Что такое уравнение состояния тоэ

Что такое уравнение состояния тоэ

Зная реакцию цепи на единичное возмущающее воздействие, т.е. функцию переходной проводимости или (и) переходную функцию по напряжению , можно найти реакцию цепи на воздействие произвольной формы. В основе метода – метода расчета с помощью интеграла Дюамеля – лежит принцип наложения.

При использовании интеграла Дюамеля для разделения переменной, по которой производится интегрирование, и переменной, определяющей момент времени, в который определяется ток в цепи, первую принято обозначать как , а вторую — как t.

Пусть в момент времени к цепи с нулевыми начальными условиями (пассивному двухполюснику ПД на рис. 1) подключается источник с напряжением произвольной формы. Для нахождения тока в цепи заменим исходную кривую ступенчатой (см. рис. 2), после чего с учетом, что цепь линейна, просуммируем токи от начального скачка напряжения и всех ступенек напряжения до момента t, вступающих в действие с запаздыванием по времени.

В момент времени t составляющая общего тока, определяемая начальным скачком напряжения , равна .

В момент времени имеет место скачок напряжения , который с учетом временного интервала от начала скачка до интересующего момента времени t обусловит составляющую тока .

Полный ток в момент времени t равен, очевидно, сумме всех составляющих тока от отдельных скачков напряжения с учетом , т.е.

.

Заменяя конечный интервал приращения времени на бесконечно малый, т.е. переходя от суммы к интегралу, запишем

.(1)

Соотношение (1) называется интегралом Дюамеля.

Следует отметить, что с использованием интеграла Дюамеля можно определять также напряжение. При этом в (1) вместо переходной проводимости будет входить переходная функция по напряжению.

Последовательность расчета с использованием
интеграла Дюамеля

  1. Определение функции (или ) для исследуемой цепи.
  2. Запись выражения (или ) путем формальной замены t на .
  3. Определение производной .
  4. Подстановка найденных функций в (1) и интегрирование определенного интеграла.

В качестве примера использования интеграла Дюамеля определим ток в цепи рис. 3, рассчитанный в предыдущей лекции с использованием формулы включения.

Исходные данные для расчета: , , .

.

  • .
  • .
  • Полученный результат аналогичен выражению тока, определенному в предыдущей лекции на основе формулы включения.

    Метод переменных состояния

    Уравнения элекромагнитного состояния – это система уравнений, определяющих режим работы (состояние) электрической цепи.

    Метод переменных состояния основывается на упорядоченном составлении и решении системы дифференциальных уравнений первого порядка, которые разрешены относительно производных, т.е. записаны в виде, наиболее удобном для применения численных методов интегрирования, реализуемых средствами вычислительной техники.

    Количество переменных состояния, а следовательно, число уравнений состояния равно числу независимых накопителей энергии.

    К уравнениям состояния выдвигаются два основных требования:

    -возможность восстановления на основе переменных состояния (переменных, относительно которых записаны уравнения состояния) любых других переменных.

    Первое требование удовлетворяется специальной методикой составления уравнений состояния, которая будет рассмотрена далее.

    Для выполнения второго требования в качестве переменных состояния следует принять потокосцепления (токи в ветвях с индуктивными элементами) и заряды (напряжения) на конденсаторах. Действительно, зная закон изменения этих переменных во времени их всегда можно заменить источниками ЭДС и тока с известными параметрами. Остальная цепь оказывается резистивной, а следовательно, всегда рассчитывается при известных параметрах источников. Кроме того, начальные значения этих переменных относятся к независимым, т.е. в общем случае рассчитываются проще других.

    При расчете методом переменных состояния, кроме самих уравнений состояния, связывающих первые производные и с самими переменными и и источниками внешних воздействий – ЭДС и тока, необходимо составить систему алгебраических уравнений, связывающих искомые величины с переменными состояния и источниками внешних воздействий.

