Что такое уравнение в информатике

Что такое уравнение в информатике

Можно выделить различные способы решения систем логических уравнений. Это сведение к одному уравнению, построение таблицы истинности и декомпозиция.

Задача: Решить систему логических уравнений:

Рассмотрим метод сведения к одному уравнению. Данный метод предполагает преобразование логических уравнений, таким образом, чтобы правые их части были равны истинностному значению (то есть 1). Для этого применяют операцию логического отрицания. Затем, если в уравнениях есть сложные логические операции, заменяем их базовыми: «И», «ИЛИ», «НЕ». Следующим шагом объединяем уравнения в одно, равносильное системе, с помощью логической операции «И». После этого, следует сделать преобразования полученного уравнения на основе законов алгебры логики и получить конкретное решение системы.

Решение 1: Применяем инверсию к обеим частям первого уравнения:

Представим импликацию через базовые операции «ИЛИ», «НЕ»:

Поскольку левые части уравнений равны 1, можно объединить их с помощью операции “И” в одно уравнение, равносильное исходной системе:

Раскрываем первую скобку по закону де Моргана и преобразовываем полученный результат:

Полученное уравнение, имеет одно решение: A =0, B=0 и C=1.

Следующий способ – построение таблиц истинности. Поскольку логические величины имеют только два значения, можно просто перебрать все варианты и найти среди них те, при которых выполняется данная система уравнений. То есть, мы строим одну общую таблицу истинности для всех уравнений системы и находим строку с нужными значениями.

Решение 2: Составим таблицу истинности для системы:

Полужирным выделена строчка, для которой выполняются условия задачи. Таким образом, A=0, B=0 и C=1.

Способ декомпозиции. Идея состоит в том, чтобы зафиксировать значение одной из переменных (положить ее равной 0 или 1) и за счет этого упростить уравнения. Затем можно зафиксировать значение второй переменной и т.д.

Решение 3: Пусть A = 0, тогда:

Из первого уравнения получаем B =0, а из второго – С=1. Решение системы: A = 0, B = 0 и C = 1.

В ЕГЭ по информатике очень часто требуется определить количество решений системы логических уравнений, без нахождения самих решений, для этого тоже существуют определенные методы. Основной способ нахождения количества решений системы логических уравнений – замена переменных . Сначала необходимо максимально упростить каждое из уравнений на основе законов алгебры логики, а затем заменить сложные части уравнений новыми переменными и определить количество решений новой системы. Далее вернуться к замене и определить для нее количество решений.

Задача: Сколько решений имеет уравнение ( A → B ) + ( C → D ) = 1? Где A, B, C, D – логические переменные.

Решение: Введем новые переменные: X = A → B и Y = C → D . С учетом новых переменных уравнение запишется в виде: X + Y = 1.

Дизъюнкция верна в трех случаях: (0;1), (1;0) и (1;1), при этом X и Y является импликацией, то есть является истинной в трех случаях и ложной – в одном. Поэтому случай (0;1) будет соответствовать трем возможным сочетаниям параметров. Случай (1;1) – будет соответствовать девяти возможным сочетаниям параметров исходного уравнения. Значит, всего возможных решений данного уравнения 3+9=15.

Следующий способ определения количества решений системы логических уравнений – бинарное дерево. Рассмотрим данный метод на примере.

Задача: Сколько различных решений имеет система логических уравнений:

Приведенная система уравнений равносильна уравнению:

Предположим, что x 1 – истинно, тогда из первого уравнения получаем, что x 2 также истинно, из второго — x 3=1, и так далее до xm = 1. Значит набор (1; 1; …; 1) из m единиц является решением системы. Пусть теперь x 1=0, тогда из первого уравнения имеем x 2 =0 или x 2 =1.

Когда x 2 истинно получаем, что остальные переменные также истинны, то есть набор (0; 1; …; 1) является решением системы. При x 2=0 получаем, что x 3=0 или x 3=, и так далее. Продолжая до последней переменной, получаем, что решениями уравнения являются следующие наборы переменных ( m +1 решение, в каждом решении по m значений переменных):

Такой подход хорошо иллюстрируется с помощью построения бинарного дерева. Количество возможных решений – количество различных ветвей построенного дерева. Легко заметить, что оно равно m +1.

Решение систем логических уравнений

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

14.06.2005 (формальная) Математическая логика Часть 5. Решение систем логических уравнений

Системы логических уравнений (ЕГЭ-2011) Три типа задач: I тип — В уравнениях используется операции дизъюнкции (конъюнкции), одна переменная входит в 2 уравнения. II тип — В уравнениях используется операции дизъюнкции (конъюнкции), сложные переменные представлены тождеством, одна сложная переменная входит в 2 уравнения. III тип — В уравнениях используется операции дизъюнкции (конъюнкции), сложные переменные, которые могут быть упрощены путем введения независимых новых переменных и применения законов логических преобразований. IV тип — В уравнениях используется операции дизъюнкции (конъюнкции), сложные переменные, которые не могут быть упрощены путем введения независимых новых переменных. V тип – Одна переменная входит в одно слагаемое во всех уравнениях VI, VII тип – Одна переменная входит во все слагаемые в уравнении одним из наиболее известных проектов создания компьютеров пятого поколения пред­полагается использование логических исчислений в качестве ос­новной системы программирования. Поэтому специалисты, ра­ботающие в различных областях информатики, проявляют все большее внимание и интерес к математической логике. Проник­новение методов математической логики в информатику уже привело к новым результатам, имеющим первостепенное практичес­кое значение. В частности, к созданию нового языка программи­рования ПРОЛОГ — языка, принципиально отличающегося от всех созданных ранее.

