Что такое уравнение в школьном курсе математики

Содержание и роль уравнений в школьном курсе математики
методическая разработка по алгебре по теме

Материал, связанный с уравнениями, составляет значительную часть школьного курса математики. Это объевляется тем, что уравнения широко используются в различных разделах математики, в решении важных прикладных задач. В курсе математики старших классов учащиеся сталкиваются с новыми классами уравнений, их систем или углубленным изучением уже известных классов. Однако это мало влияет на уже сформированную схему: они дополняют ее новым фактическим содержанием, не меняя сложившейся связи, соединяющие различные классы.

Скачать:

ВложениеРазмер
soderzhanie_i_rol_uravneniy_v_sovremennom_shkolnom_kurse_matematiki.docx20.34 КБ

Предварительный просмотр:

Содержание и роль уравнений в современном школьном курсе математики.

Материал, связанный с уравнениями, составляет значительную часть школьного курса математики. Это объясняется тем, что уравнения широко используются в различных разделах математики, в решении важных прикладных задач.

Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX—VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Таким образом, был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучени/

Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI—Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду (приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака), а затем европейскими математиками Возрождения, в итоге длительного поиска создавшими язык современной алгебры (использование букв, введение символов арифметических операций, скобок и т. д.). На рубеже XVI—XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики. В этом процессе все яснее становилась важность роли, которую играло понятие уравнения в системе алгебраических понятий.

Открытие координатного метода (Декарт, XVII в.) и последовавшее за ним развитие аналитической геометрии позволили применить алгебру не только к задачам, связанным с числовой системой, но и к изучению различных геометрических фигур. Эта линия развития алгебры упрочила положение уравнения как ведущего алгебраического понятия, которое связывалось теперь уже с тремя главными областями своего возникновения и функционирования:

a) уравнение как средство решения текстовых задач;

b) уравнение как особого рода формула, служащая в алгебре объектом изучения;

c) уравнение как формула, которой косвенно определяются числа или координаты точек плоскости (пространства), служащие его решением.

Каждое этих представлений оказалось в том или ином отношении полезным.

Таким образом, уравнение как общематематическое понятие многоаспектно, причем ни один из аспектов нельзя исключить из рассмотрения, особенно если речь идет о проблемах школьного математического образования.

Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно — методическую линию — линию уравнений и неравенств. Здесь рассматриваются вопросы формирования понятий уравнения и неравенства, общих и частных методов их решения, взаимосвязи изучения уравнений и неравенств с числовой, функциональной и другими линиями школьного курса математики.

Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики.

а) Прикладная направленность

линии уравнений раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики.

В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании.

б) Теоретико-математическая направленность

линии уравнений раскрывается в двух аспектах: во-первых, в изучении наиболее важных классов уравнений, и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной математики. Основные классы уравнений связаны с простейшими и одновременно наиболее важными математическими моделями. Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование, которые также должны быть раскрыты в линии уравнений

в) Для линии уравнений характерна направленность на установление связей с остальным содержанием курса математики

Эта линия тесно связана с числовой линией. Основная идея, реализуемая в процессе установления взаимосвязи этих линий,— это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений и их систем. Области иррациональных и логарифмических выражений связаны соответственно с уравнениями хk = b (k — натуральное число, большее 1) и ax=b.

Связь линии уравнений с числовой линией двусторонняя. Приведенный пример показывает влияние уравнений на развертывание числовой системы. Обратное влияние проявляется в том, что каждая вновь введенная числовая область расширяет возможности составления и решения различных уравнений. Например, введение арифметического квадратного корня из рациональных чисел позволяет записывать корни не только уравнений вида х2 = b, где b—неотрицательное рациональное число, но и любых квадратных уравнений с рациональными коэффициентами и неотрицательным дискриминантом.

Линия уравнений тесно связана также и с функциональной линией. Одна из важнейших таких связей — приложения методов, разрабатываемых в линии уравнений, к исследованию функции (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т. д.). С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений и неравенств, так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств и их систем.

С функциональной линией непосредственно связан также и небольшой круг вопросов школьного курса математики, относящихся к дифференциальным и функциональным уравнениям. Сама возможность возникновения дифференциального уравнения кроется в наличии операции дифференцирования (может быть поставлен вопрос о нахождении для заданной функции ¦ другой функции F, такой, что F’ (x)=f (х)).

