Что является графиком неполного квадратного уравнения

Неполные квадратные уравнения

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.

Мы получили два корня в уравнении, значит, у нас две точки пересечения с осью « Ox ». Назовем эти точки и выпишем их координаты.

Отметим полученные точки («нули функции») на системе координат.

Возьмем четыре произвольные числовые значения для « x ». Целесообразно брать целые числовые значения на оси « Ox », которые наиболее близки к оси симметрии. Числа запишем в таблицу в порядке возрастания.

Неполные квадратные уравнения бывают трех видов:
  • Если b = 0, то квадратное уравнение принимает вид ax² + 0x+c=0 и оно равносильно ax² + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax² + bx + 0 = 0, иначе его можно написать как ax² + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax² = 0.

Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три формулы неполных квадратных уравнений:

  • ax² = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax² + c = 0, при b = 0;
  • ax² + bx = 0, при c = 0.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Как решить уравнение ax² = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0.

Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.

Пример 1. Решить −5x² = 0.

  1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса!

Как решить уравнение ax² + с = 0

Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:

  • перенесем c в правую часть: ax² = — c,
  • разделим обе части на a: x² = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 0, то корни уравнения x² = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = — c/а. Ура, больше у этого уравнения нет корней.

В двух словах

Неполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:

  • не имеет корней при — c/а 0.

Пример 1. Найти решение уравнения 9x² + 4 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 9:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 9x² + 4 = 0 не имеет корней.

    Пример 2. Решить -x² + 9 = 0.

      Перенесем свободный член в правую часть:

    Разделим обе части на -1:

    Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3.

    Как решить уравнение ax² + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника.

    Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 2x² — 32x = 0

      Вынести х за скобки

  • Это уравнение равносильно х = 0 и 2x — 32 = 0.
  • Решить линейное уравнение:
  • Значит корни исходного уравнения — 0 и 16.
  • Ответ: х = 0 и х = 16.

    Пример 2. Решить уравнение 3x² — 12x = 0

    Разложить левую часть уравнения на множители и найти корни:

    График функции неполного квадратного уравнения

    Прежде чем перейти к разбору квадратичной функции рекомендуем вспомнить, что называют функцией в математике.

    Если вы прочно закрепите общие знания о функции (способы задания, понятие графика) дальнейшее изучение других видов функций будет даваться значительно легче.

    Что называют квадратичной функцией

    Квадратичная функция — это функция вида

    Другими словами можно сказать, что если в функции старшая (то есть самая большая) степень, в которой стоит « x » — это « 2 », то перед нами квадратичная функция.

    Рассмотрим примеры квадратичных функций и определим, чему в них равны коэффициенты « a », « b » и « с ».

    Квадратичная функцияКоэффициенты
    y = 2x 2 − 7x + 9
    • a = 2
    • b = −7
    • с = 9
    y = 3x 2 − 1
    • a = 3
    • b = 0
    • с = −1
    y = −3x 2 + 2x
    • a = −3
    • b = 2
    • с = 0

    Как построить график квадратичной функции

    График квадратичной функции называют параболой.

    Парабола выглядит следующим образом.

    Также парабола может быть перевернутой.

    Существует четкий алгоритм действий при построении графика квадратичной функции. Рекомендуем при построении параболы всегда следовать этому порядку действий, тогда вы сможете избежать ошибок при построении.

    Чтобы было проще понять этот алгоритм, сразу разберем его на примере.

    Построим график квадратичной функции « y = x 2 −7x + 10 ».

      Направление ветвей параболы

    Если « a > 0 », то ветви направлены вверх.

    Если « a », то ветви направлены вниз.

    В нашей функции « a = 1 », это означает, что ветви параболы направлены вверх.

    Координаты вершины параболы

    Чтобы найти « x » (координата вершины по оси « Ox ») нужно использовать формулу:

    −b
    2a

    Найдем « x » для нашей функции « y = x 2 −7x + 10 ».

    − (−7)
    2 · 1
    7
    2

    Теперь нам нужно найти « y » (координату вершины по оси « Oy »). Для этого нужно подставить найденное значение « x » в исходную функцию. Вспомнить, как найти значение функции можно в уроке «Как решать задачи на функцию» в подразделе «Как получить значение функции».

    Выпишем полученные координаты вершины параболы.

    (·) A (3,5; −2,25) — вершина параболы.

    Отметим вершину параболы на системе координат. Проведем через отмеченную точку ось симметрии, так как парабола — это симметричный график относительно оси « Oy ».

