Что значит найти все решения системы уравнений

Системы уравнений: определение, виды, примеры решения

Статья знакомит с таким понятием, как определение системы уравнений и ее решением. Будут рассмотрены часто встречающиеся случаи решений систем. Приведенные примеры помогут подробно пояснить решение.

Определение системы уравнений

Чтобы перейти к определению системы уравнений, необходимо обратить внимание на два момента: вид записи и ее смысл. Чтобы понять это, нужно подробно остановиться на каждом из видов, тогда сможем прийти к определению систем уравнений.

Например, возьмем два уравнения 2 · x + y = − 3 и x = 5 , после чего объединим фигурной скобкой такого плана:

2 · x + y = — 3 , x = 5 .

Уравнения, объединенные фигурной скобкой, считаются записями систем уравнений. Они задают множества решений уравнений данной системы. Каждое решение должно являться решением всех заданных уравнений.

Другими словами это означает, что любые решения первого уравнения будут решениями всех уравнений, объединенных системой.

Системы уравнений – это некоторое количество уравнений, объединенных фигурной скобкой, имеющих множество решений уравнений, которые одновременно являются решениями для всей системы.

Основные виды систем уравнений

Видов уравнений достаточно много, как систем уравнений. Для того, чтобы было удобно решать и изучать их, подразделяют на группы по определенным характеристикам. Это поможет в рассмотрении систем уравнений отдельных видов.

Для начала уравнения классифицируются по количеству уравнений. Если уравнение одно, то оно является обычным уравнением, если их более, тогда имеем дело с системой, состоящей из двух или более уравнений.

Другая классификация затрагивает число переменных. Когда количество переменных 1 , говорят, что имеем дело с системой уравнений с одной неизвестной, когда 2 – с двумя переменными. Рассмотрим пример

x + y = 5 , 2 · x — 3 · y = 1

Очевидно, что система уравнений включает в себя две переменные х и у .

При записи таких уравнений считается число всех переменных, имеющихся в записи. Их наличие в каждом уравнении необязательно. Хотя бы одно уравнение должно иметь одну переменную. Рассмотрим пример системы уравнений

2 x = 11 , x — 3 · z 2 = 0 , 2 7 · x + y — z = — 3

Данная система имеет 3 переменные х , у , z . Первое уравнение имеет явный х и неявные у и z . Неявные переменные – это переменные, имеющие 0 в коэффициенте. Второе уравнение имеет х и z , а у неявная переменная. Иначе это можно записать таким образом

2 x + 0 · y + 0 · z = 11

А другое уравнение x + 0 · y − 3 · z = 0 .

Третья классификация уравнений – это вид. В школе проходят простые уравнения и системы уравнений, начиная с систем двух линейных уравнений с двумя переменными. Имеется в виду, что система включает в себя 2 линейных уравнения. Для примера рассмотрим

2 · x — y = 1 , x + 2 · y = — 1 и — 3 · x + y = 0 . 5 , x + 2 2 3 · y = 0

Это основные простейшие линейные уравнения. Далее можно столкнуться с системами, содержащими 3 и более неизвестных.

В 9 классе решают уравнения с двумя переменными и нелинейные. В целых уравнениях повышается степень для увеличения сложности. Такие системы называют системами нелинейных уравнений с определенным количеством уравнений и неизвестных. Рассмотрим примеры таких систем

x 2 — 4 · x · y = 1 , x — y = 2 и x = y 3 x · y = — 5

Обе системы с двумя переменными и обе являются нелинейными.

При решении можно встретить дробно-рациональные уравнения. Например

x + y = 3 , 1 x + 1 y = 2 5

Могут называть просто системой уравнений без уточнения, каких именно. Редко уточняют сам вид системы.

Старшие классы переходят к изучению иррациональных, тригонометрических и показательных уравнений. Например,

x + y — x · y = 5 , 2 · x · y = 3 , x + y = 5 · π 2 , sin x + cos 2 y = — 1 , y — log 3 x = 1 , x y = 3 12 .

Высшие учебные заведения изучают и исследуют решения систем линейных алгебраических уравнений (СЛАУ). Левая часть таких уравнений содержит многочлены с первой степенью, а правая – некоторые числа. Отличие от школьных в том, что количество переменных и количество уравнений может быть произвольным, чаще всего несовпадающим.

