Дано уравнение кривой в декартовых координатах

Упражнения

1. Нарисуйте кривую, задаваемую уравнением r = sin 4 φ .

2. Нарисуйте кривую, задаваемую уравнением r = cos φ .

3. Для параболы x 2 = 4 ay выберем в качестве полярной оси луч, идущий по оси Oy с началом в фокусе F (0, a ) параболы. Переходя от де­картовых к полярным координатам, покажите, что парабола с выколотой вершиной задается уравнением

.

4. Докажите, что уравнение

задает эллипс, если 0 > 1.

5. Нарисуйте спираль Архимеда, заданную уравнением r = — φ . Чему равно расстояние между соседними витками этой спирали?

6. Человек идет с постоянной скоростью вдоль радиуса вращающейся карусели. Какой будет траектория его движения относительно земли?

7. Нарисуйте гиперболическую спираль , задаваемую уравнением r = .

8. Нарисуйте спираль Галилея , которая задается уравнением r = a 2 ( a > 0). Она вошла в историю математики в XVII веке в связи с задачей нахождения формы кривой, по которой двигается свободно падающая в области экватора точка, не обладающая начальной скоростью, сообщаемой ей вращением земного шара.

9. Нарисуйте кривую, задаваемую уравнением r = | |.

10. Нарисуйте кривую, задаваемую уравнением r = .

11. Нарисуйте кривую, задаваемую уравнением r = .

12. Найдите параметрические уравнения: а) спирали Архимеда; б) логарифмической спирали.

1. Березин В. Кардиоида //Квант. – 1977. № 12.

2. Березин В. Лемниската Бернулли //Квант. – 1977. № 1.

3. Берман Г.Н. Циклоида. – М.: Наука, 1975.

4. Бронштейн И. Эллипс. Гипербола. Парабола / Такая разная геометрия. Составитель А.А. Егоров. – М.: Бюро Квантум, 2001. — / Приложение к журналу «Квант» № 2/2001.

5. Васильев Н.Б., Гутенмахер В.Л. Прямые и кривые. – 3-е изд. – М.: МЦНМО, 2000.

6. Маркушевич А.И. Замечательные кривые. – М.- Л.: Гос. изд. течн. – теор. лит., 1951. — / Популярные лекции по математике, выпуск 4.

7. Савелов А.А. Плоские кривые. – М.: ФИЗМАТЛИТ, 1960.

8. Смирнова И.М., Смирнов В.А. Кривые. Курс по выбору. 9 класс. – М.: Мнемозина, 2007.

9. Смирнова И.М., Смирнов В.А. Геометрия. Учебник для 7-9 классов общеобразовательных учреждений. – М.: Мнемозина, 2011.

10. Смирнова И.М., Смирнов В.А. Компьютер помогает геометрии. – М.: Дрофа, 2003.

Уравнения для различных видов кривых.

Лемниската Бернулли, плоская алгебраическая кривая, в прямоугольных координатах описывается уравнением:

(х 2 + у 2 ) 2 = 2с 2 (х 2 — у 2 ),

в полярной:

Причем, 2с — расстояние между фокусами, размещены они на оси , и начало координат пополам разделяет отрезок между ними.

Роза – плоская кривая, напоминающее символическое изображение цветка. Данная кривая представлена уравнением в полярных координатах:

Причем коэффициент k определяет количество лепестков.

Улитка Паскаля – плоская кривая представленная выражениями:

l расстояние, на которое смещается точка вдоль радиус — вектора.

Полукубическая парабола – плоская алгебраическая кривая, характеризующаяся выражением y 2 = ax 3 в прямоугольной системе координат.

Астроида – уравнение в декартовых координатах имеет вид:

Кардиоида. Если а — радиус окружностей, начало координат находится в крайней правой точке горизонтального диаметра неподвижной окружности. Тогда уравнения кардиоиды принимает вид:

в прямоугольных координатах(х 2 + у 2 +2аx) 2 – 4a 2 (х 2 + у 2 ) = 0;

Спираль Архимеда – спираль, плоская кривая, траектория точки М, которая равномерно движется вдоль ОV с началом в О, в то время как сам луч ОV равномерно вращается вокруг О.

Уравнение Архимедовой спирали в полярной системе координат:

где k смещение точки M по лучу r, при повороте на угол равный одному радиану.

Циклоида — плоская трансцендентная кривая. Характеризуется в декартовых координатах так:

.

Примеры решений: полярная система координат

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости на тему Кривые в полярной системе координат: табуляция функции, построение графика, переход к уравнению в декартовой системе координат т.п.

Основные этапы при работе с кривой, заданной в полярной системе координат, такие:

  • 1. Построить полярную систему координат (изобразить полюс, полярную ось и угловые направления). Обычно строят вспомогательные лучи через $\pi/6$ или $\pi/8$ радиан, для большинства кривых этих точек (получается от $0$ до $2\pi$ помещается 12 или 16 значений) вполне достаточно.
  • 2. Табулируем кривую: берем последовательно все углы $\phi$ (см. выше): $0$, $\pi/8$, $\pi/4$, $3\pi/8$. и в каждой точке вычисляем значение $\rho(\phi)$. Заносим значения в таблицу.
  • 3. Берем начерченную в первом пункте полярную систему координат и наносим точки. На полярной оси отмеряем значние $\rho(0)$, на луче $\pi/8$ — $\rho(\pi/8)$ и так далее.
  • 4. Соединяем все точки плавной линией. Получается искомая кривая. Для проверки правильности можно построить дополнительно график с помощью онлайн-сервисов.
  • 5. Если требуется найти уравнение кривой в декартовой системе координат, подставляем подходящие формулы $\rho=\sqrt$, $x=\rho\cos \phi$, $y=\rho\sin \phi$ и преобразуем.

Более подробно — в примерах ниже. Удачного изучения!

Полярная система координат: решения онлайн

Задача 1. Построить следующие кривые в полярной системе координат: Лемниската Бернулли $\rho^2=2\cos 2\phi$ (полюс помещен в точку О).

Задача 2. Построить по точкам кривую, заданную уравнением в полярной системе координат $\rho=2\sin 2\phi$. Найти уравнение кривой в прямоугольной системе координат, начало которой совмещено с полюсом, а положительная полуось $Ox$ с полярной осью.

Задача 3. Дана линия своим уравнением в полярной системе координат $r=8 \sin \phi$. Требуется:
1) построить линию по точкам, давая $\phi$ значения через $\pi/6$, начиная с 0 до $2\pi$.
2) Найти уравнение этой линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс с полярной осью.

Задача 4. Линия задана уравнением $r=18/(4+5\cos \phi)$ в полярной системе координат. Требуется:
Построить линию по точкам, начиная от 0 до $2\pi$ и придавая $\phi$ значения через промежуток $\pi/8$.
Найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью.
Назвать линию, найти координаты фокусов и эксцентриситет.


источники:

http://www.calc.ru/Uravneniya-Dlya-Razlichnykh-Vidov-Krivykh.html

http://www.matburo.ru/ex_ag.php?p1=agpsk