Что такое уравнение фигуры в декартовых

Уравнения фигур

Уравнение фигуры — это уравнение с двумя переменными x и y, для которого выполняются два условия: 1) координаты любой точки фигуры F удовлетворяют этому уравнению.

Содержание:

Понятие уравнения фигур

Название этого раздела означает: геометрические фигуры можно задавать уравнениями (некоторые фигуры можно задавать неравенствами).

Известно, что точки плоскости и пространства задаются их координатами, геометрические фигуры могут задаваться уравнениями или неравенствами: — уравнение прямой; — уравнение окружности; — уравнение сферы и т. д.

Говорят, что фигура F задается уравнением в прямоугольных координатах, если точка принадлежит фигуре F тогда и только тогда, когда координаты этой точки удовлетворяют данному уравнению. Это означает, что выполняются два условия:

1. Если точка принадлежит фигуре F, то ее координаты удовлетворяют данному уравнению.

2. Если числа х, у, г удовлетворяют данному уравнению, то точка с такими координатами принадлежит фигуре F.

Второе условие можно выразить иначе: координаты любой точки, не принадлежащей фигуре F, не удовлетворяют данному уравнению.

Например, прямая, перпендикулярная оси Ох и проходящая через точку М(2, 0), на оси Ох задается уравнением х = 2 (рис. 2.461). Действительно, каждая точка, лежащая на этой прямой, имеет одну и ту же координату 2. А любая точка, не лежащая на этой прямой, имеет другое значение координаты х, нежели 2. Ось Оу задается уравнением х = 0.

Аналогично прямая, перпендикулярная оси Оу и проходящая через точку Щ0, 3), имеет уравнение у = 3 (рис. 2.462). Ось Ох имеет уравнение у = 0.

Уравнение прямой

Можно доказать такую теорему.

Теорема 3. Любая прямая в декартовой системе координат хОу имеет уравнение вида — некоторые числа.

Выясним, как расположена прямая относительно осей координат, если ее уравнение имеет тот или иной частный вид.

1. В этом случае уравнение прямой можно переписать так:

Таким образом, все точки прямой имеют одну и ту же ординату ; следовательно, прямая параллельна оси х (рис. 2.463). В частности, если с = 0, то прямая совпадает с осью Ох.

2. Этот случай рассматривается аналогично. Прямая параллельна оси Оу (рис. 2.464) и совпадает с ней, если и с = 0.

3. с = 0. Прямая проходит через начало координат, так как его координаты (0; 0) удовлетворяют уравнению прямой (рис. 2.465).

Если в общем уравнении прямой коэффициент при у не равен нулю, то это уравнение можно разрешить относительно у. Получим: Или, обозначая получим: у = kх + d.

Коэффициент k в уравнении прямой с точностью до знака равен тангенсу острого угла, который образует прямая с осью Ох. В уравнении прямой, изображенной на рисунке 2.466, k > 0.

Коэффициент k в уравнении прямой называют угловым коэффициентом прямой.

Уравнения окружности и сферы

Составим уравнение окружности с центром в точке и радиусом R (рис. 2.467).

1. Возьмем произвольную точку А(х, у) на окружности. Расстояние от нее до центра О равно R.

2. Квадрат расстояния от точки А до точки О равен (формула расстояния между точками).

3. Координаты х, у каждой точки А окружности удовлетворяют уравнению

(2, определение окружности).

Получили искомое уравнение. Обратно: любая точка А, координаты которой удовлетворяют уравнению окружности, принадлежит окружности, так как расстояние от нее до точки О равно R. Отсюда следует, что данное уравнение действительно является уравнением окружности с центром в точке О и радиусом R.

Заметим, что если центром окружности является начало координат, то уравнение окружности имеет вид:

Выведем теперь уравнение сферы. Пусть в пространстве введена прямоугольная система координат и задана сфера S с центром и радиусом R. Эта сфера есть множество точек М, для которых расстояние от А равно R, т. е. AM = R (рис. 2.468).

