Что выражает уравнение ха na0 na na0

Технологические критерии эффективности химико-технологического процесса

Об эффективности осуществления любого промышленного процесса судят прежде всего по экономическим показателям, таким, как приведенные затраты, себестоимость продукции и т. д. Естественно, что окончательная оценка эффективности химико-технологического процесса выводится из этих критериев. Однако они характеризуют весь процесс в целом, его конечный результат, не входя в детальное рассмотрение внутренней сущности, особенностей процесса.

Для оценки эффективности отдельных этапов процесса необходимо помимо общих экономических показателей использовать такие критерии эффективности, которые более полно отражали бы химическую и физико-химическую сущность явлений, происходящих в отдельных аппаратах технологической схемы.

В качестве таких показателей принято, прежде всего, использовать степень превращения исходного реагента, выход продукта, селективность. Они с разных сторон характеризуют полноту использования возможностей осуществления конкретной химической реакции.

Степень превращения.Степень превращения реагента показывает, насколько полно в химико-технологическом процессе используется исходное сырье.

Степень превращения – это доля исходного реагента, использованного на химическую реакцию.

Степень превращения реагента J

где nJ, 0 количество реагента J в исходной реакционной смеси;
пJ, f– количество реагента J в реакционной смеси, выходящей из аппарата или находящейся в реакторе; ∆nJ – изменение количества реагента J в ходе химической реакции.

Чаще всего в химической реакции участвует не один, а два реагента (или даже больше). Степень превращения может быть рассчитана по первому, второму или третьему реагенту, причем в общем случае не обязательно получаются равные результаты.

Если протекает реакция (I), то в соответствии с ее стехиометрическим уравнением изменения количеств ее участников ∆nJ связаны между собой следующими соотношениями:

(1.3)

Степени превращения реагентов А и В, участвующих в реакции (I):

(1.4)

Из уравнений (1.3) и (1.4) следует

,

или (1.5)

Уравнение (1.5) устанавливает связь между степенями превращения реагентов А и В и позволяет рассчитать неизвестную степень превращения одного реагента, зная степень превращения другого.

Если т. е. реагенты А и В взяты для проведения реакции в стехиометрическом соотношении (количество реагентов А и В соотносится между собой как соответствующие этим веществам стехиометрические коэффициенты в уравнении реакции), то степени превращения хА и хВ равны между собой: хА = хВ.

Если т. е. реагент А взят в избытке, то, как следует из уравнения (1.5), хА хВ.

Необходимо помнить, что степень превращения – это доля первоначального количества реагента, т. е. пределы изменения х определяются соотношением

Следовательно, если один из реагентов (например, реагент В) взят в избытке, то с учетом выражений (1.5) и (1.6) всегда хВ

где nА,е – количество реагента А в условиях равновесия; | nА,е | – изменение количества реагента А к моменту наступления равновесия (максимально возможное при данных условиях осуществления химической реакции).

Используя степень превращения реагентов, можно определить количество продуктов R и S, образовавшихся в результате реакции (I), не осложненной наличием побочных взаимодействий. Изменение количества продукта реакции (I), например продукта R, в соответствии со стехиометрическими соотношениями (1.2) можно выразить через изменение количества реагента А или реагента В. Если первоначальное количество продукта R равно нулю (пR,0 = 0), то

, (1.7)

или .

В качестве ключевого реагента, через степень превращения которого выражают количества продуктов, удобно брать реагент, взятый либо в недостатке, либо в стехиометрическом соотношении к другому реагенту. Например, если в качестве такого выбран реагент А, должно выполнятся условие

. (1.8)

Максимально возможное количество продукта R, которое может быть получено при проведении обратимой реакции

аА+ bB rR + sS,(IV)

рассчитывают как равновесное количество этого продукта R, e:

. (1.9)

Если реакционный объем V – постоянная величина (V = const), то во всех приведенных выше соотношениях количества реагентов и продуктов могут быть заменены молярными концентрациями. Например,

Выход продукта.Степень превращения характеризует эффективность проведения процесса с точки зрения использования исходного сырья, но этой величины не всегда достаточно для характеристики процесса с точки зрения получения продукта реакции. Поэтому вводят еще один критерий эффективности – выход продукта.

Выход продукта – отношение реально полученного количества продукта к максимально возможному его количеству, которое могло бы быть получено при данных условиях осуществления химической реакции.

Обозначим выход продукта R через ФR. Тогда

Величина nR,max в уравнении (1.10)зависит от типа осуществляемой химической реакции. Рассмотрим несколько различных реакций.