Однако сама по себе возможность выделения дифференциальных уравнений в школьном курсе математики еще не следует из того факта, что имеются формальные основания для их рассмотрения. Как известно, теория дифференциальных уравнений обладает большой сложностью. В школьном обучении эта теория представлена лишь своими начальными частями, которые не образуют связного целого, а относятся к различным конкретным, по большей части прикладным вопросам.

По-видимому, понятие дифференциального уравнения допускает более широкое представление в школьном курсе. В настоящее время этот вопрос является открытой методической проблемой.

В отличие от дифференциальных функциональные уравнения (неизвестным в которых, так же как и в дифференциальных, является функция) почти не представлены в школьном курсе математики. Единичные задания, связанные с этим классом уравнений, могут быть использованы при рассмотрении показательной функции, в связи с понятием обратной функции и др.

В качестве последнего примера отметим взаимосвязь линии уравнений с алгоритмической линией. Влияние же алгоритмической линии на линию уравнений заключается прежде всего в возможности использования ее понятий для описания алгоритмов решения уравнений и систем различных классов.

Что такое уравнение в школьном курсе математики

Если строка в кавычках «. «, то найдутся страницы со словосочетанием в точно такой форме.

Если слова указаны через пробел или оператор «&», то найдутся страницы, содержащие все введенные слова в одном предложении.

Если указано несколько слов через оператор «|», то найдутся страницы, содержащие любое из введенных слов.

Если указано два слова через оператор «

», то найдутся страницы, содержащие первое, но не содержащие второе слово в одном предложении.

По вашему запросу ничего не найдено.

Убедитесь, что слова написаны без ошибок или попробуйте выбрать другие значения.

Уравнение как математическая модель в школьном курсе математики

Разделы: Математика

Класс: 9

Практически все изучаемые математическими представлениями явления и процессы в конечном итоге сводятся к нахождению решений уравнений или систем уравнений различной степени сложности. Учащиеся школ с самого начала изучения математики решают уравнения даже в самых простых ситуациях. Любая математическая задача представляет собой проблему нахождения неизвестной величины, зависящей от набора параметров с известными значениями. Простые арифметические задачи предполагают определение какого-либо значения путём выполнения основных арифметических действий с известными величинами, что означает решение уравнений.

На современном этапе развития информационных технологий с самых азов обучения совершенно необходимо развивать у обучаемых способности создавать абстрактные представления конкретных явлений и процессов в виде математических формул (по сути уравнений) с последующим определением способов вычисления значений параметров этих формул путём решения соответствующих уравнений методами программирования. То есть для решения даже самых простых задач в современных условиях надо научить школьников разрабатывать рабочие программы. Хорошо известно, что в основе разработки любой программы лежит алгоритм, моделирующий то или иное явление или процесс. Причём это заключение распространяется не только на математические области исследований, но и на все другие научные дисциплины.

Таким образом, для решения любого уравнения в самом начале надо разработать алгоритм процесса этого решения.

При разработке алгоритма решения задач прежде всего необходимо обозначить заключения и направления рассуждений, известные значения данных и искомые значения переменных, находить в базе данных признаки индивидуальные и общие, уделить достаточное внимание противопоставлению и сопоставлению фактов.

На начальном этапе изучения математических дисциплин учащимся обычно предлагаются для решения задачи в текстовом виде, преобразование условий которых в вид аналитических формул является достаточно эффективным средством для усвоения школьниками понятий, методов и даже математических теорий как строго формализованных построений. Такой приём является наиболее действенным средством развития логического мышления учеников и открывает возможности для воспитания математического восприятия изучаемых явлений и даёт возможность учащимся развивать умения и навыки применениях математики на практике [1].

На школьном этапе математического образования для большей наглядности учащимся полезно предлагать применение математического моделирования для решения задач, условия которых описывает конкретные жизненные ситуации, так как соответствующие уравнения наиболее просто ассоциировать с алгебраической или аналитической моделью изучаемых явлений. Подобные задачи позволяют, помимо перечисленного выше, усвоить учащимся понятия таких логических операций, как обобщение, классификация, анализ через синтез, сравнение, которые способствуют его развитию логического мышления.

