Дано сокращенное ионное уравнение ag cl baco3

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e2190d23b0e1eeb • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Полное ионное уравнение с образованием осадка хлорида серебра AgCl

Содержание:

Ионные уравнения – результат химического взаимодействия катионов и анионов. С их помощью расписывают реакции замещения и обмена.

Характеристика ионных реакций

Ионные уравнения обладают рядом особенных характеристик.

  1. Валентности ионов не меняются в ходе реакции.
  2. В ходе реакции должны образоваться плохорастворимый осадок, газ или слабый электролит.

Реакции ионного обмена можно классифицировать на две группы:

Если исходные и образовавшиеся вещества – это растворимые соединения, то реакция обратима. Такие взаимодействия не идут до конца и, как правило, в химии используются редко. Обратимые реакции не расписывают как уравнения ионного обмена. Например, хлорид натрия NaCl и нитрат калия KNO3 – растворимые соединения, в результате взаимодействия которых образуются растворимые соединения.

  • молекулярное уравнение

NaCl+ KNO3⇄NaNO3+KCl

  • полное уравнение

Na + +Cl — +K + +NO3 — ⇄Na + +NO3 — +K + +Cl —

  • краткое уравнение

Чтобы расписать краткое уравнение, нужно вычеркнуть одинаковые ионы в обеих частях уравнения. Например, справа есть ион Na + и слева есть ион Na + , поэтому оба иона вычеркиваются. В данном случае вычеркиваются все ионы.

Если в результате реакции образуются газ, плохорастворимый осадок или слабый электролит, то реакция необратима.

  • Газов в природе немного, поэтому химики их запоминают: H2, N2, O2, F2, Cl2, инертные газы (VIII группа в периодической таблице Д.И. Менделеева), все водородные соединения неметаллов, несколько оксидов углерода, азота, серы. В реакциях газы обозначаются стрелкой вверх ↑.
  • Осадки – нерастворимые соединения, которые определяют с помощью таблицы растворимости. Осадки обозначаются стрелкой вниз ↓.
  • Чтобы определить силу электролита, необходимо вычислить степень диссоциации по формуле:

Если степень диссоциации меньше 3 %, то такие электролиты называют слабыми. К слабым электролитам относится вода, слабые и органические кислоты, нерастворимые основания.

Для необратимых реакций расписывают ионные уравнения.

Необратимое ионное уравнение

На практике, как правило, проводят именно необратимые реакции.

Реакции ионного обмена и условия их осуществления

Реакциями ионного обмена называют химические реакции, которые протекают между ионами без изменения степеней окисления элементов и приводят к обмену составных частей реагентов.

Уравнения обменных реакций записывают в молекулярной форме (с указанием формул всех реагирующих веществ со стехиометрическими коэффициентами); в полной ионной форме (с указанием всех существующих в растворе ионов) и в сокращённой ионной форме (с указанием только тех ионов, которые непосредственно взаимодействуют между собой). При написании уравнений реакций в ионной форме формулы малодиссоциирующих веществ (слабых электролитов) записывают в молекулярной форме.

Уравнения реакций обмена в водных растворах электролитов составляют так.

  1. Записывают в левой части уравнения все формулы веществ, вступивших в реакцию, в молекулярной или ионной форме.
  2. Руководствуясь знаниями физико-химических свойств реагентов и таблицами растворимости веществ, составляют формулы продуктов реакции.
  3. Проверяют число атомов каждого элемента в обеих частях уравнения и определяют необходимые стехиометрические коэффициенты перед формулами.

Реакции ионного обмена в растворах электролитов протекают практически необратимо и до конца, если в качестве продуктов образуются осадки (малорастворимые вещества), газы (легколетучие вещества), слабые электролиты (малодиссоциированные соединения) и комплексные ионы.

Если при взаимодействии растворов электролитов не образуется ни одно из указанных видов соединений, химическое взаимодействие практически не происходит.

Уравнения обменных реакций можно записать в молекулярной форме, полной ионной форме, с указанием всех существующих в растворе ионов и в сокращённой ионной форме, которая, собственно, и выражает взаимодействие ионов. Следует отметить, что при написании уравнений реакций в ионной форме малодиссоциирующие вещества (слабые электролиты) записывают в молекулярной форме.

Пример 1. Реакция между нитратом свинца и сульфатом калия. В результате этой реакции образуется нерастворимый сульфат свинца и выделяется растворимый нитрат калия:

(полная ионно-молекулярная форма),

(сокращённая ионно-молекулярная форма).

Пример 2. Взаимодействие карбоната натрия с серной кислотой. При этом выделяется углекислый газ и вода, а в растворе остаются катионы натрия и сульфат-ионы:

(полная ионно-молекулярная форма),

(сокращённая ионно-молекулярная форма).

Пример 3. Реакция между азотной кислотой и едким калием. В результате данной реакции образуется малодиссоциированное соединение — вода и в растворе остаются катионы калия и нитрат-ионы:

(полная ионно-молекулярная форма),

(сокращённая ионно-молекулярная форма).

