Дана система трех линейных уравнений тремя неизвестными

Решение систем линейных уравнений

Эта страничка поможет решить Системы Линейных Алгебраических Уравнений (СЛАУ) методом Гаусса, матричным методом или методом Крамера, исследовать их на совместность (теорема Кронекера-Капелли), определить количество решений, найти общее, частное и базисные решения.

Введите коэффициенты при неизвестных в поля. Если Ваше уравнение имеет меньшее количество неизвестных, то оставьте пустыми поля при переменных, не входящих в ваше уравнение. Можно использовать дроби ( 13/31 ).

Пример решения методом Крамера

Решение находим с помощью калькулятора. Запишем систему в виде:

B T = (20,11,40,37)
Найдем главный определитель:
Минор для (1,1):

Найдем определитель для этого минора.
1,1 = 3∙(9∙2-9∙9)-10∙(2∙2-9∙1)+8∙(2∙9-9∙1)= -67
Минор для (2,1):

4,1 = 5∙(2∙9-9∙1)-3∙(4∙9-9∙1)+10∙(4∙1-2∙1)= -16
Главный определитель:
∆ = 2∙(-67)-1∙(-89)+2∙(-6)-3∙(-16) = -9
Заменим 1-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Заменим 2-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Заменим 3-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Заменим 4-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
Минор для (1,1):

Выпишем отдельно найденные переменные Х:

Пример №2 . Решение находим с помощью калькулятора. Запишем систему в виде:

A =
123
456
780

B T = (6,9,-6)
Главный определитель:
∆ = 1 • (5 • 0-8 • 6)-4 • (2 • 0-8 • 3)+7 • (2 • 6-5 • 3) = 27 = 27
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
623
956
-680

Найдем определитель полученной матрицы.
1 = 6 • (5 • 0-8 • 6)-9 • (2 • 0-8 • 3)+(-6 • (2 • 6-5 • 3)) = -54
x1 = -54/27 = -2
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
163
496
7-60

Найдем определитель полученной матрицы.
2 = 1 • (9 • 0-(-6 • 6))-4 • (6 • 0-(-6 • 3))+7 • (6 • 6-9 • 3) = 27
x2 = 27/27 = 1
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
126
459
78-6

Найдем определитель полученной матрицы.
3 = 1 • (5 • (-6)-8 • 9)-4 • (2 • (-6)-8 • 6)+7 • (2 • 9-5 • 6) = 54
x3 = 54/27 = 2
Выпишем отдельно найденные переменные Х
x1 = -54/27 = -2
x2 = 27/27 = 1
x3 = 54/27 = 2
Проверка.
1•-2+2•1+3•2 = 6
4•-2+5•1+6•2 = 9
7•-2+8•1+0•2 = -6

Пример №2 . Запишем систему в виде:

A =
2-112-5
1-1-50
3-2-2-5
7-5-9-1

B T = (1,0,3,-4)
Найдем главный определитель:
Минор для (1,1):

1,1 =
-1-50
-2-2-5
-5-9-1

Найдем определитель для этого минора.
1,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (-5 • (-1)-(-9 • 0)))+(-5 • (-5 • (-5)-(-2 • 0))) = -72
Минор для (2,1):

2,1 =
-112-5
-2-2-5
-5-9-1

2,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • (-5)-(-2 • (-5)))) = 279
Минор для (3,1):

3,1 =
-112-5
-1-50
-5-9-1

3,1 = -1 • (-5 • (-1)-(-9 • 0))-(-1 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • 0-(-5 • (-5)))) = 63
Минор для (4,1):

4,1 =
-112-5
-1-50
-2-2-5

4,1 = -1 • (-5 • (-5)-(-2 • 0))-(-1 • (12 • (-5)-(-2 • (-5))))+(-2 • (12 • 0-(-5 • (-5)))) = -45
Главный определитель:
∆ = 2 • (-72)-1 • 279+3 • 63-7 • (-45) = 81
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
1-112-5
0-1-50
3-2-2-5
-4-5-9-1