На более поздних этапах обучения можно начинать создание математических моделей не только обычных алгебраических уравнений, а перейти к моделированию процессов, которые описываются в аналитическом виде с использованием понятий функций одной или нескольких переменных, а в выпускных классах даже дифференциальных уравнений. Наиболее интересующимся математикой ученикам можно предлагать моделировать неравенства, а также системы уравнений и системы неравенств и т.п. Таким образом, разработка математических моделей сопровождается приобретением школьниками навыков в умении перевода условий практических задач на язык алгебры или математического анализа [2, 3].

Для углубления знаний школьников полезно изучить процессы моделирования математических объектов, представленных самыми разными математическими формами, такими, как таблицы объектные и числовые, формулы числовые и буквенные, функции, уравнения алгебраические и дифференциальные и их системы, неравенства, системы неравенств, математические ряды, геометрические формы, различные схемы, диаграммы, графы и пр.

При разработках математических моделей используются алгоритмы явлений и процессов, изображаемые в виде отрезков, направленных отрезков, ломаных и кривых линий, геометрических фигур, числовых лучей, схем, значков и т.п. Такие представления алгоритмов называются блок-схемами алгоритмов. Существует перечень специальных знаков элементов блок-схем, унифицированный в математической литературе. Эти знаки обозначают постоянные параметры, переменные, базы данных, математические действия, логические операторы, последовательность и направления расчётов, функционалы и т.п. операции. Такая унификация позволяет наглядным образом представлять блок-схемы алгоритмов в виде, понятном специалистам.

Согласно [4], математическое моделирование представляет собой «способ, инструмент, научный прием изучения окружающего мира».

Как указывалось выше, этот процесс заключается в описании исследуемых явлений, процессов, объектов и систем самой разной природы на математическом языке с применением соответствующих понятий, обозначений и функционалов. При этом важно показать зависимость степени сложности разрабатываемых математических моделей от предполагаемой детализации исследования поставленной задачи, поставленной цели исследования, и, конечно же, степени математической подготовки и уровня знаний школьника о моделируемом объекте.

В самом простом виде процесс моделирования выглядит следующим образом: реальный объект замещается моделью. Затем строится алгоритм процесса или явления, на его основе разрабатывается компьютерная программа, и уже эта программа служит объектом проведения экспериментов и исследований, результаты которых ложатся в основу выводов о проведённых исследованиях самого оригинального объекта.

Очень важно показать и добиться твёрдого усвоения школьниками того факта, что математическое моделирование в определённых ситуациях является единственным способом изучения сложных объектов, аналитические представления которых не имеют числовых решений, или таких, с которыми невозможно проводить прямые эксперименты в силу их размеров (мегаобъекты и нано-объекты), невозможности или опасности последствий вмешательства в их функционирование (экономические процессы и экологические системы). Необходимо продемонстрировать возможность математического моделирования существенно сокращать время исследования реального объекта, принимая время как переменный параметр.

Кроме этого, в результате обучения ученики должны усвоить основные приёмы математического моделирования явлений, объектов и процессов, типы, этапы, классификации решаемых задач, научиться преобразовывать математические модели одного класса в модели другого класса и т.п.

В качестве примера разработки математической модели уравнения рассмотрим решение несложной алгебраической задачи согласно рекомендациям работы [5].

Задача. Необходимо определить скорость моторной лодки, если известно, что она двигалась равномерно параллельно направлению равномерного движения теплохода, при этом её скорость в три раза превышала скорость теплохода и, стартовав на один час позже теплохода с того же причала, моторная лодка за два часа пути проплыла расстояние на 24 км больше, чем теплоход.

Создадим математическую модель задачи:

Теперь осталось решить уравнение, составленное на основе математической модели:

х = 8, и скорость моторной лодки:

Ответ: скорость моторной лодки равна 24 км/ч.

Таким образом, показано практическое применение процесса решения задачи с помощью разработки математической модели движения моторной лодки и теплохода путём разработки блок-схемы алгоритма процесса, который может быть основой для написания компьютерной программы решения этой задачи при различных значениях параметров движения этих судов.


источники:

http://www.mathedu.ru/text/bekarevich_uravneniya_v_shkolnom_kurse_matematiki_1968/

http://urok.1sept.ru/articles/679580