Решение систем уравнений

Решение системы уравнений с двумя переменными – это пара переменных, которая при подстановке обращает каждое уравнение в верное числовое неравенство, то есть является решением для каждого уравнения данной системы.

К примеру, пара значений х = 5 и у = 2 являются решением системы уравнений x + y = 7 , x — y = 3 . Потому как при подстановке уравнения обращаются в верные числовые неравенства 5 + 2 = 7 и 5 − 2 = 3 . Если подставить пару х = 3 и у = 0 , тогда система не будет решена, так как подстановка не даст верное уравнение, а именно, мы получим 3 + 0 = 7 .

Сформулируем определение для систем, содержащих одну и более переменных.

Решение системы уравнений с одной переменной – это значение переменной, которая является корнем уравнений системы, значит, все уравнения будут обращены в верные числовые равенства.

Рассмотрим на примере системы уравнений с одной переменной t

t 2 = 4 , 5 · ( t + 2 ) = 0

Число — 2 – решение уравнения, так как ( − 2 ) · 2 = 4 , и 5 · ( − 2 + 2 ) = 0 являются верными числовыми равенствами. При t = 1 система не решена, так как при подстановке получим два неверных равенства 12 = 4 и 5 · ( 1 + 2 ) = 0 .

Решение системы с тремя и более переменными называют тройку, четверку и далее значений соответственно, которые обращают все уравнения системы в верные равенства.

Если имеем значения переменных х = 1 , у = 2 , z = 0 , то подставив их в систему уравнений 2 · x = 2 , 5 · y = 10 , x + y + z = 3 , получим 2 · 1 = 2 , 5 · 2 = 10 и 1 + 2 + 0 = 3 . Значит, эти числовые неравенства верные. А значения ( 1 , 0 , 5 ) не будут решением, так как, подставив значения, второе из них будет неверное, как и третье: 5 · 0 = 10 , 1 + 0 + 5 = 3 .

Системы уравнений могут не иметь решений вовсе или иметь бесконечное множество. В этом можно убедиться при углубленном изучении данной тематики. Можно прийти к выводу, что системы уравнений – это пересечение множеств решений всех ее уравнений. Раскроем несколько определений:

Несовместной называют систему уравнений, когда она не имеет решений, в противном случае ее называют совместной.

Неопределенной называют систему, когда она имеет бесконечное множество решений, а определенной при конечном числе решений либо при их отсутствии.

Такие термины редко применяются в школе, так как рассчитаны для программ высших учебных заведений. Знакомство с равносильными системами углубит имеющиеся знания по решению систем уравнений.

Как решать систему уравнений

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

Системы уравнений

Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных. Формальная запись общего вида может выглядеть так: Фигурная скобка означает, что решение. должно удовлетворять каждому уравнению.

Содержание:

Системы двух уравнений с двумя переменными. Равносильные системы

Пусть даны два уравнения с двумя переменными: f(x; у) = 0 и g(x; у) = 0. Если ставится задача найти все общие решения двух уравнений с двумя переменными, то говорят, что надо решить систему уравнений. Пару значений переменных, обращающую в верное равенство каждое уравнение системы, называют решением системы уравнений. Решить систему — значит найти все ее решения или доказать, что их нет.

Уравнения, образующие систему, объединяются фигурной скобкой. Например, запись

означает, что уравнения образуют систему.

Две системы уравнений называют равносильными, если эти системы имеют одни и те же решения. Если, в частности, обе системы не имеют решений, то они также считаются равносильными. При решении системы уравнений обычно заменяют данную систему другой, более простой или по каким-либо причинам более «удобной», но равносильной первоначальной. Возможность такой замены обусловлена следующими двумя теоремами.

Теорема 5.

Если одно уравнение системы двух уравнений с двумя переменными оставить без изменения, а другое уравнение системы заменить уравнением, ему равносильным, то полученная система будет равносильна заданной.

Следствие:

Если каждое уравнение системы заменить равносильным уравнением, то получится система, равносильная данной.

Так, равносильными будут следующие системы:

Теорема 6.