    Для начала давайте разберемся, что называют нулями функции.

    Нули функции — это точки пересечения графика функции с осью « Ox » (осью абсцисс).

    Наглядно нули функции на графике выглядят так:

    Свое название нули функции получили из-за того, что у этих точек координата по оси « Oy » равна нулю.

    Теперь давайте разберемся, как до построения графика функции рассчитать координаты точек нулей функции.

    Чтобы найти координаты точек нулей функции, нужно в исходную функцию подставить вместо « y = 0 ».

    Подставим в заданную функцию « y = x 2 −7x + 10 » вместо « y = 0 » и решим полученное квадратное уравнение относительно « x » .

    0 = x 2 −7x + 10
    x 2 −7x + 10 = 0
    x1;2 =

    7 ± √ 49 − 4 · 1 · 10
    2 · 1
    7 ± √ 9
    2
    7 ± 3
    2
    x1 =
    7 + 3
    2
    x2 =

    7 − 3
    2
    x1 =

    10
    2
    x2 =

    4
    2
    x1 = 5x2 = 2
    x1346
    y

    Для каждого выбранного значения « x » рассчитаем « y ».

    • y(1) = 1 2 − 7 · 1 + 10 = 1 − 7 + 10 = 4
    • y(3) = 3 2 − 7 · 3 + 10 = 9 − 21 + 10 = −2
    • y(4) = 4 2 − 7 · 4 + 10 = 16 − 28 + 10 = −2
    • y(6) = 6 2 − 7 · 6 + 10 = 36 − 42 + 10 = 4

    Запишем полученные результаты в таблицу.

    x1346
    y4−2−24

    Отметим полученные точки графика на системе координат (зеленые точки).

    Теперь мы готовы построить график. На забудьте после построения подписать график функции.

    Краткий пример построения параболы

    Рассмотрим другой пример построения графика квадратичной функции. Только теперь запишем алгоритм построения коротко без подробностей.

    Пусть требуется построить график функции « y = −3x 2 − 6x − 4 ».

      Направление ветвей параболы « a = −3 » — ветви параболы направлены вниз.

    Координаты вершины параболы

    −b
    2a
    −(−6)
    2 · (−3)
    6
    −6

    y (−1) = (−3) · (−1) 2 − 6 · (−1) − 4 = −3 · 1 + 6 − 4 = −1

    (·) A (−1; −1) — вершина параболы.

    Точки пересечения с осью « Ox » ( y = 0 ).

    −3x 2 − 6x − 4 = 0 |·(−1)

    −6 ± √ 6 2 − 4 · 3 · 4
    2 · 1
    −6 ± √ 36 − 48
    2
    −6 ± √ −12
    2

    Ответ: нет действительных корней.

    Так как корней нет, значит, график функции не пересекает ось « Ox ».

    Вспомогательные точки для: « x = −3 »; « x = −2 »; « x = 0 »; « x = 1 ». Подставим в исходную функцию « y = −3x 2 − 6x − 4 ».

    • y(−3) = −3 · (−3) 2 − 6 · (−3) − 4 = −3 · 9 + 18 − 4 = −27 + 14 = −13
    • y(−2) = −3 · (−2) 2 − 6 · (−2) − 4 = −3 · 4 + 12 − 4 = −12 + 12 − 4 = −4
    • y(0) = −3 · 0 2 − 6 · 0 − 4 = −4
    • y(1) = −3 · 1 2 − 6 · 1 − 4 = −3 −6 − 4 = −13
    x−3−21
    y−13−4−4−13

    Отметим вспомогательные точки. Отмечаем на системе координат только те точки, которые не выходят за масштаб нашей системы координат, то есть точки « (−2; −4) » и « (0; −4) ». Построим и подпишем график функции.

    Урок: как построить параболу или квадратичную функцию?

    ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

    Парабола — это график функции описанный формулой ax 2 +bx+c=0.
    Чтобы построить параболу нужно следовать простому алгоритму действий:

    1 ) Формула параболы y=ax 2 +bx+c,
    если а>0 то ветви параболы направленны вверх,
    а 2 +bx+c=0;

    a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
    b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
    ax 2 +bx=0,
    х(ax+b)=0,
    х=0 и ax+b=0;
    c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);

    4) Найти несколько дополнительных точек для построения функции.