Необратимая химическая реакция (I). Максимально возможное количество продукта R в такой реакции будет получено, если весь реагент А (nА,0) вступит в реакцию [при этом в качестве реагента А должен быть выбран такой, который удовлетворяет условию (1.8)]

. (1.11)

т. е. для простых необратимых реакций выход продукта и степень превращения реагента совпадают. Однако для других типов химических реакций эти два критерия эффективности различаются.

Обратимая химическая реакция (III). Для такой реакции максимально возможное количество продукта R определяется по уравнению (1.9) как равновесное количество продукта R при данных условиях осуществления реакции (температура, давление, соотношение начальных концентраций реагентов). Тогда с учетом уравнения (1.7)

(1.12)

Таким образом, для обратимых реакций выход продукта равен доле, которую составляет реально достигнутая степень превращения от равновесной для данных условий проведения реакции.

Пример 1.1.Пусть протекает реакция

А + 2В 2R + S.

Начальное количество реагентов nА,0 = 10 кмоль; nB,0 = 25 кмоль. В реакционной смеси, выходящей из реактора, содержится 12 кмоль продукта R. Известно, что в равновесной смеси при данных условиях проведения реакции содержится 2,5 кмоль продукта А.

Определим выход продукта RR). В соответствии с уравнением (1.12)

Определим степень превращения хА, используя уравнение (1.7):

Равновесная степень превращения

Параллельные и последовательные реакции. Рассмотрим две параллельно протекающие реакции, в которых наряду с целевым продуктом R получаются продукты побочной реакции:

(V)

Максимально возможное количество продукта R будет получено в том случае, если весь исходный реагент А при соблюдении условия (1.8) будет реагировать только по целевой реакции. Тогда

. (1.13)

Следует помнить, что выразить nR через степень превращения и начальное количество А в случае сложной реакции нельзя, так как расходование вещества А происходит не только в целевом направлении, но и в побочном.

Так же будет выглядеть и выражение для выхода целевого продукта R для последовательных реакций, например реакций типа

rR sS.

При протекании обратимых параллельных и последовательных реакций максимально возможным количеством целевого продукта будет то количество R, которое было бы получено, если бы реагент А расходовался только на целевую реакцию и в момент равновесия продуктов побочных реакций не было бы.

Таким образом, для обратимых сложных реакций

(1.14)

Как и степень превращения, выход продукта для реакционных систем с постоянным объемом может быть определен как отношение концентраций. Следует также помнить, что выход, выражаемый как доля от некоторой предельно возможной величины, изменяется от 0 до 1.

Селективность.Выход продукта характеризует полученный результат, как долю от предельно возможного результата. Целесообразно оценить и реальную ситуацию, т. е. дать количественную оценку эффективности целевой реакции по сравнению с побочными взаимодействиями.

Критерием для такой оценки является селективность. Селективность, как и два предыдущих критерия эффективности, выражают в долях единицы или процентах.

Полная, или интегральная, селективность φ– это отношение количества исходного реагента, расходуемого на целевую реакцию, к общему количеству исходного реагента, пошедшего на все реакции (и целевую, и побочные):

.

Мгновенной, или дифференциальной, селективностью φ / называют отношение скорости превращения исходных реагентов в целевой продукт к суммарной скорости расходования исходных реагентов:

,

где – скорость расходования реагента А по целевой реакции; – суммарная скорость расходования реагента А.

Использование дифференциальной селективности при анализе технологических процессов будет описано в гл. 3. Здесь рассмотрим только полную селективность.

Для реакций (III) полная селективность по целевому продукту R может быть выражена через количество полученного продукта R и количество реагента А, суммарно израсходованного на реакцию.

С учетом стехиометрических соотношений количество реагента А, вступившего в реакцию образования целевого продукта, равно (a/r) nR.

Тогда полная селективность

(1.15)

Знаменатель в уравнении (1.15) можно заменить через количество полученных продуктов целевой и побочной реакции с учетом стехиометрических соотношений:

Пример 1.2.Рассмотрим в качестве примера параллельные реакции

4NH3 + 5О2 4NO+ 6Н2О;

4NH3 + ЗО2 2N2 + 6H2O.

Целевой является реакция получения оксида азота NO.

Селективность можно рассчитать по количеству полученных на выходе из реактора продуктов целевой реакции (оксида азота) и побочной реакции (азота):

Между выходом целевого продукта, степенью превращения исходного реагента и селективностью существует простая связь. Рассмотрим ее сначала на примере необратимых параллельных реакций (IV).