Тренировочные задания

1. Осадок образуется при взаимодействии водных растворов

2. Газ выделяется при взаимодействии водных растворов

3. Краткое ионное уравнение H + + OH – = H2O описывает взаимодействие

1) гидроксида кальция и фосфорной кислоты
2) гидроксида лития и фосфорной кислоты
3) гидроксида натрия и бромоводородной кислоты
4) гидроксида алюминия и бромоводородной кислоты

4. Краткое ионное уравнение 3Ba 2+ + 2PO4 3– = Ba3(PO4)2↓ описывает взаимодействие

1) карбоната бария и фосфорной кислоты
2) карбоната бария и фосфата натрия
3) хлорида бария и фосфорной кислоты
4) хлорида бария и фосфата натрия

5. Краткое ионное уравнение Ba 2+ + SO4 2– = BaSO4↓ описывает взаимодействие

1) хлорида бария и сульфата натрия
2) хлорида бария и сернистой кислоты
3) гидроксида бария и сульфата натрия
4) гидроксида бария и серной кислоты

6. Краткое ионное уравнение Ag + + Cl – = AgCl↓ описывает взаимодействие

1) хлорида кальция и бромида серебра
2) фосфата серебра и соляной кислоты
3) карбоната серебра и хлорида натрия
4) нитрата серебра и хлорида калия

7. Краткое ионное уравнение H + + OH – = H2O отвечает взаимодействию

1) азотной кислоты и гидроксида железа (III)
2) бромоводородной кислоты и гидроксида натрия
3) азотной кислоты и гидроксида меди
4) сернистой кислоты и гидроксида кальция

8. Краткое ионное уравнение 2Н + + S 2– = Н2S↑ отвечает взаимодействию

1) соляной кислоты и сульфида железа (II)
2) сернистой кислоты и сульфида калия
3) азотной кислоты и сульфида меди
4) азотной кислоты и сульфида натрия

9. Краткое ионное уравнение 2Н + + CO3 2– = CO2↑ + H2O отвечает взаимодействию

1) соляной кислоты и карбоната кальция
2) сернистой кислоты и карбоната бария
3) азотной кислоты и карбоната калия
4) серной кислоты и карбоната бария

10. Краткое ионное уравнение 2Н + + CaCO3 = Ca 2+ + CO2↑ + H2O отвечает взаимодействию

1) соляной кислоты и карбоната кальция
2) сернистой кислоты и карбоната кальция
3) фосфорной кислоты и карбоната кальция
4) серной кислоты и карбоната кальция

11. Краткое ионное уравнение Al 3+ + 3OH – = Al(OH)3↓ отвечает взаимодействию

1) сульфата алюминия и гидроксида кальция
2) сульфата алюминия и гидроксида бария
3) сульфата алюминия и гидроксида меди
4) сульфата алюминия и гидроксида натрия

12. Краткое и полное ионное уравнения совпадают для реакции

1) соляной кислоты и карбоната калия
2) уксусной кислоты и карбоната бария
3) уксусной кислоты и гидроксида калия
4) серной кислоты и гидроксида калия

13. Одновременно в растворе не могут существовать ионы

1) Ba 2+ , Fe 2+ , PO4 3– , CO3 2–
2) Ba 2+ , NO3 – , Cl – , K +
3) CH3COO – , Li + , Br – , Al3 +
4) Mg 2+ , Br – , K + , Cl –

14. Одновременно в растворе могут существовать ионы

1) Ba 2+ , Fe 2+ , PO4 3– , SO4 2–
2) Ba 2+ , SO4 2– , Ca 2+ , PO4 3–
3) Na + , Ba 2+ , NO3 – , Cl –
4) Mg 2+ , Ca 2+ , SO3 2– , CO3 2–

15. Образование осадка происходит при взаимодействии водных растворов

16. Образование газа происходит при взаимодействии водных растворов

1) сульфата калия и хлорида бария
2) гидроксида алюминия и серной кислоты
3) хлорида кальция и карбоната натрия
4) соляной кислоты и карбоната натрия

17. С выпадением осадка протекает реакция ионного обмена между растворами

1) нитрата натрия и фторида калия
2) хлорида алюминия и избытка гидроксида калия
3) нитрата серебра и фторида натрия
4) нитрата магния и гидроксида калия

18. С выделением газа протекает реакция ионного обмена между растворами

1) карбоната калия и бромоводородной кислоты
2) сульфата натрия и гидроксидом калия
3) нитрата серебра и бромида цинка
4) нитрата алюминия и гидроксида бария

19. С выделением газа протекает реакция ионного обмена между растворами

1) гидроксида бария и азотной кислоты
2) сульфата алюминия и нитрата бария
3) нитрата серебра и йодида лития
4) азотной кислотой и карбоната аммония

20. С выделением воды протекает реакция ионного обмена между растворами

1) нитрата меди и хлорида железа
2) гидрокарбоната натрия и гидроксида натрия
3) нитрата ртути и бромида лития
4) нитрата аммония и нитрита натрия


источники:

http://bingoschool.ru/manual/polnoe-ionnoe-uravnenie-s-obrazovaniem-osadka-xlorida-serebra-agcl/

http://himi4ka.ru/ogje-2018-po-himii/urok-11-reakcii-ionnogo-obmena-i-uslovija-ih-osushhestvlenija.html