Что значит упростить уравнение 5 класс

Упрощения выражений — формулы и примеры для 5 класса

Общие сведения

Принцип решения любой математической задачи основан на получении оптимального ответа, который в дальнейшем возможно будет применить для других целей (доказательства теорем, тождеств, получения промежуточных величин). Оптимизация результата состоит из операций, имеющих собственный приоритет. Последний соответствует порядковому номеру элемента в списке:

  1. Раскрытие скобок.
  2. Возведение в степень, которая может быть целой и представленной в виде обыкновенной дроби (корень).
  3. Произведение.
  4. Частное или деление.
  5. Сумма.
  6. Разность.

В первом случае компоненты выражения группируются посредством скобок. В математике принято использовать только круглые, т. е. «()». Однако допускаются квадратные «[]», но некоторые начинающие математики иногда группируют элементы выражения при помощи фигурных скобок «<>». Это делать не рекомендуется, поскольку последние обозначают в дисциплинах с физико-математическим уклоном общее решение.

Иногда новички не знают, что возведение в степень и извлечение корня являются двумя эквивалентными операциями. Это утверждение легко доказывается. Например, квадратный корень из 36 эквивалентен 6. Знак радикала можно заменить степенью, имеющей вид обыкновенной или десятичной дроби, т. е. (36)^(½)=√36=6.

Произведение не всегда обладает высшим приоритетом, чем деление. Для удобства вычислений можно сначала разделить, а затем умножить. Например, требуется найти значение выражения «3*81:9». Его можно решить, основываясь на приоритетах или удобстве вычислений (оптимизации). Для сравнения расчетов нужно решить равенство двумя способами:

При решении получены одинаковые результаты. Следует отметить, что простой метод — второй. Операции сложения и вычитания имеют одинаковый приоритет. Упростить выражение — означает, что необходимо преобразовать его из сложной формы представления в простую. Иными словами, операция называется оптимизацией результата.

Оптимизация выражений применяется при решении уравнений (равенств с неизвестными величинами) любой сложности и доказательства теорем. Это базовые знания, необходимые для упрощения выражений в 5 классе.

Базовые знания

Для освоения определенного направления в любой дисциплине необходимы определенные знания. Например, невозможно выполнить умножение одного числа на другое, не зная таблицы умножения. Это касается и оптимизации тождеств. Основные элементы теории, которые нужно знать для выполнения операции:

  1. Приведение общих компонентов.
  2. Правила раскрытия скобок.
  3. Работа со степенями.
  4. Действия над знаменателями обыкновенных дробей и их сокращение.
  5. Соотношения сокращенного умножения.

По этим пунктам можно упрощать алгебраические целочисленные и дробные выражения любой сложности. Однако каждый из элементов необходимо разобрать подробно, чтобы не совершать ошибок при расчетах.

Приведение подобных элементов

Практически во всех заданиях нужно складывать общие элементы, полученные при расчетах или раскрытии скобок. Для этой операции необходимо руководствоваться следующими правилами:

  1. Приведению подлежат только эквивалентные компоненты.
  2. Операция выполняется только при арифметическом сложении и вычитании, а не делении и умножении.
  3. Компоненты равные по модулю, но противоположные по знаку, уничтожаются, т. к. в сумме дают нулевое значение.
  4. В любом выражении можно использовать противоположные числа, поскольку их общее значение не влияет на результат.

В первом случае нужно привести пример тождества следующего вида: 2+5t+4+5t^2+2t-4t^2. Чтобы его упростить, необходимо сгруппировать подобные компоненты, т. е. (2+4)+(5t+2t)+(5t^2-4t^2). Далее следует сложить компоненты между собой, т. е. 6+7t+t^2.

Группу «5t^2-4t^2» можно назвать операцией сложения, хотя на самом деле она называется разностью, которую записывают и в виде суммы: 5t^2+(-4t^2). Раскрывая скобки в последнем тождестве, можно получить упрощенную форму: 5t^2-4t^2. Далее необходимо ознакомиться с правилами раскрытия скобок.