В соответствии с уравнением (1.13) выход продукта R

(1.16)

Реально полученное количество продукта R можно выразить через селективность, пользуясь уравнением (1.15)

. (1.17)

После подстановки уравнения (1.17) в уравнение (1.16) получим

. (1.18)

Если параллельные реакции обратимы, то максимально возможное количество продукта R, которое могло бы получиться при отсутствии побочной реакции, определяется условиями равновесия. Тогда для определения выхода продукта нужно применить уравнение (1.14). Подставляя в него значение количества реально полученного продукта R, выраженного с помощью уравнения (1.17), будем иметь более общее уравнение связи между выходом, селективностью и степенью превращения:

,

. (1.19)

Из уравнений (1.18)и (1.19)следует, что при выборе условий проведения сложных химических реакций недостаточно обеспечить только высокое значение степени превращения реагентов или только высокую селективность; высокое значение выхода целевого продукта определяется некоторой совокупностью этих критериев эффективности.

Оптимальными значениями выхода, селективности и степени превращения будут, как правило, такие, достижение которых позволяет обеспечить максимальную экономическую эффективность процесса.

Производительность и интенсивность.Важным критерием эффективности работы отдельных аппаратов, цехов или заводов в целом является производительность.

Производительность – это количество продукта, полученное в единицу времени:

,

где П – производительность; nR – количество продукта; τ – время. Производительность измеряется в кг/ч, т/сут, т/год и т. д. Например, производительность современного агрегата синтеза аммиака составляет 1360 т аммиака в сутки; производительность агрегата по производству серной кислоты – 1 млн т серной кислоты в год и т. д. Иногда производительность оценивают по количеству переработанного сырья, например производительность печи обжига колчедана – 450 т колчедана в сутки. Если известны концентрация продукта в реакционной смеси, для определения производительности удобно воспользоваться следующей формулой:

где cR – концентрация продукта; v – объемный расход реакционной смеси.

Максимально возможная для данного агрегата, машины производительность (проектная) называется мощностью. Одним из основных направлений развития химической промышленности является увеличение единичной мощности агрегатов, так как оно ведет к снижению удельных капитальных затрат, повышению производительности труда.

Для сравнения работы аппаратов различного устройства и размеров, в которых протекают одни и те же процессы, используют понятие «интенсивность».

Интенсивностью называется производительность, отнесенная к какой-либо величине, характеризующей размеры аппарата, – его объему, площади поперечного сечения и т. д.

,

где V – объем аппарата. Интенсивность измеряется в кг/(ч · м 3 ), т/(сут · м 3 ) и т. д.

При разработке новых процессов или усовершенствовании существующих стремятся к созданию высокоинтенсивных аппаратов. Увеличение интенсивности аппарата часто возможно при создании таких условий проведения процесса, которые обеспечивают его протекание с высокой скоростью.

При анализе работы каталитических реакторов принято относить производительность аппарата в целом к единице объема или массы катализатора, загруженного в реактор. Такую величину, численно равную количеству продукта, полученного с единицы объема или массы катализатора, называют производительностью катализатора, или его напряженностью.

Вопросы и упражнения для повторения и самостоятельной работы

1. Из каких основных стадий состоит химико-технологический процесс? В каких стадиях химико-технологического процесса участвуют химические реакции?

2. Что такое химический процесс? Почему химический процесс как единичный процесс химической технологии сложнее по сравнению с тепловыми и массообменными процессами?

3. Объясните взаимное влияние химической реакции и явлений тепло- и массопереноса на примерах:

а) сгорание в потоке воздуха частицы колчедана;

б) разложение фторапатита Ca5F(PO4)3 серной кислотой;

в) получение аммиачной селитры при взаимодействии газообразного аммиака с раствором азотной кислоты.

4. Какие технологические критерии эффективности химико-технологического процесса вы знаете? Дайте их определения.

5. Каковы пределы изменения степени превращения, выхода продукта, селективности?

6. Что означает выражение «реагенты взяты в стехиометрическом соотношении»?

7. Выведите уравнение связи между степенями превращения двух реагентов, вступающих в реакцию

аА + bВ rR + sS,

8. В химической реакции участвуют два реагента А и В, причем на каждый моль реагента А взято по 2 моль реагента В. В каком случае будет справедливо утверждение, что степень превращения хА реагента А больше степени превращения хВ реагента В?

9. В чем различия между действительной и равновесной степенями превращения реагента?

10. С какой целью при проведении химических процессов в промышленных условиях один из реагентов часто берут в избытке по отношению к стехиометрии реакции? Каковы пути использования реагента, взятого в избытке и не вступившего в реакцию?

11. Определите состав смеси (сА, сВ, cR, cS) и степень превращения jcb для реакции А + 2В 2R + S, если хА = 0,6, сА,0 = 1 кмоль/м 3 ,
сB,0 = 1,5 кмоль/м 3 .

12. Выведите уравнение связи между выходом продукта и степенью превращения одного из реагентов для обратимой химической реакции, не сопровождающейся побочными взаимодействиями.

13. Рассчитайте выход продукта Р, если известно, что при проведении последовательных реакций

А+ В Р + R,

Р + М S + Z

получено 12 моль продукта Р, 4 моль продукта S, а для проведения реакций было взято по 20 моль реагентов А и В.

