Давление плотность температура уравнение состояния газов

Уравнение состояния газов

Основными характеристиками физического состояния газа являются его давление, температура и плотность. Все эти величины взаимозависимы. Газы сжимаемы, поэтому их плотность меняется в зависимости от давления и температуры. Связь между давлением, температурой и плотностью для идеальных газов дается уравнением состояния газов, известным из физики. Оно пишется

, (1)

где давление; — удельный объем газа; — температура по шкале Кельвина;

— удельная газовая постоянная, зависящая от природы газа.

Для каждого газа существует температура, называемая критической, выше которой любой газ можно с большой степенью точности назвать идеальным. Если температура газа выше критической, то газ ни при каком давлении не может быть переведен ни в жидкое, ни в твердое состояние.

Идеальный газ, находясь в смеси с другими газами, ведет себя независимо от них, имея собственные давление плотность , удельный объем . В случае термодинамического равновесия смеси у всех газов должна быть общая температура Т. Общее давление газа, согласно закону Дальтона, должно равняться сумме их парциальных давлений.

Рассмотрим уравнение состояния газа применительно к сухому воздуху, поскольку он как смесь газов удовлетворяет изложенным выше положениям физики. В табл. 2 приведены значения критической температуры для основных газов, входящих в состав сухого воздуха.

Критическая температура газов, входящих в состав сухой атмосферы

Для сухого воздуха, кроме входящего в него углекислого газа, все газы имеют критическую температуру более низкую, чем температуры, наблюдаемые в земной атмосфере, т.е. сухой воздух можно считать смесью идеальных газов. Углекислый газ в атмосфере имеет очень малое парциальное давление, далекое от насыщающего, т.е. в естественных условиях он также не может сконденсироваться.

Для каждого газа, входящего в атмосферу, можно записать уравнение состояния

, (2)

где – парциальное давление, — удельный объем, – удельная газовая постоянная для соответствующего газа, входящего в смесь.

Удельная газовая постоянная связана с универсальной R= 8,31441·103 Дж/кмоль·К так:

, (3)

где – относительная молекулярная масса газа.

Общее давление смеси

. (4)

Принимая массу сухого воздуха равной единице, а массу газа , имеем

, (5)

где: удельный объем сухого воздуха

Используя уравнения (1), (4) и (5), запишем

(6)

, (7)

где – удельная газовая постоянная сухого воздуха. Она представляет собой результирующую вклада каждой компоненты смеси пропорционально удельной газовой постоянной и относительной массы в смеси каждого газа

. (8)

Относительная молекулярная масса сухого воздуха при известном по углеродной шкале получается на основе универсальной газовой постоянной

= 28,97 кг/моль. (9)

Рассмотрим влажный воздух как смесь сухого воздуха и водяного пара. Поскольку критическая температура водяного пара равна 374ºС, он как примесь идеального газа к смеси газов, формирующих сухой воздух, рассматриваться не может. Условие, когда фактическая температура меньше критической, является необходимым, но недостаточным для перехода газа в жидкость или твердое состояние. Необходимо также, чтобы его парциальное давление достигло состояния насыщения. Последнее является только функцией температуры, свойств газа и формы поверхности, для которой она рассчитывается. Здесь будет рассмотрен водяной пар, который до момента насыщения можно считать примесью идеального газа.

Уравнение состояния водяного пара можно представить в следующем виде:

, (10)

где — парциальное давление, – удельный объем, – удельная газовая постоянная водяного пара.

= 461,5 Дж/кг·К, (11)

где = 18,015 кг/моль – относительная молекулярная масса водяного пара.

Как показывают экспериментальные исследования и расчеты, в диапазоне температур от 0 до 40ºС удельная постоянная водяного пара практически совпадает с теоретической и не меняется.

Для вывода уравнения состояния рассмотрим 1 кг влажного воздуха. В нем содержится q кг водяного пара и кг сухого воздуха. Обозначим через и удельные объемы водяного пара, сухого и влажного воздуха.

Сухой воздух и водяной пар равномерно распределены по объему влажного воздуха и полностью его занимают. Удельные объемы водяного пара и сухого воздуха соответственно равны

и . (12)

Если обозначить общее давление, общую температуру, парциальное давление сухого воздуха, то уравнение состояния сухой части воздуха имеет вид

. (13)

Отношение удельных газовых постоянных водяного пара и сухого воздуха

= 1,608 (14)

Заменив удельную газовую постоянную водяного пара удельной газовой постоянной сухого воздуха с соответствующим коэффициентом, получим уравнение состояния влажного воздуха

Множитель (1 + 0,608q) в метеорологии относят к температуре, вводя понятие виртуальной температуры

Она всегда не меньше молекулярной, так как влажность может меняться от 0 до насыщающей.

