Что такое уравнение линейного трансформатора

Уравнения линейного трансформатора.

Пусть , — мгновенные значения тока в первичной и вторичной обмотке соответственно, — мгновенное напряжение на первичной обмотке, — сопротивление нагрузки. Тогда

Здесь , — индуктивность и активное сопротивление первичной обмотки, , — то же самое для вторичной обмотки, — взаимная индуктивность обмоток. Если магнитный поток первичной обмотки полностью пронизывает вторичную, то есть если отсутствует поле рассеяния, то . Индуктивности обмоток в первом приближении пропорциональны квадрату количества витков в них.

Мы получили систему линейных дифференциальных уравнений для токов в обмотках. Можно преобразовать эти дифференциальные уравнения в обычные алгебраические, если воспользоваться методом комплексных амплитуд.

Для этого рассмотрим отклик системы на синусоидальный сигнал

( , где — частота сигнала, — мнимая единица).

Тогда и т. д., сокращая экспоненциальные множители получим

Метод комплексных амплитуд позволяет исследовать не только чисто активную, но и произвольную нагрузку, при этом достаточно заменить сопротивление нагрузки её импедансом . Из полученных линейных уравнений можно легко выразить ток через нагрузку, воспользовавшись законом Ома— напряжение на нагрузке, и т. п.

Т-образная схема замещения трансформатора.

На рисунке показана эквивалентная схема трансформатора с подключенной нагрузкой, как он видится со стороны первичной обмотки.

Здесь — коэффициент трансформации, — «полезная» индуктивность первичной обмотки, , — индуктивности первичной и вторичной обмотки, связанные с рассеянием, , — активные сопротивления первичной и вторичной обмотки соответственно, — импеданс нагрузки.

Потери в трансформаторах

Степень потерь (и снижения КПД) в трансформаторе зависит, главным образом, от качества, конструкции и материала «трансформаторного железа» (электротехническая сталь). Потери в стали состоят в основном из потерь на нагрев сердечника, на гистерезис и вихревые токи. Потери в трансформаторе, где «железо» монолитное, значительно больше, чем в трансформаторе, где оно составлено из многих секций (так как в этом случае уменьшается количество вихревых токов). На практике монолитные сердечники не применяются. Для снижения потерь в магнитопроводе трансформатора магнитопровод может изготавливаться из специальных сортов трансформаторной стали с добавлением кремния, который повышает удельное сопротивление железа электрическому току, а сами пластины лакируются для изоляции друг от друга.

Габаритная мощность

Габаритная мощность трансформатора описывается следующей формулой:

· — первичной обмотки

· — вторичной обмотки

Габаритная мощность, как следует из названия, определяется габаритами сердечника и материалом, его магнитными и частотными свойствами.

КПД трансформатора[править | править исходный текст]

КПД трансформатора находится по следующей формуле:

— потери холостого хода (кВт) при номинальном напряжении

— нагрузочные потери (кВт) при номинальном токе

— активная мощность (кВт), подаваемая на нагрузку

— относительная степень нагружения (при номинальном токе ).

Мачтовая трансформаторная подстанция с трёхфазным понижающим трансформатором

Силовой трансформатор

Основная статья: Силовой трансформатор

Силовой трансформатор переменного тока — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Слово «силовой» отражает работу данного вида трансформаторов с большими мощностями. Необходимость применения силовых трансформаторов обусловлена различной величиной рабочих напряжений ЛЭП (35-750 кВ), городских электросетей (как правило 6,10 кВ), напряжения, подаваемого конечным потребителям (0,4 кВ, они же 380/220 В) и напряжения, требуемого для работы электромашин и электроприборов (самые различные от единиц вольт до сотен киловольт).

Силовой трансформатор постоянного тока используется для непосредственного преобразования напряжения в цепях постоянного тока. Термин «силовой» показывает отличие таких трансформаторов от измерительных устройств класса «Трансформатор постоянного тока».

Автотрансформатор

Основная статья: Автотрансформатор

Автотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно.

Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4. Существенным достоинством является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

Трансформатор тока

Основная статья: Трансформатор тока

Трансформа́тор то́ка — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации, кроме того, трансформатор тока осуществляет гальваническую развязку (отличие от шунтовых схем измерения тока). Номинальное значение тока вторичной обмотки 1 А, 5 А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации. ВНИМАНИЕ! Вторичная обмотка токового трансформатора должна быть надёжно замкнута на низкоомную нагрузку измерительного прибора или накоротко. При случайном или умышленном разрыве цепи возникает скачок напряжения, опасный для изоляции, окружающих электроприборов и жизни техперсонала! Поэтому по правилам технической эксплуатации необходимо неиспользуемые вторичные обмотки закорачивать, а все вторичные обмотки трансформаторов тока подлежат заземлению.

Трансформатор напряжения

Основная статья: Трансформатор напряжения

Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.

Импульсный трансформатор

Основная статья: Импульсный трансформатор

Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса [14] . Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.

Особенности применения линейных регулировочных трансформаторов, схемы

Линейные трансформаторы устанавливаются в электрических цепях для возможности регулирования подаваемого напряжения при снижении рабочей мощности. Катушки создают электромагнитное поле, которое разряжается, когда уменьшается сила тока в цепи. Таким образом обеспечивается подача стабильного электричества.

При их изготовлении не используются ферромагнитные сердечники. Эта особенность позволяет регулировать напряжение в сети. Специальные трансформаторы изготавливаются для уменьшения напряжения на высоковольтных линиях с 6, либо 10 кВ до 230 или 115 В.

Для чего служит?

Такие трансформаторы используются для регулирования объемов электричества, проходящего по электрической сети. Каждая катушка последовательно включается в сеть. Это важный элемент электрической цепи, изменяющий силу тока и напряжения. Прибор изготавливается из пары неподвижных катушек, в которых не используются ферромагнитные сердечники. Такие устройства называются воздушными и относятся к категории линейных. Они изготовлены без ферромагнитных сердечников.

Такие приборы устанавливаются на отдельных или нескольких линиях с целью регулирования мощности. Последовательный и питающий элемент входит в основу трансформатора. Они используются для реконструкции сетей, в которых установлены не регулирующие приборы, пропускающие через себя высокую нагрузку.

Преимущества использования

Преимущества этих агрегатов по сравнению с устройствами, в которых установлен первый магнитный сердечник, заключается в возможности регулирование мощности, проходящей в цепи. Другие изделия не могут выполнять эту функцию из-за особенностей своей конструкции.

Регулировочный механизм имеет такие достоинства:

  • Эффективная работа обеспечивается при разной нагрузке. Изделие легко переносит быстрый запуск системы на максимальную мощность из выключенного состояния.
  • Устойчивость к коротким замыканиям.
  • Хорошая защита от внешнего атмосферного воздействия, обеспечивает устойчивость к химическим и механическим воздействиям, высокому уровню влажности.
  • Возможность регулировки объемов электричества позволяет экономично расходовать электроэнергию.

Особенности функционирования делают их универсальными изделиями, преобразующими электроэнергию.

Схема линейного трансформатора

Предельный двухобмоточный трансформатор можно рассматривать в виде пары катушек с линейной индуктивностью.

Сопротивление R1 и R2 учитывает снижение энергии в парных катушках. В ситуации, когда нелинейность магнитных элементов не воздействует на свойства прибора с установленными ферромагнитными сердечниками, они рассматриваются в качестве линейных при изучении цепей с применением соответствующей схемы замещения.

Данная пара уравнений равнозначна следующей:

Указанные уравнения считаются контурными для следующей схемы:

Это схема замещения, не имеющая связанных индуктивностей.

При одинаковом количестве витков на каждой обмотке индуктивность рассеивается. Работе на холодном ходу (12=0), ток в первой обмотки отличен от 0.

Это явление тока намагничивания:

Способ решения уравнений касательно электричества, проходящего через первую обмотку:

Показатели на первичной и вторичной обмотках пропорциональны в данном примере. Сопротивление нагрузки Zн всегда определяет коэффициент пропорциональности.