14. В чем различие между полной (интегральной) и мгновенной (дифференциальной) селективностями?

15. Выведите уравнение взаимосвязи между выходом целевого продукта R, степенью превращения реагента А и полной селективностью φ при проведении двух необратимых последовательных реакций

А R (целевая реакция),

R S (побочная реакция).

16. Выведите уравнение взаимосвязи между выходом целевого продукта, степенью превращения реагента и полной селективностью при проведении параллельных обратимых реакций

а1А + b1В rR (целевая реакция),

a2А + b2B sS (побочная реакция).

17. Рассчитайте полную селективность, если при проведении последовательных реакций

A R + М (целевая реакция),

R S + N (побочная реакция)

получено 6 моль продукта R и 2,5 моль продукта S.

18. Протекают последовательные реакции А 2R и R 3S, целевым продуктом которых является вещество R. Определите выход продукта R, степень превращения хА и полную селективность φ, если известен конечный состав реакционной смеси: сА, f = 1 кмоль/м 3 , cR, f = 2 кмоль/м 3 , cS, f = 2 кмоль/м 3 .

19. Определите выход продукта R и степень превращения хА реагента А, если обратимая реакция А 2R протекает при условиях, когда равновесная степень превращения xA,е = 0,75, а отношение концентраций продукта и реагента после окончания реакции сR: сА = 1.

20. Протекают параллельные реакции

2А R,

А 3S.

Определите выход продукта R, степень превращения хА реагента А и полную селективность φ, если на выходе из реактора сА,f = 2 кмоль/м 3 , cR, f = 3 кмоль/м 3 , cS, f = 3,5 кмоль/м 3 .

21. Что называется производительностью, мощностью, интенсивностью?

22. Как связаны между собой:

а) производительность и степень превращения реагента;

б) производительность и выход целевого продукта?

23. Определите понятия «технологический режим», «технологическая схема процесса».

Расчет степени превращения и состава равновесной смеси

Расчет степени превращения и состава равновесной смеси

Значение константы равновесия позволяет рассчитать состав равновесной смеси, т. е. определить максимально возможный, или теоретический выход продукта.

Константа равновесия определяет степень завершенности реакции. Чем больше константа равновесия, тем больше в равновесной смеси продуктов реакции. При Кр ® µ в равновесной смеси будут только продукты реакции, следовательно, реакция завершена полностью.

Состав равновесной смеси можно определить двумя способами:

Ø по степени завершенности реакции и

Ø по закону сохранения массы элементов при реакции.

Степень завершенности реакции выражается следующими характеристиками:

ü мерой реакции,

ü степенью превращения,

ü степенью диссоциации.

Количества веществ изменяются в реакции не одинаково, а пропорционально их стехиометрическим количествам.

Величиной, характеризующей изменение количества участников реакции, является мера реакции:

ni — число моль i-го компонента в равновесной смеси;

Ni — число моль i-го компонента в исходной смеси.

В соответствии с этим:

(1)

Величину b называют еще пробегом реакции.

Число моль i-го компонента в равновесной смеси равно:

(2)

число пробегов.

— это доля реагента, которая превращается к моменту достижения равновесия при данных условиях:

(3)

Перепишем уравнение (1) в виде:

где — отношение числа моль любого вещества к данному в равновесной смеси.

Знак «-» означает, что концентрация реагента А уменьшается.

С учетом последнего уравнения преобразуем уравнение (2):

(4)

Физический смысл величин Li и li:

— доля вещества, которая продиссоциировала к моменту равновесия:

Очевидно, что степень диссоциации является степенью превращения вещества C в реакции диссоциации: a = ХC.

Поэтому можно записать:

(5)

Связь константы равновесия с мерой реакции, степенью превращения и степенью диссоциации в каждом конкретном случае разная и зависит от вида уравнения.

Константу равновесия, выраженную через парциальные давления и концентрации реагентов можно представить в виде:

— математический оператор, обозначающий произведение парциальных давлений (концентраций) продуктов реакции деленное на произведение парциальных давлений (концентраций) исходных реагентов:

Парциальные давления и концентрации равны соответственно:

где p — общее давление,

(6)

(7)

Используя уравнение состояния:

(8)

(9)

Число моль каждого вещества можно выразить через меру реакции, степень превращения и степень диссоциации по уравнениям (2), (4) и (5). Таким образом:

Следовательно, при постоянном давлении уравнения позволяют определить степень завершенности реакции (a, b, Х) и установить влияние давления или объема от них.

Имея значения степени завершенности реакции можно определить числа моль всех веществ, т. е. состав равновесной смеси.