Пусть х, у, z — координаты точки М. Согласно формуле расстояния между точками в пространстве, предыдущее равенство можно записывать в координатах так:

Это и есть уравнение сферы S с центром и радиусом R, т. е. множество точек, координаты которых удовлетворяют данному уравнению, представляет собой сферу S (рис. 2.468).

Если центр А находится в начале координат, т. е. то уравнение получает простой вид:

Рассмотрим шар с центром и радиусом R (рис. 2.469).

По определению, это множество точек М, для которых , т. е. . Выражая расстояние AM через координаты точки М(х, у, z), получим:

Это неравенство задает шар S с центром и радиусом R, так как оно равносильно неравенству , задающему такой шар по самому его определению.

Если центр шара находится в начале координат, то уравнение шара упрощается и имеет вид:

Два предприятия A и В производят продукцию с одной и той же ценой т за одно изделие. Однако автопарк, обслуживающий предприятие А, оснащен более современными и более мощными грузовыми автомобилями. В результате транспортные расходы на перевозку одного изделия составляют для предприятия А 10 руб. на 1 км, а для предприятия В 20 руб. на 1 км. Расстояние между предприятиями 300 км. Как территориально должен быть разделен рынок сбыта между двумя предприятиями для того, чтобы расходы потребителей при покупке изделий были минимальными?

Решение:

1. Выберем систему координат так, чтобы ось Ох проходила через пункты А и В, а ось Оу — через точку А (построение) (рис. 2.470).

2. Пусть N — произвольная точка, — расстояния от точки N до предприятий А и Б (рис. 2.471).

3. При доставке груза из пункта А расходы равны (1,2).

4. При доставке груза из пункта Б расходы равны (1,2).

5. Если для пункта N выгоднее доставлять груз с предприятия А, то откуда , в обратном случае получим (3,4).

6. Таким образом, границей этих двух областей для каждой точки, до которой расходы на перевозку груза из пунктов А и Б равны, будет множество точек плоскости, удовлетворяющих уравнению (5)

7. Выразим через координаты:

(1,2, формула расстояния между точками).

8. Имея в виду равенство из п. 6, получим:

(6,7).

9. Это есть уравнение окружности (рис. 2.472).

Следовательно, для всех пунктов, попадающих во внутреннюю область круга, выгоднее привозить груз из пункта В, а для всех пунктов, попадающих во внешнюю часть круга, — из пункта А.

Пример 2.

Два наблюдаемых пункта находятся в точках Пункт наблюдения О находится на прямой АВ и удален от точки А на расстояние км, а от В на расстояние с км (с > ). Наблюдатель для безопасности должен идти по такому пути, чтобы расстояние от него до пункта А все время оставалось в два раза больше, чем расстояние от него до пункта В. По какой линии должен идти наблюдатель?

Решение:

Из условий задачи имеем:

1. Два наблюдаемых пункта находятся в точках

2. Пункт наблюдения О находится на прямой АВ и удален от А на расстоянии км, а от В — с км (с > ).

3. Наблюдатель идет так, чтобы расстояние до пункта А было в два раза больше, чем до В.

4. По какой линии должен идти наблюдатель?

5. Примем за начало координат наблюдательный пункт О и направление оси Ох будет проходить через пункты А и В (по условию задачи эти три точки находятся на одной прямой) (рис. 2.473).

6. Пусть наблюдатель находится в точке М(х, у). Вычислим расстояние от наблюдателя до пунктов А и В (рис. 2.473):

(1, 2, 3, 5, формула расстояния между точками).

7. По условию задачи имеем: МА = 2MB, т. е.

(3, 6).

8. Решая это уравнение, получим:

9. Раскроем скобки и перегруппируем:

10. Наблюдатель должен идти по окружности с центром и радиусом (4, уравнение окружности).

Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:

Смотрите также дополнительные лекции по предмету «Математика»:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Уравнение фигуры

Уравнение фигуры F в прямоугольной системе координат — это уравнение с двумя переменными x и y, для которого выполняются два условия:

1) координаты любой точки фигуры F удовлетворяют этому уравнению;

2) любая пара чисел (x; y), удовлетворяющая этому уравнению, является координатами некоторой точки фигуры F.

1) Уравнение вида

где a, b и c — числа (причем a и b не равны нулю одновременно) задаёт в прямоугольной системе координат уравнение некоторой прямой.

2) Уравнение вида

задаёт в прямоугольной системе координат окружность с центром в точке (a;b) и радиусом R.

Что такое уравнение фигуры в декартовых

Вопрос 1. Объясните, как определяются координаты точки.
Ответ. Проведём на плоскости через точку O две взаимно перпендикулярные прямые x и y – оси координат (рис. 170). Ось x (она обычно горизонтальная) называется осью абсцисс, а ось y – осью ординат. Точкой пересечения O – началом координат – каждая из осей разбивается на две полуоси. Условимся одну из них называть положительной, отмечая её стрелкой, а другую – отрицательной.

Каждой точке A плоскости мы сопоставим пару чисел – координаты точки – абсциссу (x) и ординату (y) по такому правилу.
Через точку A проведём прямую, параллельную оси ординат (рис. 171). Она пересечёт ось абсцисс x в некоторой точке Ax. Абсциссой точки A мы будем называть число x, абсолютная величина которого равна расстоянию от точки O до точки Ax. Это число будет положительным, если Ax принадлежит положительной полуоси и отрицательным, если Axпринадлежит отрицательной полуоси. Если точка A лежит на оси ординат y, то полагаем x равным нулю.

Ордината (y) точки A определяется аналогично. Через точку A проведём прямую, параллельную оси абсцисс x (см. рис. 171). Она пересечёт ось ординат y в некоторой точке Ay. Ординатой точки A мы будем называть число y, абсолютная величина которого равна расстоянию от точки O до точки Ay. Это число будет положительным, если Ay принадлежит положительной полуоси и отрицательным, если Ay принадлежит отрицательной полуоси. Если точка A лежит на оси абсцисс x, то полагаем y равным нулю.
Координаты точки будем записывать в скобках рядом с буквенным обозначением точки, например: A (x; y) (на первом месте абсцисса, на втором – ордината).

Вопрос 2. Какие знаки у координат точки, если она принадлежит первой (второй, третьей, четвёртой) четверти?
Ответ. Оси координат разбивают плоскость на четыре части – четверти: I, II, III, IV (рис. 172). В пределах одной четверти знаки обеих координат сохраняются и имеют значения.

Если точка принадлежит первой четверти, то её абсцисса и ордината будут положительными.
Если точка принадлежит второй четверти, то её абсцисса будет отрицательной, а ордината будет положительной.
Если точка принадлежит третьей четверти, то её абсцисса и ордината будут отрицательными.
Если точка принадлежит четвёртой четверти, то её абсцисса будет положительной, а ордината будет отрицательной.

Вопрос 3. Чему равны абсциссы точек, лежащих на оси ординат?
Чему равны ординаты точек, лежащих на оси абсцисс?
Чему равны координаты начала координат?
Ответ. Точки оси x (оси абсцисс) имеют равные нулю ординаты (y = 0), а точки оси y (оси ординат) имеют равные нулю абсциссы (x = 0).
Если какая-либо точка лежит на оси ординат y, то абсцисса данной точки равна нулю.
Если какая-либо точка лежит на оси абсцисс x, то ордината данной точки равна нулю.
У начала координат абсцисса и ордината равны нулю.