Если одно уравнение системы двух уравнений с двумя переменными оставить без изменения, а другое уравнение заменить суммой или разностью обоих уравнений системы, то полученная система будет равносильна заданной.

равносильны: мы заменили уравнение х — Зу = 10 суммой двух уравнений заданной системы, а уравнение Зх — 2у = 2 оставили неизменным.

Решение систем двух уравнений с двумя переменными методом подстановки

Метод подстановки заключается в следующем.

1) Одно из уравнений системы преобразуют к виду, в котором у выражен через х (или х через у).

2) Полученное выражение подставляют вместо у (или вместо х) во второе уравнение. В результате получается уравнение с одной переменной.

3) Находят корни этого уравнения.

4) Воспользовавшись выражением у через х (или х через у), находят соответствующие значения у (или х).

Пример:

Решить систему уравнений

Решение:

Из первого уравнения находим х = Зу + 10. Подставим выражение Зу + 10 вместо х во второе уравнение системы. Получим откуда находим Соответствующие значения х найдем из уравнения х = 3у + 10. Если у = 0, то х = 10; если у = -4, то х = -2. Итак, система имеет два решения: (-2; -4) и (10; 0).

Решение систем двух уравнений с двумя переменными методом сложения

Метод сложения основан на теоремах 5 и 6 (см. п. 163). Суть его поясним на примерах.

Пример 1.

Решить систему уравнений

(1)

Решение:

Умножив обе части второго уравнения системы на 3, получим систему

(2)

равносильную данной по теореме 5.

Сложим уравнения полученной системы. По теореме 6, система

(3)

равносильна системе (2). Система (3), в свою очередь, преобразуется к виду

Из уравнения 11х = 55 находим х = 5. Подставив это значение в уравнение 2х + Зу = 7, находим У = -1.

Итак, (5; -1) — решение системы (3), а значит, и решение равносильной ей системы (1).

Пример 2.

Решить систему уравнений

Решение:

Если обе части первого уравнения системы умножить на 2 и вычесть полученное уравнение из второго уравнения системы, то взаимно уничтожатся члены, содержащие переменные во второй степени:

Мы приходим к более простой системе

которую нетрудно решить методом подстановки. Имеем у = х — 1; значит,

Если х = 0, то у = х — 1 = 0 — 1 = -1; если х = 1,5, то у = х — 1 = 1,5 — 1 = 0,5

Ответ: (0; -1) и (1,5; 0,5).

Решение систем двух уравнений с двумя переменными методом введения новых переменных

Метод введения новых переменных применяется при решении систем двух уравнений с двумя переменными одним из следующих способов: 1) вводится одна новая переменная только для одного уравнения системы; 2) вводятся две новые переменные сразу для обоих уравнений.

Пример 1.

Решение:

Положим , тогда и первое уравнение системы примет вид . Решим полученное уравнение относительно новой переменной z:

Таким образом, либо , т.е. , либо

Итак, первое уравнение заданной системы распалось на два уравнения: В соответствии с этим нам предстоит теперь решить совокупность двух систем:

Из первой системы находим х = 2, у = 3, из второй х = 3, у = 2.

Ответ: (2; 3); (3; 2).

Пример 2.

Решить систему уравнений

Решение:

Положим

Тогда и система примет вид

Полученную систему можно решить методом подстановки. Выразив из второго уравнения через , получим . Подставим этот результат в первое уравнение системы (1):

Соответственно находим Итак, нашли два решения системы (1):

Возвращаясь к исходным переменным, получим совокупность двух систем

каждую из которых нетрудно решить методом подстановки (выразив, например, у через х из первого уравнения). Первая система не имеет действительных решений, а вторая имеет два решения: (3; 4) и (4; 3). Они и будут решениями исходной системы.

Графическое решение систем двух уравнений с двумя переменными

Для того чтобы графически решить систему двух уравнений с двумя переменными, нужно в одной системе координат построить графики уравнений и найти координаты точек пересечения этих графиков.

Пример 1.

Решить графически систему линейных уравнений

Решение:

Построим прямую — график уравнения Зх + 2у = 5 — по двум точкам, например (1; 1) и (3; -2) (рис. 1.111).

Построим прямую — график уравнения 2х — у = 8 — по точкам (0; -8) и (4; 0) (рис. 1.111).