Определение состава равновесной смеси по степени завершенности реакции

Рассмотрим в общем виде связь меры реакции и степени завершенности с константой равновесия.

Дана реакция, протекающая в газовой фазе:

В соответствии с уравнением (2) числа моль каждого из веществ в равновесной смеси равны:

Общее число моль всех веществ равно:

На основе уравнения (6) можно записать:

(11)

При постоянной температуре константа равновесия является постоянной величиной и уравнение (11) выражает зависимость меры реакции от давления b = f(p).

Зная Ni, nI и давление можно определить меру реакции b, а следовательно, и число моль всех веществ в равновесной смеси на основе уравнений (10).

Аналогичные уравнения можно получить с использованием степени превращения.

Число моль веществ A, B, C, D и инерта в равновесной смеси можно выразить, используя уравнение (4):

Общее число моль всех веществ в равновесной смеси равно:

(13)

В этом случае уравнение (6) для константы равновесия выглядит следующим образом:

(14)

При постоянной температуре это уравнение (14) представляет собой зависимость степени превращения от давления X = f(p).

Используя уравнение (8) запишем:

(15)

При составлении уравнений для константы равновесия используют следующие приемы.

Пусть исходная смесь содержит 60 % водорода, 20 % азота и 20 % инертного газа. В результате реакции образовался аммиак при давлении 50 бар и конечной температуре 673°К. Определить максимальное количество (в %) водорода, превращающегося в аммиак и содержание аммиака (в %) в образованной смеси. КР = 0,0125 (для данных условий).

Примем, что в исходной смеси 100 кмоль. Тогда:

Равновесный состав газовой смеси можно выразить, обозначая через х степень превращения одного из исходных реагентов.

Долю водорода превращающегося в NH3 обозначим через х.

Число моль веществ в равновесной смеси на основе уравнения (12):

запишется следующим образом:

Общее число моль (кмоль) в равновесной смеси в соответствии с уравнением (13) равно:

Подставляя соответствующие величины в уравнение (6) или (11), получим:

Это уравнение можно решить методом итераций (последовательных приближений). Разность между двумя сторонами уравнения должна быть равна нулю при правильном значении х. Последовательные подстановки дают следующие значения разности:

Отсюда, количество водорода превращающего в аммиак равно 21,9 %.

Количество аммиака в равновесной смеси составит:

При стехиометрическом соотношении исходных веществ, количество одного из них принимают равным определенной величине, например, 1 моль, а равновесную степень превращения его обозначают через Х. Тогда в соответствии с уравнением реакции можно выразить равновесный состав смеси и написать уравнение для константы равновесия через число моль веществ, участвующих в реакции.

за исходный состав можно принять 1 моль азота и, соответственно, 1 моль кислорода. Если степень превращения азота (или кислорода) Х, то в равновесной газовой смеси будет содержаться:

Сумма числа молей:

Так как в результате протекания реакции сумма числа молей компонентов не меняется, т. е. Dn = 2 1 1 = 0, то

Зная величину константы равновесия, из последнего выражения определяют равновесную степень превращения X, а по ней — равновесный состав газовой смеси.

Выражения, связывающие константу равновесия некоторых наиболее распространенных типов реакций с равновесной степенью превращения, приведены в таблице 1.

Таблица 1. Выражения КР для некоторых типов реакций

Вид уравнения для КР

Вид уравнения для КР

Определение состава равновесной смеси на основе закона сохранения массы элементов

В этом случае состав равновесной смеси определяется на основе совместного решения системы уравнений, включающей

ü уравнение баланса атомов элементов до и после реакции

ü уравнение для константы равновесия данной реакции

Запишем общую методику составления системы уравнений для определения состава равновесной смеси.

Пусть вещества, участвующие в реакции, В1, В2 …Вi состоят из атомов разного сорта А1, А2 …Aj.

Число химических элементов, как правило, меньше числа веществ на единицу.

Исходная смесь веществ (до реакции):

Равновесная смесь веществ (после реакции):

Количество атомов элемента А1 во всех веществах до реакции:

Количество атомов элемента А1 в равновесной смеси (после реакции):

На основе баланса = запишем:

Аналогичные уравнения можно записать для элементов А2, А3 и т. д.

Число уравнений равно числу элементов Aj, число веществ Bi на единицу меньше.

Уравнением, замыкающим систему, является уравнения для константы равновесия:

(17)

Решая совместно систему уравнений (16) и (17) можно определить состав равновесной смеси ().

Число моль инертного газа nИ необходимо учитывать в сумме общего числа моль åni равновесной смеси в уравнении (17), если åni ¹ 0.

Рассмотрим решение предыдущего примера на основе закона сохранения массы элементов.