I тип Сколько различных решений имеет система уравнений ¬X1  X2 = 1 ¬X2  X3 = 1 . ¬X9  X10 = 1 где x1, x2, …, x10 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов. ¬X1  X2 = 1 Ответ: 11 вариантов решений Типы уравнений I Решаем второе уравнение http://krolyakov.narod.ru ¬X1 = 0 X2 = 1 ¬X1 = 1 X2 = 0 ¬X1 = 1 X2 = 1 X1 = 1 X2 = 1 X1 = 0 X2 = 0 X1 = 0 X2 = 1 X2 = 1 X3 = 1 X2 = 0 X3 = 0 X2 = 0 X3 = 1 X2 X1 0 0 1 0 1 1 X3 X2 X1 0 0 0 1 0 0 1 1 0 1 1 1 Кол-во уравнений Кол-вопеременных Кол-во вариантов решений 1 2 3 2 3 4 3 4 5 Решаем по очереди уравнения и ищем закономерности накопления вариантов решений:

Сколько различных решений имеет система уравнений X1  ¬ X2 = 1 X2  ¬ X3 = 1 . X9  ¬ X10 = 1 где x1, x2, …, x10 – логические переменные? Решаем самостоятельно Первое уравнение: X1  ¬ X2 = 1 Второе уравнение: X2  ¬ X3 = 1 Ответ: 11 вариантов решений http://krolyakov.narod.ru X1 = 0 ¬ X2 = 1 X1 = 1 ¬ X2 = 0 X1 = 1 ¬ X2 = 1 X1 = 0 X2 = 0 X1 = 1 X2 = 1 X1 = 1 X2 = 0 X2 = 0 X3 = 0 X2 = 1 X3 = 1 X2 = 1 X3 = 0 X2 X1 0 0 0 1 1 1 X3 X2 X1 0 0 0 0 0 1 0 1 1 1 1 1 Кол-вопеременных Кол-во вариантов решений 2 3 3 4 4 5

Сколько различных решений имеет система уравнений ¬X1  X2 = 0 ¬X2  X3 = 0 . ¬X9  X10 = 0 где x1, x2, …, x10 – логические переменные? Сколько различных решений имеет система уравнений ¬X1  X2 = 0 ¬X2  X3 = 0 . ¬X9  X10 = 0 где x1, x2, …, x10 – логические переменные? Сколько различных решений имеет система уравнений ¬X1  X2 = 1 ¬X2  X3 = 1 . ¬X9  X10 = 1 где x1, x2, …, x10 – логические переменные? Нет решения I 11 вариантов Нет решения Решаем по очереди уравнения и ищем закономерности накопления вариантов решений:

Вывод: Система уравнений типа ¬X1  X2 = 1, где используются операции дизъюнкции и одна переменная входит в 2 уравнения, имеют решение только в случае, когда дизъюнкция двух переменных равна 1. Кол-во вариантов решений = кол-во уравнений + 2, или Кол-во вариантов решений = кол-во переменных + 1. I

Задача 1. Следующие два высказывания истинны: Неверно, что если корабль А вышел в море, то корабль С – нет. В море вышел корабль В или корабль С, но не оба вместе. Какие корабли вышли в море. А= «корабль А вышел в море» В= «корабль В вышел в море» С= «корабль С вышел в море» А→ ¬ С = 0 А  В = 1 Последовательное решение уравнений: А  В = 1 А = 1 В = 0 А = 0 В = 1 А→ ¬ С = 0 А = 1 ¬ С = 0 А = 1 С = 1 А = 1 В = 0 С=1 Ответ:

II тип Сколько различных решений имеет система уравнений ¬(X1  X2)  (X3  X4) = 1 ¬(X3  X4)  (X5  X6) = 1 ¬(X5  X6)  (X7  X8) = 1 ¬(X7  X8)  (X9  X10) = 1 где x1, x2, …, x10 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов. Введем обозначение сложных переменных: Y1 = (X1  X2) Y2= (X3  X4) Y3 = (X5  X6) Y4 = (X7  X8) Y5 = (X9  X10) Запишем систему уравнений: ¬Y1  Y2 = 1 ¬Y2  Y3 = 1 ¬Y3  Y4 = 1 ¬Y4  Y5 = 1 Cистема имеет 6 вариантов решений. Переменные Y — независимые II http://krolyakov.narod.ru Y5 Y4 Y3 Y2 Y1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1