Трансформатор, изготовленный по такой схеме, уменьшает потери при переходе электричества с первой обмотки на вторую. Оценка КПД проводится для определения невосполнимой потери энергии. Динамические свойства тоже могут повлиять на уменьшение объемов проходящей энергии, если на мотках не предусмотрена фазировка токов. Поэтому при оценке КПД по соотношению объемов энергии, проходящей через регулировочный механизм в первой цепи с объемом, проходящим по вторичной цепи, разница не должна быть больше 0,8. Такой показатель является оптимальным для электрических установок малой и средней мощности, работающих на активную нагрузку.

В обычных приборах при повышении тока в обмотках возникает накопление энергии и усиление магнитного поля. При уменьшении мощности эта энергия расходуется, и таким образом сохраняется стабильная мощность в сети. Энергия продолжает накапливаться в магнитопроводе, благодаря разрядке конденсаторов при снижении значения тока в парной катушке. Поэтому ток холостого хода значительно уменьшается.

Где применяют?

Наибольшая польза от использования регулировочных устройств получается на электростанциях, переводящих мощность одновременно с низкой и средней на высокую. Приборы без ферромагнитных стержней используются при необходимости обеспечения связи между несколькими повышенными мощностями.

Трансформаторы применяются, если на обычных автоматических механизмах не установлен РПН.

Такие устройства не используются только в небольших установках 380-220 В. Использование регулировочных изделий актуально при необходимости независимого изменения на участке низшего напряжения.

Выполнение контрольной, курсовой работы в кратчайшие сроки

Трансформатор — это устройство для передачи энергии из одной части электрической цепи в другую, основанное на использовании явления взаимоиндукции. состоит нескольких связанных индуктивных катушек (обмоток). Обмотка, подключённая к источнику энергии, называется первичной, остальные обмотки называются вторичными. Часто размещены общем ферромагнитном сердечнике уменьшения потоков рассеяния и повышения индуктивности. с ферромагнитным сердечником представляет собой нелинейными характеристиками, так как свойства магнитных материалов существенно зависят от напряженности пронизывающих их полей и, следовательно, создающих эти поля токов. Процессы таком трансформаторе описываются при помощи нелинейных дифференциальных уравнений.

В трансформаторе без ферромагнитного сердечника электрические процессы могут быть описаны линейными дифференциальными уравнениями, поэтому такой трансформатор называется линейным. Линейный двухобмоточный можно рассматривать как две связанные катушки с линейной индуктивностью (рис. 11.4).

Рис. 11.4. Схема замещения линейного трансформатора

Сопротивления R1 и R2 учитывают потери энергии в обмотках трансформатора. В ряде случаев, когда нелинейность магнитных материалов не оказывает существенного влияния на характеристики трансформатора с ферромагнитным сердечником, его приближенно рассматривают как линейный и представляют при анализе цепей с помощью линейной схемы замещения.

При гармоническом внешнем воздействии уравнения, описывающие трансформатор (рис. 11.4) имеют вид:

(11.5)

Эти уравнения равносильны следующим:

Данные уравнения являются контурными уравнениями для схемы рис. 11.5.

Рис. 11.5. Схема замещения линейного трансформатора, не содержащая связанных индуктивностей.

При одинаковом числе витков первичной и вторичной обмоток разности (L1 –M) (L2 – M) имеют физический смысл индуктивностей рассеяния.

В режиме холостого хода на выходе (I2=0) ток первичной обмотки I1 не равен нулю. Этот называется током намагничивания:

(11.6)

Решение системы уравнений (5.18) относительно напряжения и тока первичной обмотки:

(11.7)

Из выражений (11.7) видно, что напряжение и ток первичной обмотки линейного трансформатора пропорциональны напряжению току вторичной обмотки, причем коэффициенты пропорциональности в обоих случаях зависят от сопротивления нагрузки Zн,

ЦЕПИ НЕСИНУСОИДАЛЬНОГО ТОКА

В электротехнике, а особенно в радиотехнике, автоматике, измерительной и вычислительной технике режим, когда в обычной линейной цепи R – L – C действуют ЭДС разной частоты и протекают несинусоидальные токи, является достаточно обычным.