Вопрос 4. Выведите формулы для координат середины отрезка.
Ответ. Пусть A (x1; y1) и B (x2;y2) – две произвольные точки и C (x; y) – середина отрезка AB. Найдём координаты x, y точки C.
Рассмотрим сначала случай, когда отрезок AB не параллелен оси y, т.е. \(x_1 \neq x_2\). Проведём через точки A, B, C прямые, параллельные оси y (рис. 173). Они пересекут ось x в точках A1 (\(x_1\); 0), B1 (\(x_2\); 0), C (\(x\); 0). По теореме Фалеса точка \(C_1\) будет серединой отрезка \(A_1B_1\).

Так как точка \(C_1\) – середина отрезка \(A_1B_1\), то \(A_1C_1 = B_1C_1\), а значит, \(|x – x_1| = |x – x_2|\). Отсюда следует, что либо \(x – x_1 = -(x – x_2)\). Первое равенство невозможно, так как \(x_1 \neq x_2\). Поэтому верно второе. А из него получается формула

Если \(x_1 = x_2\), т.е. отрезок AB параллелен оси y, то все три точки \(A_1, B_1, C_1\) имеют одну и ту же абсциссу. Значит, формула остаётся верной и в этом случае.
Ордината точки C находится аналогично. Через точки A, B, C проводятся прямые, параллельные оси x. Получается формула

Вопрос 5. Выведите формулу для расстояния между точками.
Ответ. Пусть на плоскости xy даны две точки: \(A_1\) с координатами \(x_1, y_1\) и \(A_2\) с координатами \(x_2, y_2\). Выразим расстояние между точками \(A_2\) и \(A_2\) через координаты этих точек.
Рассмотрим сначала случай, когда \(x_1 \neq x_2\) и \(y_1 \neq y_2\). Проведём через точки \(A_1\) и \(A_2\) прямые, параллельные осям координат, и обозначим через A точку их пересечения (рис. 174). Расстояние между точками \(A\) и \(A_1\) равно \(|y_1 – y_2|\), а расстояние между точками \(A\) и \(A_2\) равно \(|x_1 – x_2|\). Применяя к прямоугольному треугольнику \(AA_1A_2\) теорему Пифагора, получим:

\(d^2 = (x_1 — x_2)^2+ (y_1 — y_2)^2\), (*)

где d –расстояние между точками \(A_1\) и \(A\).

Хотя формула (*) для расстояния между точками выведена нами в предположении \(x_1 \neq x_2\), \(y_1 \neq y_2\), она остаётся верной и в других случаях. Действительно, если \(x_1 = x_2\), \(y_1 \neq y_2\), то d равно \(|y_2 — y_2|\). Тот же результат даёт и формула (*). Аналогично рассматривается случай, когда \(x_1 \neq x_2, y_1 = y_2\). При \(x_1 = x_2, y_1 = y_2\) точки \(A_1\) и \(A_2\) совпадают и формула (*) даёт d = 0.

Вопрос 6. Что такое уравнение фигуры в декартовых координатах?
Ответ. Уравнением фигуры в декартовых координатах на плоскости называется уравнение с двумя неизвестными x и y, которому удовлетворяют координаты любой точки фигуры. И обратно: любые два числа, удовлетворяющие этому уравнению, являются координатами некоторой точки фигуры.

Вопрос 7. Выведите уравнение окружности.
Ответ. Составим уравнение окружности с центром в точке AO (a; b) и радиусом R (рис. 175). Возьмём произвольную точку A (x; y) на окружности. Расстояние от неё до центра AO равен \((x – a)^2 + (y – b)^2\). Таким образом, координаты x, y каждой точки A окружности удовлетворяют уравнению

Обратно: любая точка A, координаты которой удовлетворяют уравнению (*), принадлежит окружности, так как расстояние от неё до точки AO равно R. Отсюда следует, что уравнение (*) действительно является уравнением окружности с центром AOи радиусом R. Заметим, что если центром окружности является начало координат, то уравнение окружности имеет вид:

Вопрос 8. Докажите, что прямая в декартовых координатах имеет уравнение вида ax + by + c = 0.
Ответ. Докажем, что любая прямая в декартовых координатах x, y имеет уравнение вида

где a, b, c – некоторые числа.
Пусть h – произвольная прямая на плоскости xy. Проведём какую-нибудь прямую, перпендикулярную прямой h, и отложим на ней от точки пересечения C с прямой h равные отрезки CA1 и CA2(рис. 176).