Найдем варианты решений для исходных переменных Кол-во комбинаций для одного варианта решений: N=25=32 Всего решений: 32*6=192 Алгоритм 1. Ввести обозначения для сложных переменных. 2. Записать систему для новых переменных. 3. Найти количество вариантов решений для системы с новыми переменными (m). 4. Определить число состояний (k) исходных переменных для одного варианта решения. 5. Определить число комбинаций (N) с учетом всего количества введенных переменных (n): N=kn 6. Определить итоговое количество вариантов решения системы: N*m II http://krolyakov.narod.ru Y1 = 0; Y1 = 1; X1 =1; X2=0; X1 =0; X2=1; X1 =0; X2=0; X1 =1; X2=1; X1  X2=0; X1  X2=1;

III. Сколько различных решений имеет система уравнений (X1  X2)  (¬X1  ¬X2)  (¬X3  X4)  (X3  ¬X4) = 1 (X3  X4)  (¬X3  ¬X4)  (¬X5  X6)  (X5  ¬X6) = 1 (X5  X6)  (¬X5  ¬X6)  (¬X7  X8)  (X7  ¬X8) = 1 (X7  X8)  (¬X7  ¬X8)  (¬X9  X10)  (X9  ¬X10) = 1 где x1, x2, …, x10 – логические переменные? Используется закон замены эквивалентности: A  B = (A  B)  (¬ A  ¬B) и замены инверсии эквивалентности: ¬ (A  B) = ¬((A  B)  (¬ A  ¬B)) = ¬(A  B)  ¬(¬ A  ¬B) = (¬ A ¬ B)  (A  B) = ¬ A  A  ¬ A  B  A ¬ B  ¬ B  B = (¬ A  B)  (A ¬ B ) III (X1  X2)  ¬ (X3  X4) =1 (X3  X4)  ¬ (X5  X6) =1 (X5  X6)  ¬ (X7  X8) =1 (X7  X8)  ¬ (X9  X10) =1 Упростим уравнения: Решить самостоятельно. Проверка http://krolyakov.narod.ru

Замена эквивалентности Закон замены эквивалентности: A  B = (A  B)  (¬ A  ¬B) Замена инверсии эквивалентности: ¬ (A  B) = ¬((A  B)  (¬ A  ¬B)) = ¬(A  B)  ¬(¬ A  ¬B) = (¬ A ¬ B)  (A  B) = ¬ A  A  ¬ A  B  A ¬ B  ¬ B  B = (¬ A  B)  (A ¬ B )

Введем обозначение сложных переменных: Y1 = (X1  X2) Y2= (X3  X4) Y3 = (X5  X6) Y4 = (X7  X8) Y5 = (X9  X10) Запишем систему уравнений: Y1  ¬Y2 = 1 Y2  ¬Y3 = 1 Y3  ¬Y4 = 1 Y4  ¬Y5 = 1 Cистема имеет 6 вариантов решений. III Найдем варианты решений для исходных переменных N=25=32 Всего решений: 32*6=192 http://krolyakov.narod.ru Y1 = 0; Y1 = 1; X1  X2=0; X1  X2=1; X1 =1; X2=0; X1 =0; X2=1; X1 =0; X2=0; X1 =1; X2=1; Y5 Y4 Y3 Y2 Y1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1

Сколько различных решений имеет система уравнений ((X1  X2)  (X3  X4))  (¬(X1  X2)  ¬(X3  X4)) = 1 ((X3  X4)  (X5  X6))  (¬(X3  X4)  ¬(X5  X6)) = 1 ((X5  X6)  (X7  X8))  (¬(X5  X6)  ¬(X7  X8)) = 1 ((X7  X8)  (X9  X10))  (¬(X7  X8)  ¬(X9  X10)) = 1 где x1, x2, …, x10 – логические переменные? IV Алгоритм решения: Вводим обозначения сложных высказываний и переписываем уравнения. Упрощаем уравнения, используя замену эквивалентности и инверсии эквивалентности. Определяем количество вариантов решения для веденных переменных. Определяем количество комбинаций исходных переменных для одного варианта. Определяем итоговое количество вариантов решения Решаем самостоятельно http://krolyakov.narod.ru

Введем обозначение сложных переменных: Y1 = (X1  X2) Y2= (X3  X4) Y3 = (X5  X6) Y4 = (X7  X8) Y5 = (X9  X10) Запишем систему уравнений: (Y1  Y2)  (¬ Y1  ¬ Y2) = 1 (Y2  Y3)  (¬ Y2  ¬ Y3) = 1 (Y3  Y4)  (¬ Y3  ¬ Y4) = 1 (Y4  Y5)  (¬ Y4  ¬ Y5) = 1 Cистема имеет 2 варианта решения. IV Упростим уравнения: Y1  Y2 = 1 Y2  Y3 = 1 Y3  Y4 = 1 Y4  Y5 = 1 Кол-во комбинаций для одного варианта решений: N=25=32 Всего решений: 32*2=64 http://krolyakov.narod.ru Y5 Y4 Y3 Y2 Y1 0 0 0 0 0 1 1 1 1 1

Сколько различных решений имеет система уравнений (X2  X1)  (X2  X3)  (¬X2 ¬ X3)= 1 (X3  X1)  (X3  X4)  (¬X3 ¬ X4)= 1 . (X9  X1)  (X9  X10)  (¬X9 ¬ X10)= 1 (X10  X1) = 0 где x1, x2, …, x10 – логические переменные? V Используется закон замены эквивалентности: (X2  X1)  (X2  X3) = 1 (X3  X1)  (X3  X4) = 1 . (X9  X1)  (X9  X10)= 1 (X10  X1) = 0 http://krolyakov.narod.ru Применить замену переменных нельзя, так как не получится независимых переменных. Решаем табличным способом по уравнению.