Раскрытие скобок

Операция раскрытия скобок для выполнения дальнейших вычислений очень часто применяется в различных дисциплинах с физико-математическим уклоном. Она осуществляется по следующим правилам:

  1. Произведение на сумму или разность: r(s+t)=rs+rt или r(s-t)=rs-rt.
  2. Деление суммы или разности: (s+t)/r=s/r+t/r или (s-t)/r=s/r-t/r.
  3. Сгруппировать любые компоненты и поменять их местами с сохранением логики тождества: 3+4+11+7+19+33+23=(3+4+23)+(19+11)+(7+33)=30+30+40=100.

В первом и втором случаях операции называют вынесением общего множителя за скобки. Последнее правило группировки действует не на все компоненты, т. е невозможно выполнить объединение 2 и 3 элементов (5 и 4) в выражении «4:5+4-1+7». Для доказательства следует решить его двумя способами:

Выражение, решенное первым и вторым способом, имеет различные ответы, поскольку 10,8>6[4/9]. Объяснение этому несоответствию — нарушение логики тождества. Следующим компонентом, составляющим базу для упрощения тождеств, является работа со степенями.

Работа со степенями

В математических тождествах иногда необходимо упростить степенные выражения. Однако большинство математиков-новичков делает много ошибок, поскольку не знают основных правил:

Нулевое значение в такой же степени является пустым множеством, т. е. его не существует. Cтепень может быть представлена в виде обыкновенной или десятичной дроби. В последнем случае для удобства ее необходимо перевести к первому типу. Если указано значение степенного показателя, равное 3/5, нужно величину возвести в куб, а затем изъять корень 5 порядка.

Оптимизация обыкновенных дробей

Практически во всех заданиях или тренажерах большая часть примеров представлена в виде обыкновенной дроби вида s/t, которую нужно сократить. Иногда необходимо произвести операции произведения или деления одной величины на другую (буквенное обозначение — s/t и w/v), а также сложения и вычитания. При последних операциях всегда необходимо приводить дробные тождества к общему знаменателю. Эта операция осуществляется следующим образом:

  1. Если знаменатель одной дроби делится нацело на другой, следует оставить первый, записав множитель над второй величиной. Например, 4/5 + 4/25=(4*5+4*1)/25=24/25.
  2. Когда v и t не делятся друг на друга, не имеют общих множителей, их нужно перемножить между собой, записав множители над числителями.
  3. Если v и t содержат общие множители, единый знаменатель эквивалентен наименьшему общему кратному (НОК).

В последнем случае каждый знаменатель необходимо разложить на множители, затем перемножить между собой все неповторяющиеся компоненты. Следующим элементом, который необходимо для преобразования тождеств, являются формулы сокращенного умножения.

Сокращенное умножение

Для решения задач очень часто применяются формулы сокращенного умножения. В некоторых случаях тождества «собираются» в них или, наоборот, для сокращения нужно расписать элементы по множителям (правая часть равенства). Соотношения имеют следующий вид:

  1. Квадрат суммы и разности двух чисел: (w+v)^2=w^2+2wv+v^2 и (w-v)^2=w^2-2wv+v^2.
  2. Разность квадратов и кубов: w^2-v^2=(w+v)(w-v) w^3-v^3=(w-v)(w^2+wv+v^2).
  3. Куб суммы компонентов и их разности: (w+v)^3=w^3+3wv^2+3vw^2+v^3 и (w-v)^3=w^3-3wv^2+3vw^2-v^3.

Cледует отметить, что в некоторых случаях к формуле сокращенного умножения тождество следует «подвести», воспользовавшись свойством отнимания и прибавления одного и того же значения. Например, необходимо из некоторого выражения (2t^2-60) выделить одну из формул. Это делается следующим образом:

  1. Выносится общий множитель за скобки: 2(t^2-30).
  2. Прибавляется и отнимается 6: 2(t^2-30+6-6).
  3. Группируются элементы и записывается формула: 2(t^2-36+6)=2[(t-6)(t+6)+6].