Пусть a1, b1 – координаты точки A1 и a2, b2 – координаты точки A2. Как мы знаем, любая точка A (x; y) прямой h равноудалена от точек A1 и A2. Поэтому координаты её удовлетворяют уравнению

\((x – a_1)^2 + (y — b_1)^2 = (x – a_2)^2 + (y — b_2)^2\). (**)

Обратно: если координаты x и y какой-нибудь точки удовлетворяют уравнению (**), то эта точка равноудалена от точек A1 и A2, а значит, принадлежит прямой h. Таким образом, уравнение (**) является уравнением прямой h. Если в этом уравнении раскрыть скобки и перенести все члены уравнения в левую его часть, то оно примет вид:

\(2(a_2 — a_1)x + 2(b_2 — b_1)y + (a_1^2 + b^2_1 — a^2_2 — b^2_2) = 0.\)

Обозначая \(2(a_2 — a_1) = a\), \(2(b_2 — b_1) = b\), \(a^2_1 + b^2_1 — a^2_2 — b^2_2 = c\), получаем уравнение (*). Утверждение доказано.

Вопрос 9. Как найти координаты точки пересечения двух прямых, если заданы уравнения этих прямых?
Ответ. Пусть заданы уравнения двух прямых:

Найдём координаты их точки пересечения.
Так как точка пересечения (x; y) принадлежит каждой из прямых, то её координаты удовлетворяют и первому и второму уравнению. Поэтому координаты точки пересечения являются решением системы уравнений, задающих прямые. Рассмотрим пример.
Пусть уравнениями данных прямых будут:

Решая эту систему уравнений, находим x = -3, y = -7. Точка пересечения прямых (-3; -7).

Вопрос 10. Как расположена прямая, если в её уравнении коэффициент a = 0 (b = 0; c = 0)?
Ответ. Выясним, как расположена прямая относительно осей координат, если её уравнение ax + by + c = 0 имеет тот или иной частный вид.
1. a = 0, b \(\neq\) 0. В этом случае уравнение прямой можно переписать так:

Таким образом, все точки прямой имеют одну и ту же ординату (\(-\frac\)); следовательно, прямая параллельна оси x (рис. 177, а). В частности, если c = 0, то прямая совпадает с осью x.
2. b = 0, a \(\neq\) 0. Этот случай рассматривается аналогично. Прямая параллельна оси y (рис. 177, б) и совпадает с ней, если c = 0.

3. c = 0. Прямая проходит через начало координат, так как его координаты (0; 0) удовлетворяют уравнению прямой (рис. 177, в).


источники:

http://www.treugolniki.ru/uravnenie-figury/

http://oftob.com/ru/%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F-8-%D0%BA%D0%BB%D0%B0%D1%81%D1%81-%D0%BA%D0%BE%D0%BD%D1%82%D1%80%D0%BE%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5-%D0%B2%D0%BE%D0%BF%D1%80%D0%BE%D1%81%D1%8B-%D0%BE%D1%82%D0%B2%D0%B5%D1%82%D1%8B/1062-%D0%BF%D0%BE%D0%B3%D0%BE%D1%80%D0%B5%D0%BB%D0%BE%D0%B2-%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F-8-%D0%BA%D0%BB%D0%B0%D1%81%D1%81-%C2%A78-%D0%BA%D0%BE%D0%BD%D1%82%D1%80%D0%BE%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5-%D0%B2%D0%BE%D0%BF%D1%80%D0%BE%D1%81%D1%8B-%D0%BE%D1%82%D0%B2%D0%B5%D1%82%D1%8B