Что является решением уравнения cos x a

Арккосинус. Решение уравнения cos x=a

п.1. Понятие арккосинуса

В записи \(y=cosx\) аргумент x — это значение угла (в градусах или радианах), функция y – косинус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному косинусу найти угол. Но одному значению косинуса соответствует бесконечное количество углов. Например, если \(cosx=1\), то \(x=2\pi k,\ k\in\mathbb\); \(cosx=0\), то \(x=\frac\pi2+\pi k,\ k\in\mathbb\) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором косинус принимает все значения из [-1;1], но только один раз: \(0\leq x\leq \pi\) (верхняя половина числовой окружности).

\(arccos\frac12=\frac\pi3,\ \ arccos\left(-\frac<\sqrt<3>><2>\right)=\frac<5\pi><6>\)
\(arccos2\) – не существует, т.к. 2> 1

п.2. График и свойства функции y=arccosx


1. Область определения \(-1\leq x\leq1\) .
2. Функция ограничена сверху и снизу \(0\leq arccosx\leq \pi\) . Область значений \(y\in[0;\pi]\)
3. Максимальное значение \(y_=\pi\) достигается в точке x =-1
Минимальное значение \(y_=0\) достигается в точке x =1
4. Функция убывает на области определения.
5. Функция непрерывна на области определения.

п.3. Уравнение cos⁡x=a

Значениями арккосинуса могут быть только углы от 0 до π (180°). А как выразить другие углы через арккосинус?

Углы в нижней части числовой окружности записывают через отрицательный арккосинус. А углы, которые превышают π по модулю, записывают через сумму арккосинуса и величины, которая ‘не помещается» в область значений арккосинуса.

1) Решим уравнение \(cosx=\frac12\).
Найдем точку \(\frac12\) в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках, соответствующих углам \(\pm\frac\pi3\) — это базовые корни.
Если взять верхний корень \(\frac\pi3\) и прибавить к нему полный оборот \(\frac\pi3+2\pi=\frac<7\pi><3>\), косинус полученного угла \(cos\frac<7\pi><3>=\frac12\), т.е. \(\frac<7\pi><3>\) также является корнем уравнения. Корнями будут и все другие углы вида \(\frac\pi3+2\pi k\) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида \(-\frac\pi3+2\pi k\).
Получаем ответ: \(x=\pm\frac\pi3+2\pi k\)

Заметим, что полученный ответ является записью вида
\(x=\pm arccos\frac12+2\pi k\)
А т.к. арккосинус для \(\frac12\) точно известен и равен \(\frac\pi3\), то мы его и пишем в ответе.
Но так бывает далеко не всегда.

2) Решим уравнение \(cosx=0,8\)

Найдем точку 0,8 в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках.
По определению верхняя точка – это угол, равный arccos⁡0,8.
Тогда нижняя точка – это тот же угол, но отложенный в отрицательном направлении обхода числовой окружности, т.е. (–arccos⁡0,8).
Добавление или вычитание полных оборотов к каждому из решений даст другие корни.
Получаем ответ:
\(x=\pm arccos0,8+2\pi k\)

п.4. Формула арккосинуса отрицательного аргумента

Докажем полезную на практике формулу для \(arccos(-a)\).

По построению: $$ \begin \angle DA’O=\angle BAO=\angle CAO=90^<\circ>\\ OD=OB=OC=1\\ OA’=OA=a \end \Rightarrow $$ (по катету и гипотенузе) \begin \Delta DA’O=\Delta BAO=\Delta CAO\Rightarrow\\ \Rightarrow \angle DOC=\angle A’OA-\alpha+\alpha=\angle A’OA=180^<\circ>=\pi\\ -arccosa+\pi=arccos(-a) \end

п.5. Примеры

Пример 1. Найдите функцию, обратную арккосинусу. Постройте графики арккосинуса и найденной функции в одной системе координат.

Для \(y=arccosx\) область определения \(-1\leq x\leq 1\), область значений \(0\leq y\leq \pi\).
Обратная функция \(y=cosx\) должна иметь ограниченную область определения \(0\leq x\leq \pi\) и область значений \(-1\leq y\leq 1\).
Строим графики:

Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) \(cos x=-1\)

\(x=\pi+2\pi k\)
б) \(cos x=\frac<\sqrt<2>><2>\)

\(x=\pm\frac\pi4+2\pi k\)
в) \(cos x=0\)

\(x=\pm\frac\pi2+2\pi k=\frac\pi2+\pi k\)
г) \(cos x=\sqrt<2>\)

\(\sqrt<2>\gt 1,\ \ x\in\varnothing\)
Решений нет
д) \(cos x=0,7\)

\(x=\pm arccos(0,7)+2\pi k\)
e) \(cos x=-0,2\)

