pb 2+ + 2ē ↔ Pb 0-0,13
Fe 3+ |Fe 0Fe 3+ + 3ē ↔ Fe 0-0,04
2H + |H2 0 ,Pt2H + + 2ē↔H20,00
Sn 4+ ,Sn 2+ |PtSn 4+ + 2ē ↔ Sn 2+ pH £ 7+0,15
Cl — |AgCl,Ag 0AgCl + ē ↔ Ag 0 + Cl — pH

7

+0,22
Cu 2+ |Cu 0Cu 2+ + 2ē ↔ Cu 0+0,34
OH — |O2,PtО2 + 2H2O + 4ē ↔ 4OH — pH ³ 7+0,40
Fe 3+ ,Fe 2+ |PtFe 3+ + ē ↔ Fe 2+ pH £ 7+0,77
NO3 — ,NO2,H + |PtNO3 — + 2H + + ē ↔ NO2 + H2O+0,80
Ag + |Ag 0Ag + + ē ↔ Ag 0+0,80
Hg 2+ |Hg 0 (ж)Hg 2+ + 2ē ↔ Hg 0+0,85
NO3 — ,NH4 + ,H + |PtNO3 — + 10H + + 8ē ↔ NH4 + + 3H2O+0,87
Cr2O7 2- ,Cr 3+ ,H + |PtCr2O7 2+ + 14H + + 6ē ↔ 2Cr 3+ + 7H2O pH — | Cl2 0 ,Pt2 Cl — + 2ē ↔ Cl 2+1,36
Au 3+ |Au 0Au 3+ + 3ē ↔ Au 0+1,50
Au + |Au 0Au + + ē ↔ Au 0+1,69
PbO2,H + ,SO4 2- ,PbSO4|PtPbO2+4H + +SO4 2- +2ē↔PbSO4 + 2H2O pH 3+ ,Co 2+ |PtCo 3+ + ē ↔ Co 2+ pH £ 7+1,81
S2O8 2- ,SO4 2- |PtS2O8 2- + 2ē ↔ 2SO4 2- pH

7

+2,01
2F — |F2 0 ,Pt2 F — + 2ē ↔ F2 pH ³ 7+2,87

Величина стандартного электродного потенциала j 0 электрода первого рода является мерой восстановительной способности атома металла и окислительной способности его иона. Чем она меньше, тем легче атом отдает электроны, соответственно металл обладает более высокой восстановительной способностью. Чем она больше, тем легче ион принимает электроны, являясь более сильным окислителем.

Эти же закономерности относятся к редокс-электродам. Чем отрицательнее потенциал, тем более сильным восстановителем является восстановленная (Red) форма вещества. И, наоборот, с увеличением потенциала возрастает окислительная способность окисленной формы (Ox).


источники:

http://skysmart.ru/articles/chemistry/elektroliz-rasplavov-i-rastvorov

http://helpiks.org/9-5164.html