Что значит уравнение реакции в молекулярном виде

Как составлять ионные уравнения. Задача 31 на ЕГЭ по химии

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации — вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O + ) и анионы хлора (Cl — ). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br — (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая «обычные» (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H 2 O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl — . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H + + Cl — + Na + + OH — = Na + + Cl — + H 2 O. (2)

Это и есть полное ионное уравнение . Вместо «виртуальных» молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы — катионы Na + и анионы Cl — . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H + + OH — = H 2 O. (3)

Как видите, все сводится к взаимодействию ионов H + и OH — c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку — 2 балла.

Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H 2 O — молекулярное уравнение («обычное» уравнения, схематично отражающее суть реакции);
  • H + + Cl — + Na + + OH — = Na + + Cl — + H 2 O — полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H + + OH — = H 2 O — краткое ионное уравнение (мы убрали весь «мусор» — частицы, которые не участвуют в процессе).

Алгоритм написания ионных уравнений


  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем «в виде молекул».
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
  4. Проверяем коэффициенты и получаем окончательный ответ — краткое ионное уравнение.

Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия — это две соли. Заглянем в раздел справочника «Свойства неорганических соединений». Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

BaCl 2 + Na 2 SO 4 = BaSO 4 &#x2193 + 2NaCl.

Таблица растворимости подсказывает нам, что BaSO 4 действительно не растворяется в воде (направленная вниз стрелка, напомню, символизирует, что данное вещество выпадает в осадок). Молекулярное уравнение готово, переходим к составлению полного ионного уравнения. Обе соли, присутствующие в левой части, записываем в ионной форме, а вот в правой части оставляем BaSO 4 в «молекулярной форме» (о причинах этого — чуть позже!) Получаем следующее:

Ba 2+ + 2Cl — + 2Na + + SO 4 2- = BaSO 4 &#x2193 + 2Cl — + 2Na + .

Осталось избавиться от балласта: убираем ионы-наблюдатели. В данном случае в процессе не участвуют катионы Na + и анионы Cl — . Стираем их и получаем краткое ионное уравнение:

Ba 2+ + SO 4 2- = BaSO 4 &#x2193.

А теперь поговорим подробнее о каждом шаге нашего алгоритма и разберем еще несколько примеров.

Как составить молекулярное уравнение реакции

Должен сразу вас разочаровать. В этом пункте не будет однозначных рецептов. Действительно, вряд ли можно рассчитывать, что я смогу разобрать здесь ВСЕ возможные уравнения реакций, которые могут встретиться вам на ЕГЭ или ОГЭ по химии.

Ваш помощник — раздел «Свойства неорганических соединений». Если вы хорошо знакомы с четырьмя базовыми классами неорганических веществ (оксиды, основания, кислоты, соли), если вам известны химические свойства этих классов и методы их получения, можете на 95% быть уверены в том, что у вас не будет проблем на экзамене с написанием молекулярных уравнений.

Оставшиеся 5% — это некоторые «специфические» реакции, которые мы не сможем перечислить. Не будем лить слез по поводу этих 5%, а вспомним лучше номенклатуру и химические свойства базовых классов неорганических веществ. Три задания для самостоятельной работы:

Упражнение 1 . Напишите молекулярные формулы следующих веществ: оксид фосфора (V), нитрат цезия, сульфат хрома (III), бромоводородная кислота, карбонат аммония, гидроксид свинца (II), фосфат стронция, кремниевая кислота. Если при выполнении задания у вас возникнут проблемы, обратитесь к разделу справочника «Названия кислот и солей».

Упражнение 2 . Дополните уравнения следующих реакций:

  1. KOH + H 2 SO 4 =
  2. H 3 PO 4 + Na 2 O=
  3. Ba(OH) 2 + CO 2 =
  4. NaOH + CuBr 2 =
  5. K 2 S + Hg(NO 3 ) 2 =
  6. Zn + FeCl 2 =

Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме «Химические свойства основных классов неорганических соединений».

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие — оставить в «молекулярной форме». Придется запомнить следующее.

В виде ионов записывают:


  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
  • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , . ).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин «все остальные вещества», и которые, следуя примеру героя известного фильма, требуют «огласить полный список» даю следующую информацию.

В виде молекул записывают:


  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
  • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты . );
  • вообще, все слабые электролиты (включая воду. );
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение — растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.

Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) — нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие — в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) — нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl — сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 — растворимая соль. Записываем в ионной форме. Вода — только в виде молекул! Получаем полное ионное уравнение:

Сu(OH) 2 + 2H + + 2Cl — = Cu 2+ + 2Cl — + 2H 2 O.

Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение . Диоксид углерода — типичный кислотный оксид, NaOH — щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

CO 2 — оксид, газообразное соединение; сохраняем молекулярную форму. NaOH — сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 — растворимая соль; пишем в виде ионов. Вода — слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO 2 + 2Na + + 2OH — = Na 2+ + CO 3 2- + H 2 O.

Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение . Сульфид натрия и хлорид цинка — это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

Na 2 S + ZnCl 2 = ZnS&#x2193 + 2NaCl.

Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

2Na + + S 2- + Zn 2+ + 2Cl — = ZnS&#x2193 + 2Na + + 2Cl — .

Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

  1. NaOH + HNO 3 =
  2. H 2 SO 4 + MgO =
  3. Ca(NO 3 ) 2 + Na 3 PO 4 =
  4. CoBr 2 + Ca(OH) 2 =

Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).

В следующей части статьи мы научимся составлять краткие ионные уравнения и разберем большое количество примеров. Кроме того, мы обсудим специфические особенности задания 31, которое вам предстоит решать на ЕГЭ по химии.

Разница между молекулярным уравнением и ионным уравнением

Разница между молекулярным уравнением и ионным уравнением — Наука

Содержание:

Ключевое различие между молекулярным уравнением и ионным уравнением заключается в том, что молекулярное уравнение показывает реагенты и продукты в молекулярной форме, в то время как ионное уравнение показывает ионные частицы, участвующие в реакции.

Химические реакции — это взаимодействия между химическими соединениями с образованием новых соединений или перестройкой их химической структуры. Соединения, которые подвергаются определенной химической реакции, называются реагентами, а то, что мы получаем в конце, называется продуктом. Существуют различные формы химических уравнений, такие как молекулярные уравнения и ионные уравнения. В этой статье давайте рассмотрим разницу между молекулярным уравнением и ионным уравнением.

1. Обзор и основные отличия
2. Что такое молекулярное уравнение
3. Что такое ионное уравнение
4. Параллельное сравнение — молекулярное уравнение и ионное уравнение в табличной форме
5. Резюме

Что такое молекулярное уравнение?

Молекулярное уравнение представляет реагенты и продукты в молекулярной форме. Напротив, ионное уравнение дает только ионные частицы, участвующие в химической реакции. Следовательно, в молекулярное уравнение мы не должны включать какие-либо ионные частицы, только молекулы. Например, реакция между хлоридом натрия и нитратом серебра дает белый осадок, известный как хлорид серебра. Молекулярное уравнение этой реакции выглядит следующим образом:

Что такое ионное уравнение?

Ионное уравнение — это способ написать химическое уравнение с использованием ионных частиц, которые участвовали в химической реакции. Есть два типа ионных уравнений: полное ионное уравнение и чистое ионное уравнение. Полное ионное уравнение — это химическое уравнение, которое объясняет химическую реакцию, четко указывая на ионные частицы, присутствующие в растворе. Ионная разновидность — это либо анион (отрицательно заряженная разновидность), либо катион (положительно заряженная разновидность). Напротив, полное молекулярное уравнение дает молекулы, которые принимают участие в химической реакции.

Чистое ионное уравнение — это химическое уравнение, которое показывает ионы, которые участвовали в образовании конечного продукта. Кроме того, это уравнение может быть получено из полного ионного уравнения путем сокращения аналогичных ионов из двух сторон полного ионного уравнения. Следовательно, чистое ионное уравнение не дает подробностей обо всех ионных частицах, присутствующих в реакционной смеси. Для той же реакции, приведенной выше, ионное уравнение выглядит следующим образом:

Na + + Cl – + Ag + + НЕТ3 – ⟶ AgCl + Na + + НЕТ3

В чем разница между молекулярным уравнением и ионным уравнением?

Молекулярное уравнение и ионное уравнение — это два типа химических уравнений, которые мы можем использовать для представления химических реакций. Ключевое различие между молекулярным уравнением и ионным уравнением состоит в том, что молекулярное уравнение показывает реагенты и продукты в молекулярной форме, в то время как ионное уравнение показывает только ионные частицы. Таким образом, молекулярное уравнение дано в молекулярной форме, тогда как ионное уравнение дано в ионной форме. Например, давайте посмотрим на реакцию между хлоридом натрия и нитратом серебра, которая дает белый осадок, известный как хлорид серебра. Его молекулярное уравнение: NaCl + AgNO.3 ⟶ AgCl + NaNO3 а ионное уравнение — Na + + Cl – + Ag + + НЕТ3 – ⟶ AgCl + Na + + НЕТ3 – .

Инфографика ниже суммирует разницу между молекулярным уравнением и ионным уравнением.