    ПРАКТИЧЕСКАЯ ЧАСТЬ

    И так теперь на примере разберем все по действиям:
    Пример №1:
    y=x 2 +4x+3
    c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
    a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
    Найдем корни уравнения x 2 +4x+3=0
    По дискриминанту находим корни
    a=1 b=4 c=3
    D=b 2 -4ac=16-12=4
    x=(-b±√(D))/2a
    x1=(-4+2)/2=-1
    x2=(-4-2)/2=-3

    Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2

    х -4 -3 -1 0
    у 3 0 0 3

    Подставляем вместо х в уравнение y=x 2 +4x+3 значения
    y=(-4) 2 +4*(-4)+3=16-16+3=3
    y=(-3) 2 +4*(-3)+3=9-12+3=0
    y=(-1) 2 +4*(-1)+3=1-4+3=0
    y=(0) 2 +4*(0)+3=0-0+3=3
    Видно по значениям функции,что парабола симметрична относительно прямой х=-2

    Пример №2:
    y=-x 2 +4x
    c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 2 +4*2=-4+8=4 вершина находится в точке (2;4)
    Найдем корни уравнения -x 2 +4x=0
    Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
    х(-x+4)=0, х=0 и x=4.

    Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
    х 0 1 3 4
    у 0 3 3 0
    Подставляем вместо х в уравнение y=-x 2 +4x значения
    y=0 2 +4*0=0
    y=-(1) 2 +4*1=-1+4=3
    y=-(3) 2 +4*3=-9+13=3
    y=-(4) 2 +4*4=-16+16=0
    Видно по значениям функции,что парабола симметрична относительно прямой х=2

    Пример №3
    y=x 2 -4
    c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
    a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
    Найдем корни уравнения x 2 -4=0
    Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
    x 2 =4
    x1=2
    x2=-2

    Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
    х -2 -1 1 2
    у 0 -3 -3 0
    Подставляем вместо х в уравнение y= x 2 -4 значения
    y=(-2) 2 -4=4-4=0
    y=(-1) 2 -4=1-4=-3
    y=1 2 -4=1-4=-3
    y=2 2 -4=4-4=0
    Видно по значениям функции,что парабола симметрична относительно прямой х=0

    Подписывайтесь на канал на YOUTUBE, чтобы быть в курсе всех новинок и готовится с нами к экзаменам.

    График квадратного уравнения вида ax 2 + bx + c или a(x – h) 2 + k представляет собой параболу (U-образную кривую). Для построения графика такого уравнения необходимо найти вершину параболы, ее направление и точки пересечения с осями Х и Y. Если вам дано относительно простое квадратное уравнение, то вы можете подставить в него разные значения «х», найти соответствующие значения «у» и построить график.

    Квадратичная функция и ее график

    В этой статье мы поговорим о том, что такое квадратичная функция, научимся строить ее график и определять вид графика в зависимости от знака дискриминанта и знака старшего коэффициента.
    Итак.

    Функция вида , где 0″ title=»a<>0″/> называется квадратичной функцией.

    В уравнении квадратичной функции:

    aстарший коэффициент

    bвторой коэффициент

    ссвободный член.

    Графиком квадратичной функции является квадратичная парабола, которая для функции имеет вид:

    Обратите внимание на точки, обозначенные зелеными кружками — это, так называемые «базовые точки». Чтобы найти координаты этих точек для функции , составим таблицу:

    Внимание! Если в уравнении квадратичной функции старший коэффициент , то график квадратичной функции имеет ровно такую же форму, как график функции при любых значениях остальных коэффициентов.

    График функции имеет вид:

    Для нахождения координат базовых точек составим таблицу:

    Обратите внимание, что график функции симметричен графику функции относительно оси ОХ.

    Итак, мы заметили:

    Если старший коэффициент a>0 , то ветви параболы напрaвлены вверх .

    Если старший коэффициент a , то ветви параболы напрaвлены вниз .

    Второй параметр для построения графика функции — значения х, в которых функция равна нулю, или нули функции. На графике нули функции — это точки пересечения графика функции с осью ОХ.

    Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты точек пересечения графика функции с осью ОХ, нужно решить уравнение .

    В случае квадратичной функции нужно решить квадратное уравнение .

    В процессе решения квадратного уравнения мы находим дискриминант: , который определяет число корней квадратного уравнения.