Иногда в более сложных выражениях приходится применять несколько соотношений. Если тождество является дробью, обязательно следует проверить условие неравенства знаменателя нулевой величине. Для этой цели следует решить соответствующее уравнение, вычислив его корни. Последние должны привести к пустому множеству, т. к. на 0 делить нельзя. Вот именно их и необходимо исключить, записав условие, т. е. t!=-9.

Таким образом, для грамотной оптимизации математических выражений необходимо пользоваться рекомендациями специалистов, правилами и методиками, поскольку их несоблюдение могут существенно повлиять на результаты вычислений.

Упрощения алгебраических выражений

Что значит упростить алгебраическое выражение

Алгебраическое выражение — одна или несколько алгебраических величин (чисел и переменных), которые объединены с помощью знаков арифметических действий в виде сложения, вычитания, умножения, деления, извлечения корня, возведения в степень (при целых значениях показателей корня и степени), знаков последовательности, определяющих порядок применения данных операций (скобки разного вида).

Обязательным условием для алгебраического выражения является конечное число величин, которые его составляют. Данный принцип пригодиться математикам для решения задач в средних классах школы.

Упростить выражение — это значит уменьшить число арифметических действий, необходимых для вычисления значения данного выражения с учетом определенных значений переменных.

Правила упрощения алгебраических выражений

Существуют основные методы в алгебре для того, чтобы упростить алгебраическое выражение:

  • приведение подобных;
  • разложение на множители;
  • сокращение дроби;
  • сложение и вычитание дробей;
  • умножение и деление дробей.

В процессе приведения выражения в более простую форму следует использовать полезные советы:

  1. При наличии подобных их рекомендуется привести, при этом не имеет значения то, в какой момент они образовались.
  2. При появлении первой возможности для сокращения дробей, рекомендуется ей сразу воспользоваться. Исключением являются дроби с одинаковыми знаменателями, которые требуется вычитать или суммировать. Такие дроби можно сократить после выполнения необходимых действий.

Приведение подобных

Приведение подобных слагаемых в теории заключается в сложении их коэффициентов и приписывании буквенной части.

Подобными являются слагаемые (одночлены), которые обладают буквенной частью.

В выражении 2ab+3ab+b одночлены 2ab и 3ab являются подобными слагаемыми.

Привести подобные — значит, выполнить сложение нескольких подобных слагаемых для получения в результате одного слагаемого.

К примеру, приведем слагаемые:

2 a + 3 b — a + 8 b + 7 a = 8 a + 11 b

Заметим, что числа в таких слагаемых умножают на буквы. Данные числа носят названия коэффициентов.

Рассмотрим выражение с квадратной степенью:

Здесь число 3 является коэффициентом.

Разложение на множители

Разложить выражение на множители можно, если вынести общий множитель за скобки, применить формулы сокращенного умножения и другие.

a b 2 + a 2 c = a b 2 + a c

4 x 2 — 16 x y + 16 y 2 = 4 x 2 — 4 x y + 4 y 2 = 4 x — 2 y 2

В распространенных случаях разложение на множители следует за приведением подобных при упрощении выражений. В итоге получаются произведения. Чтобы это понять, отдельно нужно упомянуть правила действия с дробями, а именно, при сокращении дроби числитель и знаменатель требуется записать, как произведения.

Сокращение дроби

В процессе сокращения дроби допустимо выполнять умножение или деление числителя и знаменателя дроби на одинаковое число, отличное от нуля, в результате чего величина дроби остается прежней.

Объяснение алгоритм действий при сокращении дробей:

  • разложение на множители числителя и знаменателя;
  • при наличии в числителе и знаменателе общих множителей их допустимо исключить из выражения.

Пример 5

a a + b a 2 = a a + b a · a = a + b a

Важно заметить, что сокращению подлежат исключительно множители.

Озвученное правило является следствием ключевого свойства дроби. Оно состоит в допустимости умножения или деления числителя и знаменателя дроби на одно и то же число, которое не равно нулю. В результате значение дроби останется без изменений.