Состав исходной смеси:

Состав равновесной смеси:

На основе уравнения (16) запишем:

(а)

(б)

По уравнению (21) запишем:

(в)

Из уравнений (а) и (б) можно выразить , и åni, например, через :

Подставим эти величины в уравнение (в) р = 50 бар:

Отсюда

Содержание аммиака (%) в равновесной смеси равно:

Результат получается тот же, что и при использовании для расчетов степени превращения Х для водорода.

Замечу, что при определении состава равновесной смеси с помощью меры реакции, степени превращения и степени диссоциации решается одно уравнение. Полученное значение степени завершенности подставляется в уравнение, связывающее меру реакции, степени превращения и степень диссоциации с числом моль отдельных веществ в равновесной смеси.

В методе материального баланса элементов необходимо решить несколько уравнений, число которых равно числу веществ, участвующих в реакции.

Расчет состава равновесной смеси и степени превращения

Пример 7

Рассчитать состав равновесной смеси и установить связь между XA * и константой равновесия Kp при давлении Р для газофазной реакции 2A Û R+ S. Исходные количества веществ: NA,0; NR,0 = NS,0 = 0; степень превращения вещества А — ХА;

Рассчитаем мольные доли компонентов равновесной смеси, используя таблицу 1.3.

В-воMi, кг/кмольПРИХОДРеакцияРАСХОД i
ni,0, кмоль/чnini,х, кмоль/чni, кмоль/ч
АМАNA,0nANA,0×ХАnA,0× (1 — ХА)
RМRNR,0-nrNA,0×ХА
SМSNS,0-nsNA,0×ХА
ВСЕГОS ni,0S ni = nA,0

По формуле (1.1) получим значения ni для каждого компонента равновесной смеси (см. табл. 1.4).

Подставляем полученные значения в выражение для Кр:

.

Извлекая из обеих частей уравнения квадратный корень, получим:

. Отсюда ХА , а ХА =

Расчет материального баланса обратимых реакций

Задача 1

На окисление сернистого ангидрида по реакции 2SO2 +O2 Û 2SO3+Q поступает N0 =500 кмоль/ч SO2. Для окисления используют воздух в стехиометрическом количестве. ХSO2 =0,8. рассчитать материальный баланс процесса.

Рассчитываем количество SO2, вступившего в химическую реакцию:

По уравнению химической реакции определяем количество кислорода и серного ангидрида:

NO2,xp = NSO2×ХSO2 = ×500×0,8 = 200 кмоль/ч

NSO3,xp = NSO2, 0×X SO2 = 500×0,8 = -400 кмоль/ч

Из воздуха вместе с кислородом поступит азот (см. табл.1.1):

NN2 = NO2 =3,76×200 = 752 кмоль/ч

Найденные значения для кислорода и азота заносим в приходную часть баланса. Кислород, как второй участник химического взаимодействия, попадает также в столбец «Реакция». Азот – инертный компонент, в реакции не участвует, поэтому в расходе его количество остается неизменным. Далее решение выполняем в табличном виде (табл.1.5).

Сводная таблица материального баланса

В-воMi, кг/кмольПРИХОДРеакцияРАСХОД
ni,0, кмоль/чmi,0, кг/чnini,х, кмоль/чni, кмоль/чmi, кг/ч
SO2500×64=500×0,8=400500 – 400=100
О232×200=6400 500×0,8=200200 – 200=0
N2752×28=21056752 – 0=752
SO3-2 500×0,8=-4000-(-400)=400
ВСЕГО

Внимание! Баланс должен сходиться только в массовых единицах. В мольных единицах он может сходиться лишь в том случае, если реакция идет без изменения объема.

Задача 2

На окисление сернистого ангидрида по реакции 2SO2 +O2 Û 2SO3+Q поступает N0 =500 кмоль/ч газовой смеси, состоящей из четырех индивидуальных компонентов (мол. доли): nSO2=0,15; nO2=0,20; nSO3=0; nN2=0,65. Степень превращения ХSO2 =0,8. рассчитать материальный баланс процесса.

Решение выполняем в табличной форме по следующей схеме:

· Рассчитываем мольное и массовое количество компонентов в приходе:

· Рассчитываем количество компонентов, участвующих в химической реакции;

· Рассчитываем мольные и массовые количества компонентов в расходе.

Решение задачи приведено в табл. 1.6.

