Что значит нормальное уравнение прямой

Нормальное уравнение прямой

В данной статье мы рассмотрим нормальное уравнение прямой на плоскости. Приведем примеры построения нормального уравнения прямой по углу наклона нормального вектора прямой от оси Ox и по расстоянию от начала координат до прямой. Представим метод приведения общего уравнения прямой к нормальному виду. Рассмотрим численные примеры.

Пусть на плоскости задана декартова прямоугольная система координат. Тогда нормальное уравнение прямой L на плоскости представляется следующей формулой:

xcosφ+ysinφ−r=0,(1)

где r− расстояние от начала координат до прямой L, а φ− это угол между нормальным вектором n прямой L и осью Ox. (Если r>0, то нормальный вектор n направлен в сторону прямой L).

Выведем формулу (1). Пусть на плоскости задана декартова прямоугольная система координат и прямая L (Рис.1). Проведем через начало координат прямую Q, перпендикулярную прямой L, и точку пересечения обозначим через R. На этой прямой выделим единичный вектор n, с направлением, совпадающим с вектором . (Если точки O и R совпадают, то направление n можно взять произвольным).

Выразим уравнение прямой L через два параметра: длину отрезка и угол φ между вектором n и осью Ox.

Так как вектор n является единичным вектором, то его проекции на Ox и Oy будут иметь следующие координаты:

n=<cosφ, sinφ>.(2)

Обозначим через r расстояние от начала координат до точки R. Рассмотрим, теперь, точку M(x,y). Точка M лежит на прямой L тогда и только тогда, когда проекция вектора на прямую R равна r, т.е.

(3)

Скалярное произведение векторов n и имеет следующий вид:

,(4)

где − обозначен скалярное произведение векторов n и , а | · |− норма (длина) вектора, α−угол между векторами n и .

Поскольку n единичный вектор, то (4) можно записать так:

.(5)

Учитывая, что n=<cosφ, sinφ>, , мы получим:

.(6)

Тогда из уравнений (3), (5), (6) следует:

xcosφ+ysinφ=r
xcosφ+ysinφ−r=0.(7)

Мы получили нормальное уравнение прямой L. Уравнение (7) (или (1)) называется также нормированным уравнением прямой .

Пример 1. Построить нормальное уравнение прямой, нормальный вектор которого с осью Ox имеет угол φ=60°, а расстояние от начала координат до прямой составляет 4.

Решение. Имеем: φ=60°, r=4. Вычисляем:

,

Подставляя вычисленные значения в (7) получим:

.
.

Приведение общего уравнения прямой на плоскости к нормальному виду

Так как уравнения (1) и (8) должны определять одну и ту же прямую (Замечание 1 статьи «Общее уравнение прямой на плоскости»), то существует такое число t, что

tAx=cosφ, tB=sinφ, tC=−r.(9)

Возвышая в квадрат первые два равенства в (9) и складывая их, получим:

(tA) 2 +(tB) 2 =cos 2 φ+sin 2 φ=1.(10)

Упростим выражение и найдем t:

t 2 A 2 +t 2 B 2 =t 2 (A 2 +B 2 )=1,
.(11)

Знаменатель в (11) отличен от нуля, т.к. хотя бы один из коэффициентов A, B не равен нулю (в противном случае (8) не представлял бы уравнение прямой).

Выясним, какой знак имеет t. Обратим внимание на третье равенство в (9). Так как r−это расстояние от начала координат до прямой, то r≥0. Тогда произведение tC должна иметь отрицательный знак. Т.е. знак t в (11) должен быть противоположным знаку C.

Подставляя в (1) вместо cosφ, sinφ, и −r значения из (9), получим tAx+tBy+tC=0. Т.е. для приведения общего уравенения прямой к нормальному виду, нужно заданное уравнение умножить на множитель (11). Множитель (11) называется нормирующим множителем .

Пример 2. Задано общее уравнение прямой

Построить нормальное уравнение прямой.