    И здесь возможны три случая:

    1. Если ,то уравнение не имеет решений, и, следовательно, квадратичная парабола не имеет точек пересечения с осью ОХ. Если 0″ title=»a>0″/>,то график функции выглядит как-то так:

    2. Если ,то уравнение имеет одно решение, и, следовательно, квадратичная парабола имеет одну точку пересечения с осью ОХ. Если 0″ title=»a>0″/>,то график функции выглядит примерно так:

    3 . Если 0″ title=»D>0″/>,то уравнение имеет два решения, и, следовательно, квадратичная парабола имеет две точки пересечения с осью ОХ:

    ,

    Если 0″ title=»a>0″/>,то график функции выглядит примерно так:

    Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.

    Следующий важный параметр графика квадратичной функции — координаты вершины параболы:

    Прямая, проходящая через вершину параболы параллельно оси OY является осью симметрии параболы.

    И еще один параметр, полезный при построении графика функции — точка пересечения параболы с осью OY.

    Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы с осью OY, нужно в уравнение параболы вместо х подставить ноль: .

    То есть точка пересечения параболы с осью OY имеет координаты (0;c).

    Итак, основные параметры графика квадратичной функции показаны на рисунке:

    Рассмотрим несколько способов построения квадратичной параболы. В зависимости от того, каким образом задана квадратичная функция, можно выбрать наиболее удобный.

    1. Функция задана формулой .

    Рассмотрим общий алгоритм построения графика квадратичной параболы на примере построения графика функции

    1. Направление ветвей параболы.

    Так как 0″ title=»a=2>0″/>,ветви параболы направлены вверх.

    2. Найдем дискриминант квадратного трехчлена

    0″ title=»D=b^2-4ac=9-4*2*(-5)=49>0″/>

    Дискриминант квадратного трехчлена больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ.

    Для того, чтобы найти их координаты, решим уравнение:

    ,

    3. Координаты вершины параболы:

    4. Точка пересечения параболы с осью OY: (0;-5),и ей симметричная относительно оси симметрии параболы.

    Нанесем эти точки на координатную плоскость, и соединим их плавной кривой:

    Этот способ можно несколько упростить.

    1. Найдем координаты вершины параболы.

    2. Найдем координаты точек, стоящих справа и слева от вершины.

    Воспользуемся результатами построения графика функции

    Кррдинаты вершины параболы

    Ближайшие к вершине точки, расположенные слева от вершины имеют абсциссы соответственно -1;-2;-3

    Ближайшие к вершине точки, расположенные справа имеют абсциссы соответственно 0;1;2

    Подставим значения х в уравнение функции, найдем ординаты этих точек и занесем их в таблицу:

    Нанесем эти точки на координатную плоскость и соединим плавной линией:

    2 . Уравнение квадратичной функции имеет вид — в этом уравнении — координаты вершины параболы

    или в уравнении квадратичной функции , и второй коэффициент — четное число.

    Построим для примера график функции .

    Вспомним линейные преобразования графиков функций. Чтобы построить график функции , нужно

    • сначала построить график функции ,
    • затем одинаты всех точек графика умножить на 2,
    • затем сдвинуть его вдоль оси ОХ на 1 единицу вправо,
    • а затем вдоль оси OY на 4 единицы вверх:

    Теперь рассмотрим построение графика функции . В уравнении этой функции , и второй коэффициент — четное число.

    Выделим в уравнении функции полный квадрат:

    Следовательно, координаты вершины параболы: . Старший коэффициент равен 1, поэтому построим по шаблону параболу с вершиной в точке (-2;1):

    3 . Уравнение квадратичной функции имеет вид y=(x+a)(x+b)

    Построим для примера график функции y=(x-2)(x+1)

    1. Вид уравнения функции позволяет легко найти нули функции — точки пересечения графика функции с осью ОХ:

    (х-2)(х+1)=0, отсюда

    2. Координаты вершины параболы:

    3. Точка пересечения с осью OY: с=ab=(-2)(1)=-2 и ей симметричная.

    Нанесем эти точки на координатную плоскость и построим график:

    График квадратичной функции.

    Перед вами график квадратичной функции вида .

    Кликните по чертежу.
    Подвигайте движки.
    Исследуйте зависимость
    — ширины графика функции от значения коэффициента ,
    — сдвига графика функции вдоль оси от значения ,

    — сдвига графика функции вдоль оси от значения
    — направления ветвей параболы от знака коэффициента
    — координат вершины параболы от значений и :

    И.В. Фельдман, репетитор по математике.


    источники:

    http://4systems.ru/inf/grafik-funkcii-nepolnogo-kvadratnogo-uravnenija/

    http://ege-ok.ru/2012/05/21/kvadratichnaya-funktsiya-i-ee-grafik