\(x=\pm arccos(-0,2)+2\pi k\)

Пример 3. Запишите в порядке возрастания: $$ arccos0,8;\ \ arccos(-0,5);\ \ arccos\frac\pi7 $$

Способ 1. Решение с помощью числовой окружности

Отмечаем на оси косинусов (ось OX) точки с абсциссами 0,8; -0,5; \(\frac\pi7\approx 0,45\)
Значения арккосинусов (углы) считываются на верхней половине окружности: чем меньше косинус (от 1 до -1), тем больше угол (от 0 до π).
Получаем: \(\angle A_1OA\lt\angle A_2OA\angle A_3OA\)
$$ arccos0,8\lt arccos\frac\pi7\lt arccos(-0,5) $$Способ 2. Решение с помощью графика \(y=arccosx\)

Отмечаем на оси OX аргументы 0,8; -0,5; \(\frac\pi7\approx 0,45\). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арккосинусов по возрастанию: $$ arccos0,8\lt arccos\frac\pi7\lt arccos(-0,5) $$Способ 3. Аналитический
Арккосинус – функция убывающая: чем больше аргумент, тем меньше функция.
Поэтому располагаем данные в условии аргументы по убыванию: 0,8; \(\frac\pi7\); -0,5.
И записываем арккосинусы по возрастанию: \(arccos0,8\lt arccos\frac\pi7\lt arccos(-0,5)\)

Пример 4*. Решите уравнения:
\(a)\ arccos(x^2-3x+3)=0\) \begin x^2-3x+3=cos0=1\\ x^2-3x+2=0\\ (x-2)(x-1)=0\\ x_1=1,\ x_2=2 \end Ответ:

\(б)\ arccos^2x-arccosx-6=0\)
\( \text<ОДЗ:>\ -1\leq x\leq 1 \)
Замена переменных: \(t=arccos x,\ 0\leq t\leq \pi\)
Решаем квадратное уравнение: $$ t^2-t-6=0\Rightarrow (t-3)(t+2)=0\Rightarrow \left[ \begin t_1=3\\ t_2=-2\lt 0 — \text <не подходит>\end \right. $$ Возвращаемся к исходной переменной: \begin arccosx=3\\ x=cos3 \end Ответ: cos3

\(в)\ arccos^2x-\pi arccosx+\frac<2\pi^2><9>=0\)
\( \text<ОДЗ:>\ -1\leq x\leq 1 \)
Замена переменных: \(t=arccos x,\ 0\leq t\leq \pi\)
Решаем квадратное уравнение: \begin t^2-\pi t+\frac<2\pi^2><9>=0\\ D=(\pi^2)-4\cdot \frac<2\pi^2><9>=\frac<\pi^2><9>,\ \ \sqrt=\frac\pi3\\ \left[ \begin t_1=\frac<\pi-\frac\pi3><2>=\frac\pi3\\ t_2=\frac<\pi+\frac\pi3><2>=\frac<2\pi> <3>\end \right. \Rightarrow \left[ \begin arccosx_1=\frac\pi3\\ arccosx_2=\frac<2\pi> <3>\end \right. \Rightarrow \left[ \begin x_1=cos\left(\frac\pi3\right)=\frac12\\ x_2=cos\left(\frac<2\pi><3>\right)=-\frac12 \end \right. \end Ответ: \(\left\<\pm\frac12\right\>\)

Алгебра и начала математического анализа. 10 класс

Уравнение cos x = a
Уравнение cos x = a
Необходимо запомнить

Уравнение cos x = a.

На этом уроке вы познакомились с понятием «арккосинус числа» и с некоторыми простейшими тождествами.

Арккосинусом числа m (|m|≤1) называется такое число $\alpha$, что: $cos \alpha=m$ и $0\le \alpha \le \pi$.

Арккосинус числа m обозначают: arccos m.

Простейшие тождества для арккосинуса.

1) $cos(arccos m)=m$ для любого $m: |m| \le1$

2) $arccos(cos \alpha)=\alpha$ для любого $\alpha: 0\le\alpha\le\pi$

3) $arccos(-m)=\pi -arccos m$

Вы узнали, как решить простейшее тригонометрическое уравнение $cos\alpha=m$:

Решением такого уравнения являются все числа вида

$\alpha= \pm arccos m + 2 \pi k, k \epsilon Z$

Уравнение имеет решение в том случае, когда $|m|\le1$.

Если $|m|=1$, то уравнение $cos\alpha=m$ имеет на отрезке $[0;2\pi]$ одно решение.

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

таким образом, уравнение ctg x = 0 имеет корни

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)


источники:

http://resh.edu.ru/subject/lesson/6317/main/

http://ya-znau.ru/znaniya/zn/280