Полученные прямые не параллельны, их пересечением служит точка М(3; -2). Значит, (3; -2) — решение заданной системы.

Пример 2.

Решить графически систему уравнений

Решение:

Графиком уравнения является окружность с центром в начале координат и радиусом, равным 5 (см. «Геометрия», п. 107). Графиком уравнения ху = 12 является гипербола (см. п. 82). Построив графики в одной системе координат (рис. 1.112), найдем координаты точек А, В, С, D пересечения окружности и гиперболы: А(4; 3), Б(3; 4), С(-4; -3), D (-3; -4). Значит, решения заданной системы таковы:

Исследование системы двух линейных уравнений с двумя переменными

Пусть даны два линейных уравнения с двумя переменными и все коэффициенты при переменных отличны от нуля:

Графиком каждого из этих линейных уравнений является прямая (см. п. 162). Если , то прямые пересекаются в одной точке; если , то прямые совпадают; если то прямые параллельны и не совпадают.

Отсюда следует, что система двух линейных уравнений с двумя переменными

имеет единственное решение, если ,

имеет бесконечно много решений, если ,

не имеет решении, если

имеет одно решение, так как . Система

не имеет решений, поскольку Система

имеет бесконечно много решений, поскольку

Решение систем двух уравнений с двумя переменными методами умножения и деления

Методы умножения и деления при решении систем уравнений основаны на следующем утверждении.

Теорема 7.

Если обе части уравнения ни при каких значениях (х; у) одновременно не обращаются в нуль, то системы

Пример 1.

Решить систему уравнений

Решение:

Рассмотрим первое уравнение. Левая его часть обращается в 0 при у = 0. Если у = 0, то правая часть обращается в 0 при х = 0. Но при х = 0 левая часть не имеет смысла. Значит, нет таких пар (х; у), при которых обе части первого уравнения системы одновременно обращаются в 0. Поэтому можно заменить первое уравнение произведением обоих уравнений системы, оставив второе уравнение системы без изменений.

Преобразовав первое уравнение этой системы, получим

8 = (х + у) — (х — у), т.е. у = 4.

Подставив найденное значение у во второе уравнение системы, получим

(1)

Решим это иррациональное уравнение (см. п. 150):

Второе значение не удовлетворяет уравнению (1), т. е. является посторонним корнем. Значит, система имеет одно решение

Пример 2.

Решить систему уравнений

Решение:

Ни при каких значениях (х; у) обе части второго уравнения системы не обращаются в нуль одновременно. Значит, можно применить метод деления, перейдя от заданной системы к системе

Из второго уравнения этой системы находим

Подставим найденное выражение у через х в первое уравнение системы. Получим и далее — Из уравнения находим, что если х = 5, то у = 3. Итак, (5; 3) — решение системы.

Системы показательных и логарифмических уравнений

Решение систем показательных и логарифмических уравнений не содержит каких-либо принципиально новых моментов. Используются обычные приемы решения логарифмических и показательных уравнений (см. пп. 151, 152) и обычные приемы решения систем уравнений (см. пп. 164—166, 169).

Пример:

Решить систему уравнений

Решение:

Рассмотрим первое уравнение системы. Воспользуемся тем, что

(см. п. 121). Тогда уравнение можно записать в виде и далее (см. п. 120), откуда Теперь рассмотрим второе уравнение системы:

Задача свелась к решению следующей системы уравнений:

Подставим 15у + 4 вместо в первое уравнение:

(15у + 4)у = 256,

Если у = 4, то откуда находим Если то

т.е. — это уравнение не имеет действительных корней.

Итак, мы нашли две пары значений переменных:

Так как заданная система содержит выражения то должны выполняться условия х > 0, у > 0. Поэтому пара исходной системе не

Ответ: (8; 4).

Системы тригонометрических уравнений с двумя переменными

При решении систем тригонометрических уравнений используются обычные приемы решения систем уравнений и формулы тригонометрии.