Минор для (1,1):

1,1 =
-1-50
-2-2-5
-5-9-1

1,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (-5 • (-1)-(-9 • 0)))+(-5 • (-5 • (-5)-(-2 • 0))) = -72
Минор для (2,1):

2,1 =
-112-5
-2-2-5
-5-9-1

2,1 = -1 • (-2 • (-1)-(-9 • (-5)))-(-2 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • (-5)-(-2 • (-5)))) = 279
Минор для (3,1):

3,1 =
-112-5
-1-50
-5-9-1

3,1 = -1 • (-5 • (-1)-(-9 • 0))-(-1 • (12 • (-1)-(-9 • (-5))))+(-5 • (12 • 0-(-5 • (-5)))) = 63
Минор для (4,1):

4,1 =
-112-5
-1-50
-2-2-5

4,1 = -1 • (-5 • (-5)-(-2 • 0))-(-1 • (12 • (-5)-(-2 • (-5))))+(-2 • (12 • 0-(-5 • (-5)))) = -45
Определитель минора:
1 = 1 • (-72)-0 • 279+3 • 63-(-4 • (-45))
x1 = -63/81 = -0.78
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
2112-5
10-50
33-2-5
7-4-9-1

Минор для (1,1):

1,1 =
0-50
3-2-5
-4-9-1

1,1 = 0 • (-2 • (-1)-(-9 • (-5)))-3 • (-5 • (-1)-(-9 • 0))+(-4 • (-5 • (-5)-(-2 • 0))) = -115
Минор для (2,1):

2,1 =
112-5
3-2-5
-4-9-1

2,1 = 1 • (-2 • (-1)-(-9 • (-5)))-3 • (12 • (-1)-(-9 • (-5)))+(-4 • (12 • (-5)-(-2 • (-5)))) = 408
Минор для (3,1):

3,1 =
112-5
0-50
-4-9-1

3,1 = 1 • (-5 • (-1)-(-9 • 0))-0 • (12 • (-1)-(-9 • (-5)))+(-4 • (12 • 0-(-5 • (-5)))) = 105
Минор для (4,1):

4,1 =
112-5
0-50
3-2-5

4,1 = 1 • (-5 • (-5)-(-2 • 0))-0 • (12 • (-5)-(-2 • (-5)))+3 • (12 • 0-(-5 • (-5))) = -50
Определитель минора:
2 = 2 • (-115)-1 • 408+3 • 105-7 • (-50)
x2 = 27/81 = 0.33
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
2-11-5
1-100
3-23-5
7-5-4-1

Минор для (1,1):

1,1 =
-100
-23-5
-5-4-1

Найдем определитель для этого минора.
1,1 = -1 • (3 • (-1)-(-4 • (-5)))-(-2 • (0 • (-1)-(-4 • 0)))+(-5 • (0 • (-5)-3 • 0)) = 23
Минор для (2,1):

2,1 =
-11-5
-23-5
-5-4-1

2,1 = -1 • (3 • (-1)-(-4 • (-5)))-(-2 • (1 • (-1)-(-4 • (-5))))+(-5 • (1 • (-5)-3 • (-5))) = -69
Минор для (3,1):

3,1 =
-11-5
-100
-5-4-1

3,1 = -1 • (0 • (-1)-(-4 • 0))-(-1 • (1 • (-1)-(-4 • (-5))))+(-5 • (1 • 0-0 • (-5))) = -21
Минор для (4,1):

4,1 =
-11-5
-100
-23-5

4,1 = -1 • (0 • (-5)-3 • 0)-(-1 • (1 • (-5)-3 • (-5)))+(-2 • (1 • 0-0 • (-5))) = 10
Определитель минора:
3 = 2 • 23-1 • (-69)+3 • (-21)-7 • 10
x3 = -18/81 = -0.22
Заменим 4-ый столбец матрицы А на вектор результата В.