Например, в цепях после выпрямителя всегда присутствуют составляющие постоянного и переменного тока. В автоматике и телемеханике используются генераторы сигналов, отличных от синусоид (рис. 6.1). Даже в промышленной сети

тока всегда есть источники не только 50Гц, но и более высоких частот.

В принципе несинусоидальные токи в цепи возникают в следующих случаях:

— когда сам источник вырабатывает несинусоидальные ЭДС;

— когда в цепи есть нелинейные элементы;

— когда в цепи есть элементы с медленно изменяющимися параметрами R(t), L(t), C(t).

Ограничимся рассмотрением первого случая.

Явления в линейной цепи под действием несинусоидальных ЭДС исследуют, разложив несинусоидальную ЭДС на сумму постоянной составляющей и синусоидальных (гармонических) составляющих кратных частот.

“Расчёт переходных режимов в линейных электрических цепях” по курсу “Теоретические основы электротехники”

1. УКАЗАНИЯ ПО ВЫБОРУ ВАРИАНТА ЗАДАНИЯ

Электрическая схема и значения её параметров выбираются по номеру варианта задания. Номер варианта соответствует порядковому номеру студента в журнале.

Для студентов, номера которых от 1 до 10-го, выбирается схема, соответствующая номеру варианта (рис. 1 – 10).

Для вариантов, больше 11-го, номер схемы (номер рисунка) соответствует второй цифре варианта. При этом варианты 10, 20 и т.д. используют схему №10 (рис. 10).

Параметры схемы (значение R, L, C) и реакция цепи, которую требуется определить, приведены в таблице и соответствуют номеру варианта.

2. СОДЕРЖАНИЕ ЗАДАНИЯ

1) Определить реакцию электрической цепи, если воздействие, задаваемое электродвижущей силой источника напряжения или током источника тока, постоянно и равно:

е(t) = 100 В; I (t) = 1 А.

Расчёт выполнить классическим методом.

2) Определить эту же реакцию при заданном воздействии операторным методом.

3) Построить зависимость искомой реакции от времени на промежутке времени t = (4 – 5) τ.

Если корни характеристического уравнения р1 и р2 действительные и различные, то

где рmin – наименьший из корней р1 и р2.

В случае комплексно сопряжённых корней характеристического уравнения

Совершенный трансформатор Совершенным трансформатором называется идеализированный четырёхполюсный элемент, представляющий собой две связанные индуктивности с коэффициентом связи, равным единице.

Анализ электрических цепей в частотной области Комплексные частотные характеристики цепей. идеализированных двухполюсных пассивных элементов. цепей с одним энергоемким элементом.

Комплексные частотные характеристики идеализированных двухполюсных пассивных элементов Идеализированные двухполюсные пассивные элементы обладают только входными КЧХ, так как у них имеется одна пара внешних выводов.

Комплексные частотные характеристики цепей с одним энергоемким элементом Рассмотрим комплексные частотные характеристики простейших цепей, схема замещения которых имеет вид рис. 12.5.

Определим комплексное входное сопротивление со стороны зажимов 1 —’ и комплексный коэффициент передачи по напряжению от’ к зажимам 2′ в режиме холостого хода на выходе RL-цепи, схема которой приведена рис. 12.6.

Резонанс в электрических цепях Определение резонанса.

Последовательный колебательный контур представляет собой электрическую цепь, содержащую индуктивную катушку и конденсатор, включенные последовательно с источником энергии (рис. 13.1, а).

Энергетические процессы в последовательном колебательном контуре Пусть резонансная частота контура совпадает с частотой источника колебаний.

Частотные характеристики последовательного колебательного контура Виды частотных характеристик. Входная проводимость.

Передаточные характеристики контура по напряжению рассмотрим в режиме холостого хода.


источники:

http://otransformatore.ru/vopros-otvet/linejnyj-transformator/

http://256bit.ru/hastota/induktiv47.htm