Существует простой способ, руководствуясь которым можно определить, разложено ли выражение на множители. Арифметическое действие, выполняемое в последнюю очередь при вычислении значения выражения, считается «главным».

Данное правило состоит в том, что, когда при подстановке каких-либо чисел на замену буквам и вычислении значения выражения последнее действие представляет собой умножение, можно заключить, что перед нами произведение, то есть выражение разложено на множители. В том случае, когда на последнем шаге в процессе расчетов выполняется сложение или вычитание, разложение выражения на множители не выполнено, то есть сокращение не допускается.

Сложение и вычитание дробей

При сложении и вычитании обыкновенных дробей требуется найти общий знаменатель, умножить каждую из дробей на недостающий множитель и сложить или вычесть числители:

a b + c d = a · d + c · b b · d ;

a b — c d = a · d — c · b b · d

Разберем правило на конкретных примерах. Вычислим:

Заметим, что знаменатели являются взаимно простыми, то есть не имеют общих множителей. Таким образом, наименьший общий множитель данных чисел соответствует их произведению. В результате:

2 · 4 — 1 · 3 3 · 4 = 5 12

В данном случае общим множителем является число 24. Выполним преобразования и упростим выражение:

3 · 3 + 2 · 4 — 5 · 12 24 = — 43 24

В данном примере следует смешанные дроби записать в виде неправильных. Далее можно упростить выражение по стандартному алгоритму:

3 4 7 — 1 2 3 = 25 · 3 7 — 5 · 7 3 = 75 — 35 21 = 40 21

Разберем самостоятельный случай, когда знаменатели не содержат буквы. При этом алгоритм действий такой же, как и при действиях с обыкновенными дробями:

  • определить общий множитель;
  • умножить каждую дробь на недостающий множитель;
  • сложить или вычесть числители.

Здесь общий множитель равен 12. Тогда:

a 2 b · 3 4 + a · 2 6 = 3 a 2 b + 2 a 12

Далее можно привести подобные в числители, и разложить на множители при их наличии:

a 2 b 4 + a 6 = 3 a 2 b + 2 a 12 = a 3 a b + 2 12

Когда знаменатели содержат буквы, схема действий существенно не меняется:

  • разложение знаменателей на множители;
  • определение одинаковых множителей;
  • выделение всех общих множителей по одному разу;
  • умножение общих множителей на оставшиеся множители, которые не являются общими.

Пример 7

Рассмотрим пример, когда требуется упростить выражение:

1 a b 2 + 1 a 2 b

Разложим знаменатели на множители:

a b 2 = a · b · b a 2 b = a · a · b

Вычислим единые множители:

a b 2 = a ¯ · b ¯ ¯ · b a 2 b = a ¯ · a · b ¯ ¯

Затем можно записать общие множители и выполнить умножение:

a ¯ · b ¯ ¯ · a · b = a 2 b 2

Общим знаменателем является a 2 b 2 . Умножим первую дробь на а, вторую — на b:

1 a b 2 · a + 1 a 2 b · b = a + b a 2 b 2

Умножение и деление дробей

Умножение и деление дробей выполняют таким образом:

a b · c d = a · c b · d ;

a b : c d = a · d b · c

Арифметические действия выполняют в следующем порядке:

  • вычисление степени;
  • умножение и деление;
  • сложение и вычитание.

Важно заметить, что при наличии скобок, операции, которые в них заключены, необходимо выполнить в первую очередь. Далее можно приступать к раскрытию скобок. Когда имеется несколько скобок с арифметическими действиями, которые нужно умножить или разделить, в начале проводят вычисления в каждой из скобок, а затем умножение или деление полученных результатов. При наличии внутренних скобок, заключенных в скобки, действия в них выполняют в первую очередь.

