Cos t jkmit 1 2 решите уравнение

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение тригонометрических неравенств.

Этот математический калькулятор онлайн поможет вам решить тригонометрическое неравенство. Программа для решения тригонометрического неравенства не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите тригонометрическое неравенство
Решить неравенство

Немного теории.

Тригонометрические неравенства

Неравенства вида \( \sin x > a \) и \( \sin x

Пусть дано простейшее неравенство \( \sin x > a \).
1) При \(-1 1 \) решением неравенства является любое действительное число: \( x \in \mathbb \)
3) При \(а = 1 \) решением неравенства является любое действительное число, отличное от \( \frac<\pi> <2>+ 2\pi k, \; k \in \mathbb \)
4) При \(а \leqslant -1 \) неравенство не имеет решений.

Неравенства вида \( \cos x > a \) и \( \cos x

Пусть дано простейшее неравенство \( \cos x > a \).
1) При \(-1 1\) решением неравенства является любое действительное число: \( x \in \mathbb \)
3) При \(a \leqslant -1\) неравенство не имеет решений.
4) При \(a = 1\) решением неравенства является любое действительное число, отличное от \( 2\pi k, \; k \in \mathbb \)

Неравенства вида \( tg \;x > a \) и \( tg \;x

Пусть дано простейшее неравенство \( tg \;x > a \).
Множество всех решений данного тригонометрического неравенства будем искать с помощью тригонометрического круга.

Из данного рисунка видно, что при любом \(a \in \mathbb \) решение неравенства будет таким:
$$ x \in \left(arctg \;a + \pi k; \;\; \frac<\pi> <2>+ \pi k \right), \; k \in \mathbb $$

Пусть дано простейшее неравенство \( tg \;x

Неравенства вида \( ctg \;x > a \) и \( ctg \;x

Пусть дано простейшее неравенство \( ctg \;x > a \).
Множество всех решений данного тригонометрического неравенства будем искать с помощью тригонометрического круга.

Из данного рисунка видно, что при любом \(a \in \mathbb \) решение неравенства будет таким:
$$ x \in ( \pi k; \;\; arcctg \;a + \pi k ), \; k \in \mathbb $$

Пусть дано простейшее неравенство \( ctg \;x

Решение тригонометрических неравенств

ПРИМЕР 1. Решим неравенство \( \sin x > \frac<1> <2>\).
Так как \( -1 \frac<1> <2>\).
Так как \( -1 1 \).
Очевидно, что решение неравенства будет таким:
$$ x \in \left(\frac<\pi> <4>+ \pi k; \;\; \frac<\pi> <2>+ \pi k\right), \; k \in \mathbb $$

ПРИМЕР 6. Решим неравенство \( tg \;x \frac<\sqrt<3>> <3>\).
Очевидно, что решение неравенства будет таким:
$$ x \in \left( \pi k; \;\; \frac<\pi> <3>+ \pi k \right), \; k \in \mathbb $$

ПРИМЕР 8. Решим неравенство \( ctg \;x

Решение тригонометрических уравнений

Данный калькулятор предназначен для решения тригонометрических уравнений.
Тригонометрические уравнения – это уравнения, которые содержат в себе тригонометрические функции неизвестного аргумента. Под тригонометрическими функциями понимают математические функции от величины угла. Как правило, тригонометрические функции определяются как отношения сторон прямоугольного треугольника или длины определенных отрезков в единичной окружности.

К основным видам тригонометрических уравнений относят простейшие уравнения, содержащие модуль, с параметрами, с целой и дробной частью, со сложными аргументами, с обратными тригонометрическими функциями.

С помощью калькулятора можно вычислить корни тригонометрического уравнения.
Для получения полного хода решения нажимаем в ответе Step-by-step.


источники:

http://allcalc.ru/node/669