Решение. Из уравнения (12) можно записать: A=2, B=−3, C=4. Вычислим t из равенства (11):

Так как C>0, то знак t отрицательный:

Умножим уравнение (12) на t:

Ответ. Нормальное уравнение прямой (12) имеет следующий вид:

Отметим, что число является расстоянием от начала координат до прямой (12).

Нормальное уравнение прямой

Как привести уравнение прямой к нормальному виду

Для того, чтобы найти нормальное уравнение прямой, заданной уравнением Ax+By+C=0, необходимо разделить данное уравнение на

при этом знак «минус» берётся, когда C>0, а знак «плюс» берётся, когда C x cosα + y sinα − p = 0

Это и есть нормальное уравнение прямой

То же самое получим, если обе части уравнения Ах + By + С = 0 умножим на число

x cosα + y sinα − p = 0

Графически это можно представить следующем образом

Прямая AB с полярным расстоянием p (длина перпендикуляра, опущенного на прямую из начала координат OK) и полярным углом α (угол измеренный в положительном направлении между положительным направлением оси Ox и направлением этого перпендикуляра) представляется уравнением:

x cosα + y sinα − p = 0

Если p=0, то прямая проходит через начало координат, а угол

задаёт угол наклона прямой.

Пример 1
Привести уравнение 3x-4y+5=0 к нормальному виду. Здесь A=3, B=-4, C=5>0. Поэтому делим на
получаем

Это уравнение вида

x cosα + y sinα − p = 0

p=1, $\cos \alpha = — \frac<3><5>$, $\sin \alpha = \frac<4><5>$

Пусть прямая AB стоит от начала оси координат на расстоянии OK=$\sqrt 2 $ и пусть луч OK составляет с лучом OX угол равный α=135 0

тогда нормальное уравнение прямой AB будет

Если умножить полученное уравнение на $-\sqrt 2 $, получим уравнение прямой AB в виде

x-y+2 = 0 , но это уравнение не является нормальным уравнением прямой.

Нормальное уравнение прямой на плоскости, расстояние от точки до прямой

Пусть дана некоторая прямая L. Проведём через начало координат прямую n, перпендикулярно данной и назовём её нормалью к прямой L. Буквой N отметим точку, в которой нормаль пересекает прямую L. На нормали введём направление от точки O к точке N.

Обозначим через угол, на которой нужно повернуть против часовой стрелки ось Ox до совмещения её положительного направления с направлением нормали, через p длину отрезка ON.

. (1)

будет нормальным уравнением прямой.

С помощью нормального уравнения прямой можно определить расстояние от данной точки плоскости до прямой. Пусть — точка, не лежащая на прямой, заданной нормальным уравнением. Требуется определить расстояние d от точки до прямой. Это расстояние определяется по формуле

. (2)

Общее уравнение прямой можно привести к нормальному виду. Пусть

— общее уравнение прямой, а

— её нормальное уравнение.

Так как оба уравнения определяют одну и ту же прямую, их коэффициенты пропорциональны.

Очевидно, для получения нормального уравнения следует все члены общего уравнения умножить на постоянный множитель , вычисляемый по формуле

. (3)

В этой формуле берётся знак, противоположный знаку C в общем уравнении прямой.

Таким образом, получаем уравнение

, (4)

которое и будет нормальным уравнением прямой на плоскости.

Пример 1. Привести общее уравнение прямой к нормальному виду.

Решение. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем:

.

Пример 2. Привести общее уравнение прямой к нормальному виду.

Решение. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем:

.

Пример 3. Найти расстояние от точки до прямой .

Решение. Приведём данное уравнение к нормальному виду. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем нормальное уравнение:

.

По формуле (2) находим искомое расстояние:

.


источники:

http://www.matematicus.ru/vysshaya-matematika/analiticheskaya-geometriya-na-ploskosti/normalnoe-uravnenie-pryamoj

http://function-x.ru/line6.html