2 + 3 2 — 16 2 1 — 8 5 3 3

Используя правило умножения и деления дробей, получим:

2 + 3 2 — 16 2 1 — 8 5 3 3 = 2 + 9 — 16 2 1 — 8 5 3 3 = — 5 2 1 — 8 5 3 3 = 25 · 1 — 8 5 3 3 = 25 · — 3 5 3 3 = 25 5 · — 3 5 3 3 = 5 · — 3 3 3 = 5 · — 1 3 = — 5 3 = — 125

Во многих примерах имеются не только цифры, но и буквы. В этом случае выполняются алгебраические действия, в том числе, приведение подобных, сложение, сокращение дробей и другие операции. Отличия можно заметить при разложении многочленов на множители. Для этого следует пользоваться формулами сокращенного умножения или вынесением единого множителя за скобки.

Ключевой задачей при работе с такими выражениями является запись выражений в виде произведения или частного.

Попробуем упростить выражение:

x y — y x · 5 x y x + y

Так как имеются скобки, следует начать преобразования именно с них. Упростим разность дробей, которая в них записана, чтобы получить вместо нее произведение или частное. Приведем дроби к единому знаменателю и определим сумму:

x · x y — y · y x = x · x — y · y y x = x 2 — y 2 y x = x — y x + y y x

Заметим, что дальнейшие преобразования не приведут к упрощению данного выражения. Причина этого заключается в том, что каждый из множителей является элементарным. В результате:

x y — y x · 5 x y x + y = x — y x + y y x · 5 x y x + y

x — y x + y y x · 5 x y x + y = x — y x + y · 5 x y y x x + y

x — y x + y · 5 x y y x x + y = 5 x — y

Пояснения на примерах

Требуется упростить выражения:

a — 2 b + 3 b + 6 a ;

a + a b — 3 a + 2 b a ;

a 2 b + a b 2 — a b + 2 a b 2 .

Приведем подобные и упростим выражения:

a ¯ — 2 b ¯ ¯ + 3 b ¯ ¯ + 6 a ¯ = 7 a + b

a ¯ + a b ¯ ¯ — 3 a ¯ + 2 b a ¯ ¯ = — 2 a + 3 a b

Заметим, что ab и 2ba являются подобными по той причине, что:

В результате можно сделать вывод, что данные слагаемые обладают одинаковой буквенной частью.

a 2 b + a b 2 ¯ — a b + 2 a b 2 ¯ = a 2 b + 3 ¯ a b 2 ¯ — a b .

Требуется упростить выражения:

a 3 b 4 — 3 a b 2 + 8 a 2 b 3

4 x 2 — 16 x y + 16 y 2

a 2 + 6 a y + 9 y 2 — 4

Путем разложения на множители упростим данные выражения:

a b 2 + a 2 c = a b 2 + a c

a 3 b 4 — 3 a b 2 + 8 a 2 b 3 = a b 2 a 2 b 2 — 3 + 8 a b

4 x 2 — 16 x y + 16 y 2 = 4 x 2 — 4 x y + 4 y 2 = 4 x — 2 y 2

a 2 + 6 a y + 9 y 2 — 4 = a + 3 y 2 — 2 2 = a + 3 y — 2 a + 3 y + 2

a 2 — b 2 a 2 + 2 a b + b 2

72 30 = 2 · 2 · 2 · 3 · 3 2 · 3 · 5 = 2 · 2 · 2 · 3 · 3 2 · 3 · 5 = 2 · 2 · 3 5 = 12 5

a a + b a 2 = a a + b a · a = a + b a

a 2 — b 2 a 2 + 2 a b + b 2 = a — b a + b a + b 2 = a — b a + b a + b a + b = a — b a + b

x 2 + 2 x y + y 2 x 2 — y 2

x 2 y — 4 y x 2 — 4 x + 4

a 3 — b 3 a 2 + a b + b 2

x 2 — 1 x — 1 = x 2 x = x

В первую очередь выполним разложение на множители:

x 2 — 1 x — 1 = x — 1 x + 1 x — 1 = x + 1

x 2 + 2 x y + y 2 x 2 — y 2 = x + y 2 : x + y x — y x + y : x + y = x + y x — y

x 2 y — 4 y x 2 — 4 x + 4 = y x 2 — 4 x — 2 2 = y x — 2 x + 2 x — 2 2 = y x + 2 x — 2

a 3 — b 3 a 2 + a b + b 2 = a — b a 2 + a b + b 2 a 2 + a b + b 2 = a — b .