    Таким образом, полная система уравнений в матричной форме записи имеет вид

    ;(2)
    .(3)

    Здесь и — столбцовые матрицы соответственно переменных состояния и их первых производных по времени; — матрица-столбец источников внешних воздействий; — столбцовая матрица выходных (искомых) величин; — квадратная размерностью (где n – число переменных состояния) матрица параметров, называемая матрицей Якоби; — прямоугольная матрица связи между источниками и переменными состояния (количество строк равно n, а столбцов – числу источников m); — прямоугольная матрица связи переменных состояния с искомыми величинами (количество строк равно числу искомых величин к, а столбцов – n); — прямоугольная размерностью матрица связи входа с выходом.

    Начальные условия для уравнения (2) задаются вектором начальных значений (0).

    В качестве примера составления уравнений состояния рассмотрим цепь на рис. 4,а, в которой требуется определить токи и .

    По законам Кирхгофа для данной цепи запишем

    ;(4)
    ;(5)
    .(6)

    Поскольку с учетом соотношения (6) перепишем уравнения (4) и (5) в виде

    или в матричной форме записи

    Матричное уравнение вида (3) вытекает из соотношений (4) и (6):

    Вектор начальных значений (0)= .

    Непосредственное использование законов Кирхгофа при составлении уравнений состояния для сложных цепей может оказаться затруднительным. В этой связи используют специальную методику упорядоченного составления уравнений состояния.

    Методика составления уравнений состояния

    Эта методика включает в себя следующие основные этапы:

    1. Составляется ориентированный граф схемы (см. рис. 4,б), на котором выделяется дерево, охватывающее все конденсаторы и источники напряжения (ЭДС). Резисторы включаются в дерево по необходимости: для охвата деревом всех узлов. В ветви связи включаются катушки индуктивности, источники тока и оставшиеся резисторы.

    2. Осуществляется нумерация ветвей графа (и элементов в схеме), проводимая в следующей последовательности: первыми нумеруются участки графа (схемы) с конденсаторами, затем резисторами, включенными в дерево, следующими нумеруются ветви связи с резисторами и, наконец, ветви с индуктивными элементами (см. рис. 4,б).

    3. Составляется таблица, описывающая соединение элементов в цепи. В первой строке таблицы (см. табл. 1) перечисляются емкостные и резистивные элементы дерева, а также источники напряжения (ЭДС). В первом столбце перечисляются резистивные и индуктивные элементы ветвей связи, а также источники тока.

    №74 Расчет переходных процессов методом переменных состояния.

    Уравнениями состояния электрической цепи называют любую систему дифференциальных уравнений, которая описывает состояние (режим) данной цепи. Например, система уравнений Кирхгофа является уравнениями состояния цепи, для которой она составлена.

    В более узком смысле в математике уравнениями состояния называют систему дифференциальных уравнений 1-го порядка, разрешенных относительно производных (форма Коши). Система уравнений состояния в обобщенной форме имеет вид:

    Та же система уравнений в матричной форме:

    или в обобщённой матричной форме:

    Система уравнений состояния формы Коши решается методом численного интегрирования (метод Эйлера или метод Рунге-Кутта) на ЭВМ по стандартной программе, которая должна быть в пакете стандартных программ. При отсутствии такой программы в пакете она легко может быть составлена по следующему алгоритму (метод Эйлера) для к-го шага:

    Значения производных на к-ом шаге:

    Значения переменных на к-ом шаге:

    Для определения значений переменных и их производных на 1-м шаге ин¬тегрирова¬ния используются их значения на момент t=0, т.е. их начальные условия x1(0), x2(0). xn(0).

    Уравнения состояния формы Коши для заданной схемы могут быть получены из системы уравнений Кирхгофа путем их преобразования. Для этой цели: а) из системы уравнений Кирхгофа методом подстановки исключаются »лишние» переменные, имеющие зависимые начальные условия, и оставляют переменные iL(t) и uC(t), которые не изменяются скачком и имеют независи-мые начальные условия iL(0) и uC(0); б) оставшиеся уравнения решаются относительно производных и приводятся их к форме Коши.