Пример:

Решить систему уравнений

Решение:

Положим Тогда получим систему Из первого уравнения этой системы находим Подставив выражение вместо во второе уравнение системы, получим

Если

Если то

Итак, мы получили две пары решений

Так как то нам остается решить две системы уравнений:

Из уравнения sin х = 1 находим

Из уравнения находим

Значит, решения системы имеют вид

Из уравнения находим

Из уравнения cos у = 1 находим

Значит, решения системы имеют вид

Замечание:

При решении систем тригонометрических уравнений следует использовать различные обозначения для параметра в записи решений первого и второго уравнений системы. Иными словами, если в первом уравнении системы при записи решения в качестве параметра использована буква k, то для второго уравнения эту букву уже использовать нельзя — в рассмотренном примере для этой цели использовалась буква .

Системы трех уравнений с тремя переменными

Рассмотрим систему трех уравнений с тремя переменными

Решением такой системы называют всякую тройку чисел, удовлетворяющую каждому уравнению системы.

Для систем трех уравнений с тремя переменными применяются методы решения, аналогичные тем, что используются для систем двух уравнений с двумя переменными.

Пример:

Решить систему уравнений

Решение:

Применим метод подстановки. Выразим из первого уравнения х через у и z и подставим результат во второе и третье уравнения системы.

Последние два уравнения полученной системы в свою очередь образуют систему двух уравнений с двумя переменными. Решим эту систему методом подстановки.

Из уравнения находим . Из уравнения у = z — 3 получаем соответственно а из уравнения х = 2 — у — z находим

Итак, получили два решения исходной системы: (3; -2; 1) и (-1; 0; 3).

Решение задач с помощью составления систем уравнений

3адача 1.

Два пешехода идут навстречу друг другу из двух пунктов, расстояние между которыми равно 30 км. Если первый выйдет на 2 ч раньше второго, то встреча произойдет через 2,5 ч после выхода второго. Если же второй пешеход выйдет на 2 ч раньше первого, то встреча произойдет через 3 ч после выхода первого. С какой скоростью идет каждый пешеход?

Решение:

Пусть х км/ч — скорость первого пешехода, а у км/ч — скорость второго пешехода. Если первый выйдет на 2 ч раньше второго, то, согласно условию, он будет идти до встречи 4,5 ч, тогда как второй — 2,5 ч. За 4,5 ч первый пройдет путь 4,5л: км, а за 2,5 ч второй пройдет путь 2,5у км. Их встреча означает, что суммарно они прошли путь 30 км, т. е.

4,5х + 2,5у = 30 — первое уравнение.

Если второй выйдет на 2 ч раньше первого, то, согласно условию, он будет идти до встречи 5 ч, тогда как первый — 3 ч. Рассуждая, как и выше, придем ко второму уравнению:

В итоге получаем систему уравнений

откуда находим х = 5, у = 3.

Ответ: первый пешеход идет со скоростью 5 км/ч, а второй — 3 км/ч.

Задача 2.

У старшего брата было вдвое больше денег, чем у младшего. Они положили свои деньги на год на счета в разные банки, причем младший брат нашел банк, который дает на 5% годовых больше, чем банк старшего брата. Сняв свои деньги со счетов через год, старший брат получил 4600 руб., а младший — 2400 руб. Сколько денег было бы у братьев в сумме, если бы они с самого начала поменяли свои банки?

Решение:

Пусть х руб. — сумма денег, которую положил в банк младший брат, тогда 2х руб. — сумма денег, которую положил в банк старший брат.

Пусть, далее, банк старшего брата дает у% годовых, тогда банк младшего брата дает (у + 5)% годовых.

Значит, через год на счету старшего брата будет руб., а на счету младшего брата будет руб.

В итоге приходим к системе уравнений

Решив эту систему, получим х = 2000, у = 15.

Осталось получить ответ на вопрос задачи: сколько денег было бы у братьев в сумме, если бы они с самого начала поменяли свои банки? В этом случае младший брат положил бы свои 2000 руб. в банк под 15% годовых, а старший — 4000 руб. в банк под 20% годовых. Младший брат в конце года получил бы 2300 руб., а старший — 4800 руб. Всего у них стало бы 7100 руб.

Ответ: 7100 руб.

Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:

Смотрите также дополнительные лекции по предмету «Математика»:


источники:

http://skysmart.ru/articles/mathematic/reshenie-sistem-uravnenij

http://natalibrilenova.ru/sistemyi-uravnenij/