Таблица материального баланса

В-воMi, кг/кмольПРИХОДреакцияРАСХОД
ni,0, кмоль/чmi,0, кг/чnini,хр, кмоль/чni, кмоль/чmi, кг/ч
SO2500×0,15=7575×64=480075×0,8=6075 -60=1515× 64=960
О2500×0,2=100100×32=320075×0,8×1/2=30100-30=7070×32=2240
SO3-275×0,8×-2/2= = -600+60=6060×80=4800
N2500×0,65=325325× 28=9100325× 28=9100
ВСЕГО

При компьютерном расчете в среде пакета Excel оперируем адресами клеток:

· для заполнения столбца D: в клетку D3 вносим значение =$B$9*C3, а затем копируем это произведение в клетки D4:D6. В клетке D7 получаем значение суммы, используя значок автосуммы S;

· для заполнения столбца Е в клетку Е3 вносим произведение =D3*C3 и копируем его в клетки Е4:Е6. В клетке Е7 получаем значение суммы, используя значок автосуммы S;

· для заполнения столбца G: в клетку G3 вносим значение =$D$3*$B$10, в клетку G4 — =$D$3*$B$10* F4/F3, в клетку G5 — =$D$3*$B$10* F5/F3. В клетке G6 значение равно 0;

· для заполнения столбца Н в клетку Н3 вносим значение =D3-G3 и копируем его в клетки Н4:Н6. В клетке Н7 получаем значение суммы, используя значок автосуммы S;

· для заполнения столбца I в клетку I3 вносим произведение =H3*B3 и копируем его в клетки I4:I6. В клетке I7 получаем значение суммы, используя значок автосуммы S.

Решение с использованием программы EXCEL приведено в табл.1.7.

Расчет материального баланса с использованием программы EXCEL

Задача 3

На синтез аммиака по реакции N2+3H2 Û 2NH3 +Q поступает 50000 кг/ч газовой смеси, состоящей из четырех индивидуальных компонентов (мол. доли): nH2,0 =0,75, nN2,0=0,15, nNH3,0 =0,05, nCH4,0=0,05. Степень превращения водорода ХН2 — 0,18. рассчитать материальный баланс процесса.

Исходный поток задан в массовых единицах, а его состав – в мольных долях. Для приведения размерностей состава и расхода к одним единицам измерения следует предпринять одно из следующих действий:

· рассчитать молярную массу смеси по формуле (1.6), а затем мольный расход смеси по формуле (1.8) либо

· пересчитать мольный состав потока в массовый по формуле (1.4).

В решении, представленном в табл. 1.8, реализован первый путь.

· По формуле (1.6) рассчитываем молярную массу смеси и получаем Мсм = 7,35 кг/кмоль. При компьютерном расчете в клетку В12 вводим выражение: =С3*B3+C4*B4+C5*B5+C6*B6;

· По формуле (1.7) находим мольный расход смеси. При компьютерном расчете в клетку В13 вводим выражение =В9/В12. N0,см = 6802,72109 кг/кмоль.

Далее решаем по схеме, приведенной в задаче 1.

Решение (с использованием пакета EXCEL) приведено в табл.1.8.

Расчет материального баланса с использованием программы Excel

Задача 4

На синтез аммиака по реакции N2+3H2 = 2NH3+Q поступает 50000 кмоль/ч газовой смеси, состоящей из четырех индивидуальных компонентов (масс. доли): gH2,0=0,15, gN2,0 =0,55, gNH3,0 =0,20; gCH4,0=0,10. Степень превращения водорода ХН2 — 0,18. рассчитать материальный баланс процесса.

Исходный поток задан в мольных единицах, а его состав – в массовых долях. Следует пересчитать состав потока из массовых долей в мольные по формуле (1.5). Далее решать по схеме, приведенной в задаче 1.

1. Рассчитываем мольные доли компонентов потока (см. столбец D в таблице).

· в клетку D12 вводим выражение: =С3/B3+C4/B4+C5/B5+C6/B6 и получаем 0,112658;

· в столбец D вводим формулы для расчета ni. В клетку D3: =С3/B3/$D$12; в клетку D4: =С4/B4/$D$12 и т.д.

Решение с использованием пакета EXCEL приведено в табл.1.9.

Расчет материального баланса с использованием программы Excel

1.6.4.Расчет материального баланса обратимых реакций, протекающих при смешении газовых потоков

Задача 5

На паровую конверсию метана по реакции CH4 + H2O = 3H2 + CO — Q поступает два потока:

ХСН4 = 0,9. Рассчитать материальный баланс процесса.

Рассчитываем приходные части баланса для первого и второго потоков отдельно:

· 1-й поток: по формуле (1.11) N0,1= 1000/22,4 = 44,643(кмоль/ч), далее — мольные и массовые количества всех компонентов;

N0,2 = 2000/15,8= 126,58 (кмоль/ч).

· Суммируем данные по обоим потокам в третьей сводной таблице общего вида.

Далее решаем по аналогии с задачей 1.

Решение задачи с использованием программы EXCEL представлено в табл.1.10.

Расчет материального баланса с использованием программы Excel

Задача 6

На окисление сернистого ангидрида по реакции 2SO2 +O2 Û 2SO3+Q поступает два потока:

Cтепень превращения ХSO2 = 0,9. Рассчитать материальный баланс процесса.