V (X2  X1)  (X2  X3) = 1 Решаем второе уравнение: (X3  X1)  (X3  X4) = 1 Решаем первое уравнение: X2  X1=0 X2  X3=1 X2  X1=1 X2  X3=0 X2  X1=1 X2  X3=1 X1=0 X2 =1 X3=1 X1=1 X2 =0 X3=0 X1=1 X3 =1 X4=0 X1=0 X2 =0 X3=1 X1=1 X2 =1 X3=1 X1=0 X2 =0 X3=0 X3  X1=0 X3  X4=1 X3  X1=1 X3  X4=0 X3  X1=1 X3  X4=1 X1=0 X3 =1 X4=1 X1=1 X3 =0 X4=0 X1=1 X2 =1 X3=0 X1=0 X3 =0 X4=1 X1=1 X3 =1 X4=1 X1=0 X3 =0 X4=0 X1 X3 X2 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 X1 X4 X3 X2 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 Кол-вопере-менных Кол-во вариантов решений 3 6 4 8 5 10 6 12 7 14 8 16 9 18 10 20

V (X10  X1) = 0 X10 <> X1 Подключаем последнее уравнение: Ответ: Кол-во решений = 20-2=18 http://krolyakov.narod.ru X1 X4 X3 X2 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1

VI. Сколько различных решений имеет система уравнений (X1  X2)  (¬X1  ¬X2)  (X1  X3) = 1 (X2  X3)  (¬X2  ¬X3)  (X2  X4) = 1 . (X8  X9)  (¬X8  ¬X9)  (X8  X10) = 1 где x1, x2, …, x10 – логические переменные? VI Решаем самостоятельно Применим закон замены эквивалентности: (X1  X2)(X1  X3)=1 (X2  X3)(X2  X4)=1 . (X8  X9)(X8  X10)=1 http://krolyakov.narod.ru Независимые переменные ввести нельзя, решаем по уравнению

Решаем первое уравнение: (X1  X2)(X1  X3)=1 Решаем второе уравнение: (X2  X3)(X2  X4)=1 VI http://krolyakov.narod.ru X1  X2=0 X1  X3=1 X1=0 X2 =1 X3=0 X1=1 X2 =0 X3=1 X1=0 X2 =0 X3=1 X1=1 X2 =1 X3=1 X1=0 X2 =0 X3=0 X1=1 X2 =1 X3=0 X1  X2=1 X1  X3=0 X1  X2=1 X1  X3=1 X2  X3=0 X2  X4=1 X2  X3=1 X2  X4=0 X2  X3=1 X2  X4=1 X2=0 X3 =1 X4=0 X2=1 X3 =0 X4=1 X2=0 X3 =0 X4=1 X2=1 X3 =1 X4=1 X2=0 X3 =0 X4=0 X2=1 X3 =1 X4=0 X3 X2 X1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 X4 X3 X2 X1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 X4 X3 X2 X1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1

Ответ: 20 вариантов VI http://krolyakov.narod.ru X3 X2 X1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 X4 X3 X2 X1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 Кол-вопеременных Кол-во вариантов решений 3 6 4 8 5 10 6 12 7 14 8 16 9 18 10 20 i Xi=Xi-1 Xi<>Xi-1 всего решений 3 2 4 6 4 2 2+4=6 8 5 2 2+6=8 10 6 2 2+8=10 12 7 2 2+10=12 14 8 2 2+12=14 16 9 2 2+14=16 18 10 2 2+16=18 20

(X1  X2)(X1  X3)=1 (X2  X3)(X2  X4)=1 . (X8  X9)(X8  X10)=1 Решение при помощи графа: дерево 1 0 X1 X2 1 X3 1 0 0 1 1 0 1 0 0 2 4 6 1 0 X4 1 0 0 1 0 1 8 Ответ: 20 вариантов VI X1=0 X2 =1 X3=0 X1=1 X2 =0 X3=1 X1=0 X2 =0 X3=1 X1=1 X2 =1 X3=1 X1=0 X2 =0 X3=0 X1=1 X2 =1 X3=0 X2=0 X3 =1 X4=0 X2=1 X3 =0 X4=1 X2=0 X3 =0 X4=1 X2=1 X3 =1 X4=1 X2=0 X3 =0 X4=0 X2=1 X3 =1 X4=0