4 =
2-1121
1-1-50
3-2-23
7-5-9-4

Минор для (1,1):

1,1 =
-1-50
-2-23
-5-9-4

1,1 = -1 • (-2 • (-4)-(-9 • 3))-(-2 • (-5 • (-4)-(-9 • 0)))+(-5 • (-5 • 3-(-2 • 0))) = 80
Минор для (2,1):

2,1 =
-1121
-2-23
-5-9-4

2,1 = -1 • (-2 • (-4)-(-9 • 3))-(-2 • (12 • (-4)-(-9 • 1)))+(-5 • (12 • 3-(-2 • 1))) = -303
Минор для (3,1):

3,1 =
-1121
-1-50
-5-9-4

3,1 = -1 • (-5 • (-4)-(-9 • 0))-(-1 • (12 • (-4)-(-9 • 1)))+(-5 • (12 • 0-(-5 • 1))) = -84
Минор для (4,1):

4,1 =
-1121
-1-50
-2-23

4,1 = -1 • (-5 • 3-(-2 • 0))-(-1 • (12 • 3-(-2 • 1)))+(-2 • (12 • 0-(-5 • 1))) = 43
Определитель минора:
4 = 2 • 80-1 • (-303)+3 • (-84)-7 • 43
x4 = -90/81 = -1.11
Выпишем отдельно найденные переменные Х
x1 = -63/81 = -0.78
x2 = 27/81 = 0.33
x3 = -18/81 = -0.22
x4 = -90/81 = -1.11
Проверка.
2•-0.78+-1•0.33+12•-0.22+-5•-1.11 = 1
1•-0.78+-1•0.33+-5•-0.22+0•-1.11 = 0
3•-0.78+-2•0.33+-2•-0.22+-5•-1.11 = 3
7•-0.78+-5•0.33+-9•-0.22+-1•-1.11 = -4

Пример №3 . Запишем систему в виде:

A =
21-1
1-22
311

B T = (-1,-3,-8)
Главный определитель:
∆ = 2 • (-2 • 1-1 • 2)-1 • (1 • 1-1 • (-1))+3 • (1 • 2-(-2 • (-1))) = -10 = -10
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
-11-1
-3-22
-811

1 = -1 • (-2 • 1-1 • 2)-(-3 • (1 • 1-1 • (-1)))+(-8 • (1 • 2-(-2 • (-1)))) = 10
x1 = 10/-10 = -1
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
2-1-1
1-32
3-81

2 = 2 • (-3 • 1-(-8 • 2))-1 • (-1 • 1-(-8 • (-1)))+3 • (-1 • 2-(-3 • (-1))) = 20
x2 = 20/-10 = -2
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
21-1
1-2-3
31-8

3 = 2 • (-2 • (-8)-1 • (-3))-1 • (1 • (-8)-1 • (-1))+3 • (1 • (-3)-(-2 • (-1))) = 30
x3 = 30/-10 = -3
Выпишем отдельно найденные переменные Х
x1 = 10/-10 = -1
x2 = 20/-10 = -2
x3 = 30/(-10) = -3
Проверка.
2•-1+1•-2+-1•-3 = -1
1•-1+-2•-2+2•-3 = -3
3•-1+1•-2+1•-3 = -8

Пример №4 . Запишем систему в виде:

A =
1-11
43-2
2-15

B T = (0,-4,11)
Главный определитель:
∆ = 1 • (3 • 5-(-1 • (-2)))-4 • (-1 • 5-(-1 • 1))+2 • (-1 • (-2)-3 • 1) = 27 = 27
Заменим 1-ый столбец матрицы А на вектор результата В.

1 =
0-11
-43-2
11-15

1 = 0 • (3 • 5-(-1 • (-2)))-(-4 • (-1 • 5-(-1 • 1)))+11 • (-1 • (-2)-3 • 1) = -27
x1 = -27/27 = -1
Заменим 2-ый столбец матрицы А на вектор результата В.