Для расчетов используем состав воздуха в мольных долях, приведенный в табл. 1.1. Рассчитываем состав каждого потока отдельно, а затем в сводной таблице используем суммарный поток. Решение с помощью программы EXCEL представлено в табл.1.11.

Расчет материального баланса с использованием программы Excel

1.6.5. Расчет материального баланса обратимых реакций при заданной производительности реактора

В химической технологии широко распространены задачи, в которых исходной величиной служит производительность по целевому продукту или по какому-либо компоненту входного потока. При этом обычно задают только состав входного потока, а его величину необходимо рассчитывать. Лишь после этого переходят к составлению материального баланса процесса. Рассмотрим 2 метода решения подобных задач.

1. Расчет массовой величины входного потока m0 комбинированием формул:

(1.30)

(1.31)

Здесь mR и NR — массовая (кг/ч) и мольная (кмоль/ч) производительность реактора по веществу Rсоответственно.

2. Расчет величины входного потока по «условному» потоку.

Решение задач сводят к выполнению следующих этапов:

· Принимают, что на вход реактора поступает поток с некоторым условным расходом, например, No, усл=1000 кмоль/ч;

· По условному расходу и мольному составу потока рассчитывают материальный баланс процесса, как показано выше;

· По пропорции находят реальный расход входного потока No, пользуясь заданной производительностью реактора по компоненту R:

где mR — массовая производительность реактора по продукту R, mR,.усл – то же для условного входного потока.

· Повторно решают задачу, но уже для реально полученного расхода No. Состав реального потока в объемных или массовых долях остается неизменным.

Задача 7

Рассчитать материальный баланс процесса 2SO2+O2Û2SO3+Q , если производительность реактора по SO3 (mSO3) = 30000 кг/ч; ХSO2 =0,8; состав потока: nSO2=0,15; nO2=0,2; nSO3=0; nN2=0,65. .

По (1.30) находим кг/ч, что соответствует кмоль/ч. Далее решаем как задачу 1.

1. Расчет материального баланса для условного потока No,усл = 1000 кмоль/ч представлен в табл. 1.12.

Материальный баланс для условного входного потока

В-воMi, кг/кмольПРИХОДреакцияРАСХОД
ni,0,усл кмоль/чmi,0, усл, кг/чnini,хр, кмоль/чni, усл кмоль/чmi, усл, кг/ч
SO21000×0,15=150150×64=9600150×0,8=120150 -120=3030× 64=1920
О21000×0,2=200200×32=6400120×1/2=60200-60=140140×32=4480
SO3-2120×-2/2= -1200+120=120120×80=9600
N21000×0,65=650650× 28=18200650× 28=18200
ВСЕГО

2. Составляем пропорцию для определения реального расхода входного потока:

No = 1000×30000/9600 = 3125 (кмоль/ч);

3. Составляем таблицу материального баланса для реального входного потока.

Расчет материального баланса для реального потока 3125 кмоль/ч

В-воMi, кг/кмольПРИХОДреакцияРАСХОД
ni,0,кмоль/чmi,0, кг/чnini,хр, кмоль/чni, кмоль/чmi, кг/ч
SO23125×0,15 = 468,75468,75×64= = 30000468,75×0,8= =375468,75 -375= = 93,7593,75× 64=6000
О23125×0,2= =625,0625,0×32= =20000375×1/2= =187,5625-187,5= =437,50437,5×32=14000
SO3-2375×-2/2= = -3750+375= =375,0375,0×80=30000
N23125×0,65 =2031,252031,25×28= =568752031,25
ВСЕГО3125,03037,50

Решение контролировать по заданной производительности в расходной части баланса – mSO3,pacx = 30000 кг/ч

Рассчитать материальный баланс процесса 2SO2+O2 Û 2SO3+Q, если производительность реактора по SO3 (mSO3) = 30000 кг/ч; степень превращения ХSO2 =0,8. Исходный поток образуется смешением двух потоков в объемном соотношении 1:2. Состав 1 потока: nSO2=0,95; nSO3=0,05; состав второго — воздух. Рассчитать материальный баланс процесса.

Определяют состав суммарного потока на входе:

.

По формуле (1.30) получаем:

кг/ч.

Далее решают как задачу 1.1.

1. Принимаем N0,1,усл = 1000 кмоль/ч и второго N0,2,усл = 2000 кмоль/ч. Рассчитываем приход для обоих условных потоков, а затем сводную таблицу материального баланса. Далее решаем как задачу 7. В табл.1.14 представлено решение с использованием программы Excel.


источники:

http://pandia.ru/text/80/241/18886.php

http://lektsii.org/3-28013.html