VII Сколько различных решений имеет система уравнений (X1  X2)  (¬X1  ¬X2)  (X2  X3)  (¬X2  ¬X3) = 1 (X2  X3)  (¬X2  ¬X3)  (X3  X4)  (¬X3  ¬X4) = 1 . (X8  X9)  (¬X8  ¬X9)  (X9  X10)  (¬X9  ¬X10) = 1 где x1, x2, …, x10 – логические переменные? Применим закон замены эквивалентности: (X1  X2)(X2  X3)=1 (X2  X3)(X3 X4)=1 . (X8  X9)(X9  X10)=1 Решаем самостоятельно Ответ: 178 вариантов 1 0 X1 X2 1 X3 1 0 0 0 1 0 1 0 1 2 4 6 1 0 X4 0 0 1 1 0 1 10 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 X5 16

VII i всего решений 3 4 2 6 4 4+2=6 4 10 5 6+4=10 6 16 6 10+6=16 10 26 7 16+10=26 16 42 8 26+16=42 26 68 9 42+26=68 42 110 10 68+42=110 68 178

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§ 18 Алгебра логики

Информатика. 10 класса. Босова Л.Л. Оглавление

§ 18. Алгебра логики

Из курса информатики основной школы вы знаете, что для компьютерных наук большое значение имеет математическая логика, а точнее, её часть, называемая алгеброй логики.

Алгебра логики — раздел математики, изучающий высказывания, рассматриваемые с точки зрения их логических значений (истинности или ложности), и логические операции над ними.

Джордж Буль (1815-1864) — английский математик, основоположник алгебры логики. Дж. Буль изучал логику мышления математическими методами и разработал алгебраические методы решения традиционных логических задач. В 1854 году он опубликовал работу, в которой изложил суть алгебры логики, основанной на трёх операциях: and, or, not. Долгое время алгебра логики была известна достаточно узкому классу специалистов. В 1938 году Клод Шеннон применил алгебру логики для описания процесса функционирования релейноконтактных и электронно-ламповых схем.

18.1. Логические высказывания и переменные

Высказывание — это предложение, в отношении которого можно сказать, истинно оно или ложно.

Например, высказывание «Джордж Буль — основоположник алгебры логики» истинно, а высказывание «2 + 2 = 5» ложно.

Что вы можете сказать об истинности или ложности предложения «Данное высказывание — ложь»?

Из имеющихся высказываний можно строить новые высказывания. Для этого используются логические связки — слова и словосочетания «не», «и», «или», «если …, то», «тогда и только тогда» и др.

Высказывания, образованные из других высказываний, называются составными (сложными). Высказывание, никакая часть которого не является высказыванием, называется элементарным (простым).

Например, из двух простых высказываний «Алгебра логики является основой строения логических схем компьютеров» и «Алгебра логики служит математической основой решения сложных логических задач» можно получить составное высказывание «Алгебра логики является основой строения логических схем компьютеров и служит математической основой решения сложных логических задач».

Обоснование истинности или ложности элементарных высказываний не является задачей алгебры логики. Эти вопросы решаются теми науками, к сфере которых относятся элементарные высказывания. Такое сужение интересов позволяет обозначать высказывания символическими именами (например, А, В, С). Так, если обозначить элементарное высказывание «Джордж Буль — основоположник алгебры логики» именем А, а элементарное высказывание «2 + 2 = 5» именем В, то составное высказывание «Джордж Буль — основоположник алгебры логики, и 2 + 2 = 5» можно записать как «А и В». Здесь А, В — логические переменные, «и» — логическая связка.

Логическая переменная — это переменная, которая обозначает любое высказывание и может принимать логические значения «истина» или «ложь».

Для логических значений «истина» и «ложь» могут использоваться следующие обозначения:

Истинность или ложность составных высказываний зависит от истинности или ложности образующих их высказываний и определённой трактовки связок (логических операций над высказываниями).

18.2. Логические операции

Логическая операция полностью может быть описана таблицей истинности, указывающей, какие значения принимает составное высказывание при всех возможных значениях образующих его элементарных высказываний.

Из курса информатики основной школы вам известны логические операции отрицание, конъюнкция и дизъюнкция. Их таблицы истинности представлены ниже.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны, называется конъюнкцией или логическим умножением.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны, называется дизъюнкцией или логическим сложением.

Логическая операция, которая каждому высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному, называется отрицанием или инверсией.

При построении отрицания простого высказывания:

• используется оборот «неверно, что» или к сказуемому добавляется частица «не»;
• в высказывании, содержащем слово «все», это слово заменяется на «некоторые» и наоборот.

Рассмотрим несколько новых логических операций.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся ложным тогда и только тогда, когда первое высказывание (посылка) истинно, а второе (следствие) — ложно, называется импликацией или логическим следованием.