Дано выражение, которое требуется упростить:

1 x y — 2 x 2 — x 4 x 2 — y 2

В данном случае требуется разложить знаменатели на множители. Первый знаменатель записан так, что можно вынести за скобки х. Второй знаменатель содержит разность квадратов. Выполним преобразования:

1 x y — 2 x 2 — x 4 x 2 — y 2 = 1 x y — 2 x — x 2 x — y 2 x + y

Рассмотрим выражение на наличие общих множителей:

y — 2 x = — 2 x — y

1 x y — 2 x 2 — x 4 x 2 — y 2 = 1 x y — 2 x — x 2 x — y 2 x + y = = 1 x y — 2 x — x — y — 2 x 2 x + y = 1 x y — 2 x + x y — 2 x 2 x + y

Заметим, что при переносе слагаемых, заключенных в скобках, изменился знак перед дробью. Приведем выражения к единому знаменателю:

1 x y — 2 x + x y — 2 x 2 x + y = 2 x + y + x 2 x y — 2 x 2 x + y = x 2 + 2 x + y x y 2 — 4 x 2

Ответ: x 2 + 2 x + y x y 2 — 4 x 2

x 8 — x 3 + 1 x 2 + 2 x + 4

Воспользуемся формулой сокращенного умножения, а именно, разностью кубов:

x 8 — x 3 + 1 x 2 + 2 x + 4 = x 2 3 — x 3 + 1 x 2 + 2 x + 4

Заметим, что в знаменателе дроби расположено выражение, которое называют неполным квадратом суммы:

x 2 + 2 x + 4 = x 2 + 2 · x + 2 2

Второе по счету слагаемое в неполном квадрате суммы является произведением первого и последнего. Неполный квадрат суммы представляет собой множитель, который входит в состав разложения разности кубов:

x 8 — x 3 + 1 x 2 + 2 x + 4 = x 2 3 — x 3 + 1 x 2 + 2 x + 4 = x 2 — x x 2 + 2 x + 4 + + 1 · 2 — x x 2 + 2 x + 4 = x + 2 — x 2 — x x 2 + 2 x + 4 = 2 8 — x 3

Требуется упростить выражения:

3 a + 1 4 + 2 a — 3 10

2 x 2 — 5 3 + 3 x + 2 2 — 2 x 2 — 2 x — 1 4

5 a b — 3 · 2 a b 15 = 5 a b — 6 a b 15 = — a b 15

5 3 a + 1 + 2 2 a — 3 20 = 15 a + 5 + 4 a — 6 20 = 19 a — 1 20

4 2 x 2 — 5 + 6 3 x + 2 — 3 2 x 2 — 2 x — 1 12 = = 8 x 2 ¯ — 20 ¯ ¯ + 18 x ¯ ¯ ¯ + 12 ¯ ¯ — 6 x 2 ¯ + 6 x ¯ ¯ ¯ + 3 ¯ ¯ 12 = 2 x 2 — 5 + 24 x 12

Дано выражение, которое требуется упростить:

1 a 2 x 2 b 3 y — 1 a x 3 b 2 y 4

При наличии в знаменателях одного и того же множителя, возведенного в разные степени, то в общем знаменателе данный множитель будет обладать самой большой из имеющихся степеней. Применительно к этой задаче, общий знаменатель будет состоять из следующих выражений:

a во второй степени;

x в третьей степени;

b в третьей степени;

y в четвертой степени.

В результате получим:

1 · x · y 3 a 2 x 2 b 3 y — 1 · a · b a x 3 b 2 y 4 = x y 3 — a b a 2 x 3 b 3 y 4

Ответ: x y 3 — a b a 2 x 3 b 3 y 4

Нужно упростить выражение:

t + 3 3 t — 1 + t + 3 t + 1 : t 2 + 3 t 1 — 3 t + t 2 + 3 t + 1

Исключить ошибки можно, если расписать заранее порядок операций. В первую очередь целесообразно суммировать дроби, расположенные в скобках. В результате будет получена только одна дробь. Далее можно приступить к делению дробей. Полученный итог следует прибавить к последней дроби.