2 =
101
4-4-2
2115

2 = 1 • (-4 • 5-11 • (-2))-4 • (0 • 5-11 • 1)+2 • (0 • (-2)-(-4 • 1)) = 54
x2 = 54/27 = 2
Заменим 3-ый столбец матрицы А на вектор результата В.

3 =
1-10
43-4
2-111

3 = 1 • (3 • 11-(-1 • (-4)))-4 • (-1 • 11-(-1 • 0))+2 • (-1 • (-4)-3 • 0) = 81
x3 = 81/27 = 3
Выпишем отдельно найденные переменные Х
x1 = -27/27 = -1
x2 = 54/27 = 2
x3 = 81/27 = 3
Проверка.
1•-1+-1•2+1•3 = 0
4•-1+3•2+-2•3 = -4
2•-1+-1•2+5•3 = 11

Пример №5 . Запишем матрицу в виде:

A =
122
2-21
31-1

Главный определитель:
∆ = 1 • (-2 • (-1)-1 • 1)-2 • (2 • (-1)-1 • 2)+3 • (2 • 1-(-2 • 2)) = 27

Пример №6 . При решении системы линейных уравнений с квадратной матрицей коэффициентов А можно применять формулы Крамера, если:

  • столбцы матрицы А линейно независимы;
  • определитель матрицы А не равен нулю;

Пример №7 . Дана система трех линейных уравнений с тремя неизвестными. Найти ее решение с помощью формул Крамера. Выполнить проверку полученного решения.
-75x 1 + 35 x 2 + 25 x 3 = -4,5
25x 1 — 70x 2 + 25 x 3 = -20
15x 1 + 10x 2 — 5 5 x 3 = -30

  • Решение
  • Видеоинструкция

Решение получаем через калькулятор. Запишем систему в виде:

B T = (-4.5,-20,-30)
Главный определитель:
∆ = -75∙(-70∙(-55)-10∙25)-25∙(35∙(-55)-10∙25)+15∙(35∙25-(-70∙25))= -176250 = -176250
Заменим 1-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
1 = -4.5∙(-70∙(-55)-10∙25)-(-20∙(35∙(-55)-10∙25))+(-30∙(35∙25-(-70∙25)))= -138450

Заменим 2-ый столбец матрицы А на вектор результата В .

Найдем определитель полученной матрицы.
2 = -75∙(-20∙(-55)-(-30∙25))-25∙(-4.5∙(-55)-(-30∙25))+15∙(-4.5∙25-(-20∙25))= -157875

Заменим 3-ый столбец матрицы А на вектор результата В .

Выпишем отдельно найденные переменные Х

Решить систему из 3-х уравнений с 3-мя неизвестными онлайн

Этот онлайн калькулятор предназначен для решения систем из трёх уравнений с тремя неизвестными. Вы можете быть уверены, что калькулятор выдаёт точный результат.

Калькулятор

Инструкция

Примечание: π записывается как pi; корень квадратный как sqrt().

Шаг 1. Введите в поля три уравнения.

Шаг 2. Нажмите кнопку “Решить систему”.

Шаг 3. Получите точный результат.

В калькулятор нужно вводить только латинские буквы и любые цифры с клавиатуры.

Что такое система из 3-х уравнений с 3-мя неизвестными

Решение систем из трёх уравнений с тремя неизвестными – это то же линейное уравнение, которое, чаще всего решается методом Крамера. Однако метод Крамера можно использовать только в том случае, если определитель системы не равняется нулю. Если же определитель системы равен нулю, тогда нельзя использовать этот метод.

Следуя теореме Крамера, в таких уравнениях может быть три случая:

  1. У системы уравнений есть всего навсего одно решение.
  2. У системы уравнений имеется бесконечное множество решений.
  3. У системы уравнений нет решений.

Средняя оценка 2.7 / 5. Количество оценок: 3


источники:

http://math.semestr.ru/kramer/prim1.php

http://nauchniestati.ru/kalkulatory/reshit-sistemu-iz-3-h-uravnenij-s-3-mja-neizvestnymi-onlajn/