Операция импликации обозначается символом ? и задаётся следующей таблицей истинности:

В разговорной речи импликации соответствуют предложения, содержащие связку «если …, то». Эту связку мы используем тогда, когда хотим показать наличие причинно-следственной связи, иначе говоря, зависимость одного события от другого. Например, пусть некоторый человек сказал: «Если завтра будет хорошая погода, то я пойду гулять». Ясно, что человек окажется лжецом лишь в том случае, если погода действительно будет хорошей, а гулять он не пойдёт. Если же погода будет плохой, то, независимо от того, пойдёт он гулять или нет, во лжи его нельзя обвинить: обещание пойти гулять он давал лишь при условии, что погода будет хорошей.

Результат операции импликации, как и других логических операций, определяется истинностью или ложностью логических переменных, а не наличием причинно-следственных связей между высказываниями. Например, абсурдное с житейской точки зрения высказывание «Если 2 > 3, то существуют ведьмы» является истинным с точки зрения алгебры логики.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся истинным тогда и только тогда, когда только одно из двух высказываний истинно, называется строгой (исключающей) дизъюнкцией.

Строгая дизъюнкция обозначается символом ? и задаётся следующей таблицей истинности:

В русском языке строгой (разделительной) дизъюнкции соответствует связка «либо». В отличие от обычной дизъюнкции (связка «или») в высказывании, содержащем строгую дизъюнкцию, мы утверждаем, что произойдёт только одно событие.

Например, высказывая утверждение «На сегодняшнем матче Петя сидит на трибуне А либо на трибуне Б», мы считаем, что Петя сидит либо только на трибуне А, либо только на трибуне Б, и что сидеть одновременно на двух трибунах Петя не может.

Логическая операция, ставящая в соответствие двум высказываниям новое, являющееся истинным, когда оба исходных высказывания истинны или оба исходных высказывания ложны, называется эквиваленцией или равнозначностью.

В логике эквиваленция обозначается символом и задаётся следующей таблицей истинности:

В разговорной речи для выражения взаимной обусловленности используется связка «тогда и только тогда, когда», а в математике — «необходимо и достаточно».

Рассмотрим высказывание «Денис пойдёт в бассейн тогда и только тогда, когда он выучит уроки».

Это высказывание истинно (договорённость соблюдается), если истинны оба элементарных высказывания («Денис пойдёт в бассейн», «Денис выучит уроки»). Высказывание истинно (договорённость не нарушается) и в том случае, если оба элементарных высказывания ложны («Денис не пойдёт в бассейн», «Денис не выучит уроки»). Если же одно из двух высказываний ложно («Денис пойдёт в бассейн, хотя и не выучит уроки», «Денис выучит уроки, но не пойдёт в бассейн»), то договорённость нарушается, и составное высказывание становится ложным.

А сейчас посмотрите внимательно на таблицы истинности строгой дизъюнкции и эквиваленции: если на некотором наборе логических переменных результатом строгой дизъюнкции является истина, то на этом же наборе результатом эквиваленции всегда будет ложь, и наоборот.

Можно сделать выводы:

• операция эквиваленции есть отрицание операции строгой дизъюнкции

• операция строгой дизъюнкции есть отрицание операции эквиваленции

На сегодняшний день в алгебре логики не существует унифицированной символики для обозначения логических операций. В таблице 4.1 представлены логические операции и их наиболее распространённые обозначения, используемые как в алгебре логики, так и в некоторых языках программирования. Здесь же приведены речевые обороты, соответствующие логическим операциям.

Таблица 4.1

Логические операции и их обозначения

Операция отрицания выполняется над одним операндом. Такие операции называются одноместными или унарными. Все остальные логические операции, представленные в таблице 4.1, выполняются над двумя операндами и называются двуместными или бинарными.

18.3. Логические выражения

Составное логическое высказывание можно представить в виде логического выражения (формулы), состоящего из логических констант (О, 1), логических переменных, знаков логических операций и скобок.

Для логического выражения справедливо:

1) всякая логическая переменная, а также логические константы (О, 1) есть логическое выражение;
2) если А — логическое выражение, то и — логическое выражение;
3) если А и В — выражения, то, связанные любой бинарной операцией, они также представляют собой логическое выражение.

При преобразовании или вычислении значения логического выражения логические операции выполняются в соответствии с их приоритетом:

1) отрицание;
2) конъюнкция;
3) дизъюнкция, строгая дизъюнкция;
4) импликация, эквиваленция.

Операции одного приоритета выполняются в порядке их следования, слева направо. Как и в арифметике, скобки меняют порядок выполнения операций.

Пример 1. Выясним, какие из приведённых слов удовлетворяют логическому условию (первая буква согласная ? вторая буква согласная) & (последняя буква гласная ? предпоследняя буква гласная):

1) ОЗОН;
2) ИГРА;
3) МАФИЯ;
4) ТРЕНАЖ.

Вычислим значение логического выражения для каждого из данных слов:

Итак, заданному условию удовлетворяют первое и четвёртое слова.

Решение логического уравнения — это один или несколько наборов значений логических переменных, при которых логическое уравнение становится истинным выражением.

Пример 2. Решим логическое уравнение

Дизъюнкция ложна в том и только в том случае, когда ложно каждое из образующих её высказываний. Иными словами, наше уравнение соответствует системе уравнений:

Таким образом, значение переменной D уже найдено. Импликация равна нулю в единственном случае — когда из истины следует ложь. Иначе говоря, в нашем случае: А = 1 и С = 0.