Выглядит этот алгоритм таким образом:

t + 3 3 t — 1 + t + 3 t + 1 ⏞ 1 : t 2 + 3 t 1 — 3 t ⏞ 2 + t 2 + 3 t + 1 ⏞ 3 .

t + 3 · t + 1 3 t — 1 + t + 3 · 3 t — 1 t + 1 : t 2 + 3 t 1 — 3 t + t 2 + 3 t + 1 = = t + 3 t + 1 + t + 3 3 t — 1 3 t — 1 t + 1 : t 2 + 3 t 1 — 3 t + t 2 + 3 t + 1 = = t 2 + 3 t + t + 3 + 3 t 2 + 9 t — t — 3 3 t — 1 t + 1 : t 2 + 3 t 1 — 3 t + t 2 + 3 t + 1 =

4 t 2 + 12 t 3 t — 1 t + 1 : t 2 + 3 t 1 — 3 t + t 2 + 3 t + 1 = 4 t t + 3 3 t — 1 t + 1 : t t + 3 1 — 3 t + t 2 + 3 t + 1 = .

= 4 t t + 3 3 t — 1 t + 1 · 1 — 3 t t t + 3 + t 2 + 3 t + 1 = 4 t t + 3 · 1 — 3 t — 1 3 t — 1 t + 1 · t t + 3 + + t 2 + 3 t + 1 = — 4 t + 1 + t 2 + 3 t + 1 = — 4 + t 2 + 3 t + 1 = t 2 — 1 t + 1 = t — 1 t + 1 t + 1 = t — 1

Упрощение выражений

Содержание

В математическом мире существует большое количество выражений, которых трудно решить без упрощения. Помимо этого, упрощение математических примеров используется для того, чтобы быстрее и правильнее решить задание.

Давайте рассмотрим пример, и не забывайте, что для этого нам понадобятся знания правил умножения, вычитания и сложения:

В данном случае, сначала мы можем посчитать сумму в скобках, а затем умножить на 3. Но далеко не всегда такой способ будет удобным при решении задач. Если цифры будут слишком большими — это будет попросту неудобно. Для облегчения решения нам нужно будет упростить данное выражение. Теперь рассмотрим пример его упрощения:

Сейчас мы видим, что выражение значительно изменилось. При этом, ответ будет точно таким же, как и в первом случае. Такой вид выражения не только легче и быстрее решать, но и помогает избежать ошибок при вычислении. Итак, как же правильно следует применять правила упрощения выражений и как решать уравнения с их помощью?

Правила упрощения

Существует всего два правила по упрощению выражений с умножением. Их называют распределительными свойствами умножения относительно сложения и вычитания. Давайте их разберем:

Для того чтобы умножить сумму на число, нужно умножить на это число первое и второе слагаемое, а затем сложить получившиеся произведения.

С помощью букв данное правило записывают так: $(a+b)\cdot c=ac+bc$

Если нам нужно умножить разность на число, то следует умножить на это число уменьшаемое и вычитаемое, а потом из первого произведения вычесть второе.

Буквенное выражение данного свойства выглядит следующим образом: $(a-b)\cdot c=ac-bc$

Решение уравнений с применением упрощения выражений

Правила упрощения выражений работают и в обратную сторону, то есть позволяют вынести разность или сумму в скобки, а число, на которое нужно умножить — за скобки. Именно поэтому их используют для решения уравнений. Разберем на примере:

Для того чтобы сложить два числа с $x$, нам нужно применить уже изученное нами распределительное свойство:

Благодаря данному упрощению мы сможем до конца решить наше уравнение:


источники:

http://wika.tutoronline.ru/matematika/class/5/uproshheniya-algebraicheskih-vyrazhenij

http://obrazavr.ru/matematika/5-klass-matematika/naturalnye-chisla/umnozhenie-delenie-stepen/uproshhenie-vyrazhenij/