    В случае сложных схем уравнения состояния формы Коши могут быть составлены топологическими методами с использованием матриц соединений [A] и [B].

    Последовательность расчета переходного процесса методом переменных состояния выглядит так:

    1. Производится расчет схемы в установившемся режиме до коммутации и определяются независимые начальные условия iL(0) и uC(0).

    2. Составляется система дифференциальных уравнений по законам Кирхгофа для схемы после коммутации.

    3. Методом исключения »лишних» переменных система уравнений Кирхгофа преобразуется в систему уравнений Коши, составляются матрицы коэффициентов.

    4. Выбирается расчетное время (продолжительность переходного процесса) и число шагов интегрирования N.

    5. Решение задачи выполняется на ЭВМ по стандартной программе. Выходную функцию получают в виде графической диаграммы x=f(t)или в виде таблицы координат функций для заданных моментов времени.

    Пример. Для схемы рис. 74.1 с заданными параметрами элементов (e(t)=Emsin(ωt+ψE), R, R1, R2, R3, L1, L2, C) выполнить расчет переходного процесса и определить функцию uab(t).

    1. Выполняется расчет схемы в установившемся режиме переменного тока до коммутации и определяются начальные условия i1(0), i2(0), uC(0).

    2. Составляется система дифференциальных уравнений по законам Кирхгофа:

    3. Система уравнений Кирхгофа преобразуется в систему уравнений Коши.

    Для этой цели из (1) выражаем

    и делаем подстановку в (1) и (2), а из (4) делаем подстановку в (1). Тогда получим:

    Подсчитаем значения отднльных коэфициэнтов:

    Составляем матрицы коэффициентов:

    В качества исследуемого промежутка времени выбираем период переменного тока

    Число шагов интегрирования принимаем N = 1000,

    Вводим исходные данные в ЭВМ и выполняем рассчет.

    В качестве выходной функции принимаем:

    Для выходной функции Uab(T) строим графическую диаграмму в интервале периода Т.

    Аналитическое решение уравнений состояния

    Аналитическое решение уравнений состояния [f (t)] в t-области при постоянных воздействиях является довольно формальной процедурой, если составлены уравнения состояния (УС)

    и рассчитаны независимые начальные условия (ННУ), которые по законам коммутации uC (0+) = uC (0–) и iL (0+) = iL (0–) определяют начальные значения [f (0+)].

    1. Характеристический полином (характеристическое уравнение) находят по формуле

    где [E] – единичная матрица; корни характеристического уравнения pk определяют вид свободной составляющей и свободного процесса.

    2. Находят вынужденную составляющую (установившуюся составляющую), решая упрощенные матричные уравнения состояния

    поскольку при постоянных воздействиях:

    3. Начальные значения производных находят по уравнениям состояния, записанным для момента t =0+, то есть

    При необходимости аналогично определяют начальные значения второй производной

    третьей производной и т. д.

    4. Постоянные интегрирования Ak в решении

    f ( t ) = f в ы н + ∑ k A k e p k t

    определяют по начальным условиям.

    Например, в цепи 2-го порядка для напряжения на конденсаторе

    u C ( t ) = u C в ы н + A 1 e p 1 t + A 2 e p 2 t

    при определении A1 и A2 решают систему

    Примечание. При кратных корнях характеристического уравнения и особенно при f1 (t) = const аналитическое решение уравнений состояния в t-области усложняется (для поиска решения уравнения состояния всегда может быть использован операторный метод анализа цепей). См. также Запись свободной составляющей при различных видах корней характеристического полинома.

    Аналитическое решение уравнений состояния


    источники:

    http://toehelp.com.ua/lectures/074.html

    http://rgr-toe.ru/glossary/%D0%90%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5%20%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B5%20%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B9%20%D1%81%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%B8%D1%8F/