Подставим найденные значения переменных в уравнение

Ответ: А = 1, В = 1, С = 0, D = 0.

Логические уравнения могут иметь не одно, а несколько и даже очень много решений. Зачастую требуется, не выписывая все решения уравнения, указать их количество.

Пример 3. Выясним, сколько различных решений имеет логическое уравнение

Дизъюнкция истинна, если истинно хотя бы одно из образующих её высказываний. Решение данного логического уравнения равносильно совокупности, состоящей из двух уравнений:

Первое равенство будет выполняться только при А = 1, В = 1 и С = 0. Поскольку D в этом уравнении не задействовано, оно может принимать любое из двух значений (0 или 1). Таким образом, всего первое уравнение имеет два решения.

Самостоятельно выясните, сколько решений имеет второе уравнение (из совокупности двух уравнений).

Сколько решений имеет исходное уравнение?

Пример 4. Выясним, сколько решений имеет очень простое с виду логическое уравнение х1 & х2 ? х3 & х4 = 1.

Введём замену переменных. Пусть t1 = х1 & х2, t2 = х3 & х4. Тогда исходное уравнение примет вид: t1 ? t2 = 1.

На t1 никаких ограничений нет, эта переменная может принимать значения 0 и 1. Импликация равна 0 только в случае, когда из истины (1) следует ложь (0). Исключим этот вариант. Построим дерево решений, представив на нём значения переменных t1 и t2 при которых t1 ? t2 = 1.

Получаем для t1 и t2 три набора значений: 00, 01, 11. Первая двоичная цифра в каждом из этих трёх наборов — результат выражения х1 & х2, вторая — х3 & х4. Рассмотрим первый набор: существует три набора х1 и х2 таких, что х1 & х2 = 0, другими словами, первый 0 мы можем получить тремя способами. Второй О в этом наборе мы также можем получить тремя способами.

Из курсов информатики и математики основной школы вам известно одно из основных правил комбинаторики — правило умножения. Согласно ему, если элемент А можно выбрать n способами, и при любом выборе А элемент В можно выбрать m способами, то пару (А, В) можно выбрать n • m способами.

Согласно правилу умножения, пару 00 можно получить 3 • 3 = 9 способами.

Что касается пары 01, то первый 0 мы можем получить тремя способами, а для получения 1 существует единственный вариант (х3 & х4 = 1 при х3 = 1 и х4 = 1). Следовательно, есть ещё три набора переменных х1, х2, х3, х4, являющихся решением исходного уравнения.

Самостоятельно доведите решение этой задачи до конца.

18.4. Предикаты и их множества истинности

Равенства, неравенства и другие предложения, содержащие переменные, высказываниями не являются, но они становятся высказываниями при замене переменной каким-нибудь конкретным значением. Например, предложение х 2 + у 2 = 1) — множество точек окружности единичного радиуса с центром в начале координат. Следует отметить, что многие задания, выполняемые вами на уроках математики, прямо связаны с предикатами. Например, стандартное задание «Решить квадратное уравнение x 2 — 3x + 2 = 0» фактически означает требование найти множество истинности предиката Р(х) = (x 2 — 3x + 2 = 0).

Из имеющихся предикатов с помощью логических операций можно строить новые предикаты.

Пусть А и В соответственно являются множествами истинности предикатов А(х) и В(х). Тогда пересечение множеств А и В будет являться множеством истинности для предиката А(х) & В(х), а объединение множеств А и В будет множеством истинности для предиката А(х) ? В(х).

Пример 5. Найдём все целые числа 2, превращающие предикат

P(z) = (z > 5) & (z — 2 5) являются целые числа 6, 7, 8 и т. д. Множеством истинности предиката В(z) = (z — 2

Множество истинности исходного предиката — пересечение (общие элементы) множеств истинности образующих его предикатов:

Его мощность |Р| = 11.

Пример 6. Рассмотрим предикат (50 2 ) ? (50 > (х + 1) 2 ), определённый на множестве целых чисел. Найдём множество истинности этого предиката.

Зачастую задания такого рода формулируют несколько иначе.

Например, так: «Найдите все целые числа х, для которых истинно высказывание (50 (х + 1)2)».

Проанализируем отдельно каждый из элементарных предикатов (50 2 ) и (50 > (x + 1) 2 ), решив соответствующие неравенства:

Определим значение исходного предиката на каждом из полученных подмножеств, причём отдельно рассмотрим значение х = -8 (оно попадает в два подмножества) и значение х = 7 (оно не попадает ни в одно подмножество):

Итак, множеством истинности исходного предиката являются целые числа, принадлежащие отрезку [-8; 7]. Наименьшим элементом этого множества является число -8, наибольшим — число 7; мощность множества равна 16.