Резюме — Молекулярное уравнение против ионного уравнения

Молекулярное уравнение и ионное уравнение — это два типа химических уравнений, которые мы можем использовать для представления химических реакций. Как следует из их названий, молекулярное уравнение дается в молекулярной форме, тогда как ионное уравнение дается в ионной форме. Итак, ключевое различие между молекулярным уравнением и ионным уравнением состоит в том, что молекулярное уравнение показывает реагенты и продукты в молекулярной форме, в то время как ионное уравнение показывает только ионные частицы в реакции.

Ионно-молекулярные уравнения реакции

Ионно-молекулярные уравнения реакции

По этой ссылке вы найдёте полный курс лекций по математике:

Теория электролитической диссоциации признает, что все реакции в водных растворах электролитов являются реакциями между ионами. Поэтому уравнения реакции для этих процессов, записанные в молекулярной форме, не отражают истинного состояния веществ в растворах. Кроме записи уравнений реакций, в молекулярном виде существует ионная (ионно-молекулярная) форма представления уравнений реакций между электролитами в водных растворах.

В ионно-молекулярных уравнениях реакций вещества малорастворимые, малодиссоциирован-ные и газообразные записываются в виде молекул, а сильные электролиты — в виде ионов, на которые они диссоциируют. Например, при взаимодействии растворов хлорида меди (II) и гидроксида натрия образуется осадок гидроксида меди (II): CuCl2 + 2NaOH = Cu(OH)2| + 2NaCl.

  • В ионно-молекулярном виде уравнение этой реакции записывается следующим образом: Cu2+ + 2С1″ + 2Na+ + 20НГ = Cu(OH)2i + 2Na+ + 2СГ. Концентрации ионов натрия и хлора в процессе реакции остаются неизменными, поэтому из уравнения реакции их можно исключить. Поскольку реакции между ионами в растворе представляют собой пример химического равновесия, к ним применим принцип смещения равновесия Jle Шателье.
  • В соответствии с этим принципом равновесие может сместиться, если какое-либо вещество будет удаляться из сферы реакции по мере ее протекания. Удаление вещества может быть осуществлено в трех случаях: 1) образование малорастворимого осадка; 2) выделение газообразного вещества; 3) образование малодиссоциированного соединения.
При взаимодействии раствора

(NH4)2S с соляной кислотой образуется газообразный сероводород и равновесие реакции смещается вправо: (NH4)2S + 2НС1 — 2NH4C1 + H2ST, 2NH4+ + S2″ + 2H4″ + 2СГ = 2NH4+ + 2СГ + H2Sf или 2H+ + S2″ = H2Sf.

Возможно вам будут полезны данные страницы:

Примером реакции, равновесие которой смещено в сторону образования малодиссоциированного соединения, может служить взаимодействие между растворами азотной кислоты и гидроксида натрия: HN03 + NaOH — NaN03 + Н20, Н+ + N03″ + Na+ + ОН» = Na+ + NO3- + Н20 или Н+ + ОН» — Н20. Реакция с образованием малорастворимого соединения была рассмотрена выше.

Нередко приходится встречаться с такими процессами, в которых осуществляется не один из трех рассмотренных типов обменных реакций, а та или иная их комбинация.

  • Так, при взаимодействии раствора сульфита калия с серной кислотой одновременно происходит и образование малодиссоциированного вещества — воды, и выделения газообразного продукта: K2S03 + H2S04 = K2S04 + S02T + H20, 2K+ + S032″ + 2Н+ + S042′ — 2K+ + S042″ + S02t + H20 или 2H+ + S032

— S02t + H20. А при взаимодействии раствора гидроксида бария с серной кислотой одновременно образуются и осадок, и слабый электролит: Ва(ОН)2 + H2S04 = BaS04i + 2Н20, ‘ Ва2+ + 20Н» + 2Н* + S042’ » BaS04i + 2Н20. Некоторые реакции протекают с образованием двух труднорастворимых веществ: CuS04 + BaS = BaS04| + CuSj, Cu2+ + S042″ + Ba2* + S2″ = BaS04l + CuSi.

В ряде обменных процессов малодиссоциированные или труднорастворимые соединения находятся как среди исходных, так и конечных продуктов реакции: nh4oh + н+ + С1- ?± nh4+ + сг + н2о. Вследствие образования труднорастворимых соединений в отдельных случаях возможно вытеснение сильной кислоты из соединений слабой, например: Си24″ + 2СГ + H2S « CuSJ + 2Н* + 2СГ, Cu2+ + H2S-CuSi +2Н+. Таким образом, рассмотренные выше примеры подтверждают общую закономерность: все реакции обмена в растворах электролитов протекают в сторону уменьшения числа свободных ионов.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

http://ru.strephonsays.com/molecular-equation-and-ionic-equation-3555

http://natalibrilenova.ru/ionno-molekulyarnyie-uravneniya-reaktsii/