САМОЕ ГЛАВНОЕ

Высказывание — это предложение, в отношении которого можно сказать, истинно оно или ложно. Высказывания, образованные из других высказываний, называются составными (сложными). Высказывание, никакая часть которого не является высказыванием, называется элементарным (простым). Истинность или ложность составных высказываний зависит от истинности или ложности образующих их высказываний и определённой трактовки связок (логических операций над высказываниями).

Логическая операция полностью может быть описана таблицей истинности, указывающей, какие значения принимает составное высказывание при всех возможных значениях образующих его элементарных высказываний.

Составное логическое высказывание можно представить в виде логического выражения (формулы), состоящего из логических констант (0, 1), логических переменных, знаков логических операций и скобок.

Логические операции имеют следующий приоритет:

1) отрицание;
2) конъюнкция;
3) дизъюнкция, строгая дизъюнкция;
4) импликация, эквиваленция.

Операции одного приоритета выполняются в порядке их следования, слева направо. Скобки меняют порядок выполнения операций.

Предикат — это утверждение, содержащее одну или несколько переменных. Из имеющихся предикатов с помощью логических операций можно строить новые предикаты.

Вопросы и задания

1. Из данных предложений выберите те, которые являются высказываниями. Обоснуйте свой выбор.

1) Как пройти в библиотеку?
2) Коля спросил: «Который час?»
3) Картины Пикассо слишком абстрактны.
4) Компьютеры могут быть построены только на основе двоичной системы счисления.

2. Из каждых трёх выберите два высказывания, являющихся отрицаниями друг друга:

1) «1999 2000», «1999 ? 2000»;
2) «Петя решил все задания контрольной работы», «Петя не решил все задания контрольной работы», «Петя решил не все задания контрольной работы»;
3) «Луна — спутник Земли», «Неверно, что Луна — спутник Земли», «Неверно, что Луна не является спутником Земли »;
4) «Прямая а не параллельна прямой с», «Прямая а перпендикулярна прямой с», «Прямые а и с не пересекаются» (считаем, что прямые а и с лежат в одной плоскости);
5) «Мишень поражена первым выстрелом», «Мишень поражена не первым выстрелом», «Неверно, что мишень поражена не первым выстрелом».

3. Рассмотрите следующие элементарные высказывания: А = «Река Днепр впадает в Чёрное море», В = «45 — простое число», С = «Вена — столица Австрии», D = «0 — натуральное число».

Определите, какие из них истинные, а какие ложные. Составьте сложные высказывания, применяя каждый раз только одну из пяти логических операций

к высказываниям А, В, С и D. Сколько новых высказываний можно получить с помощью отрицания (инверсии)? Конъюнкции? Дизъюнкции? Импликации? Эквиваленции? Сколько всего новых высказываний можно получить? Сколько среди них будет истинных?

4. Представьте каждую пословицу в виде сложного логического высказывания, построенного на основе простых высказываний. Ответ обоснуйте при помощи таблиц истинности.

1) На вкус и цвет товарищей нет.
2) Если долго мучиться, что-нибудь получится.
3) Не зная броду, не суйся в воду.
4) Тяжело в ученье, легко в бою.
5) То не беда, что во ржи лебеда, то беда, что ни ржи, ни лебеды.
6) Где тонко, там и рвётся.
7) Или грудь в крестах, или голова в кустах.
8) За двумя зайцами погонишься — ни одного не поймаешь.
9) И волки сыты, и овцы целы.

5. Подберите вместо А, В, С, D такие высказывания, чтобы полученные сложные высказывания имели смысл:

1) если (А или В и С), то D;
2) если (не А и не В), то (С или D);
3) (А или В) тогда и только тогда, когда (С и не D).

7. Сколько из приведённых чисел Z удовлетворяют логическому условию: ((Z кратно 4) v (Z кратно 5)) ? (Z кратно 6)?
1) 4; 2) 6; 3) 7; 4) 12.

8. Найдите все целые числа Z, для которых истинно высказывание:

9. Какие из высказываний А, В, С должны быть истинны и ка кие ложны, чтобы были ложны следующие высказывания?

10. Даны три числа в различных системах счисления:

Переведите А, В и С в двоичную систему счисления и вы полните поразрядно логические операции (A v В) & С. Отвеп дайте в десятичной системе счисления.

11. Логическое отрицание восьмиразрядного двоичного числа записанное в десятичной системе счисления, равно 217 Определите исходное число в десятичной системе счисления,

12. Определите логическое произведение и логическую сумм> всех двоичных чисел в диапазоне от 1610 до 2210, включая границы. Ответ запишите в восьмеричной системе счисления.

13. Сколько различных решений имеет логическое уравнение?

14. Сколько решений имеет логическое уравнение х1 & х2 v х3 & x4 = 1?

15. Изобразите в декартовой прямоугольной системе координат множества истинности для следующих предикатов:

16. Предикат ((8x — 6) 65) определён на множестве целых чисел. Найдите его множество истинности. Укажите наибольшее целое число х, при котором предикат превращается в ложное высказывание.


источники:

http://infourok.ru/reshenie-sistem-logicheskih-uravneniy-3141907.html

http://murnik.ru/18-algebra-logiki