Таким образом, виртуальная температура – это температура, которую должен иметь сухой воздух, чтобы его плотность при том же давлении была равна плотности влажного воздуха.

Плотность влажного воздуха всегда меньше плотности сухого. В некоторых случаях это может служить дополнительным фактором, способствующим развитию свободной конвекции в атмосфере.

Плотность воздуха в каждом месте непрерывно меняется во времени. Кроме того, она сильно меняется с высотой, потому что с высотой меняются также атмосферное давление и температура воздуха. Давление с высотой всегда уменьшается, а вместе с ним убывает и плотность. Температура с высотой по большей части понижается, по крайней мере в нижних 10-15 кматмосферы. Но падение температуры влечет за собой повышение плотности. В результате совместного влияния изменения давле­ния и температуры плотность с высотой, как правило, понижа­ется, но не так сильно, как давление. В среднем для Европы она равна у земной поверхности 1250 г/м3, на высоте 5 км 735 г/м3, 10 км 411 г/м3, 20 км 87 г/м3.

На высотах около 300 кмплотность воздуха имеет порядок величины 10-8 г/м3, т.е. в сто миллиардов раз меньше, чем у земной поверхности. На высоте 500 км плотность воз­духа уже 10-9 г/м3,на высоте 750 км 10-10 г/м3или еще меньше. Эти значения плотности ничтожны по сравнению с при­земными. Но все же до высот более 20 тыс. кмплотность воз­духа остается значительно большей, чем плотность вещества в межпланетном пространстве.

Если бы плотность воздуха не менялась с высотой, а оставалась на всех уровнях такой же, как у земной поверхности, то для высоты атмосферы получилась бы величина около 8000 м.В самом деле, приземная плотность сухого воздуха при давле­нии 760 мми температуре 0° равна 1293 г/м3;столб воздуха с этой плотностью должен был бы иметь высоту, очень близкую к 8000 м,чтобы производить такое же давление, какое производит столб ртути в 760 мм высотой (1033 г/см3).Указанная высота (8000 м)называется высотой однородной атмосферы. В действительности плотность воздуха с высотой убывает, и потому истинная высота атмосферы равняется многим тысячам километров.

Свойства газов в физике

Содержание:

Газ — это одно из трёх основных агрегатных состояний вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Свойства газов

Главные свойства газовэто подвижность и хаотичное движение частиц, направление которых меняется при столкновении. Газ – одно из 4 агрегатных состояний веществ, которые на сегодняшний день известны науке.

Давление газов

Всякий газ производит давление на оболочку, внутри которой он находится.

Давление, производимое газом на стенки сосуда, объясняется ударами движущихся молекул.

При ударе о стенку молекулы газа отдают ей определённое количество движения; стенка испытывает при этом действие некоторой силы.

Удар каждой отдельной молекулы о стенку сосуда производит очень небольшое действие. Но молекул газа очень много, удары о стенки сосуда происходят беспрерывно, поэтому в результате получается значительное давление.

Хаотичность движения молекул приводит к тому, что давление газа одинаково во всех направлениях.

При нагревании давление газа увеличивается. Так как при этом число молекул газа не изменяется, то увеличение давления можно объяснить только тем, что удары молекул о стенки заключающего газ сосуда делаются при нагревании чаще и что каждый удар становится сильнее. Удары же могут стать чаще и сильнее, если увеличивается скорость движения молекул. Это подтверждается, как мы видели (гл. V), многочисленными опытами.

Зависимость между объёмом и давлением газа. Закон Еойля — Мариотта

Состояние газа определяется его объёмом, давлением и температурой. С изменением этих величин меняется и состояние газа. Мы будем рассматривать последовательно процессы, при которых одна из величин, характеризующих состояние газа, постоянна, а две другие меняются.

Изучим сначала такой процесс, при котором давление и объём газа изменяются, а температура остаётся постоянной. Такой процесс называется изотермическим 1 .

1 От греч. слов: изос — равный, термос — тёплый.

Итак, рассмотрим, как изменяется давление данной массы газа при изменении его объёма, если температура газа не меняется.

Опыты, устанавливающие эту зависимость, можно произвести на приборе, три положения которого изображены на рисунке 134.

Рис. 134. Прибор для установления зависимости между объёмом и давлением газа (в трёх положениях).

В этом приборе стеклянная трубка А соединяется резиновой трубкой с другой стеклянной трубкой В. Трубка А вверху снабжена краном обе трубки наполняются ртутью.

Откроем кран и установим трубку В так, чтобы уровень ртути в трубке А был, например, на середине трубки (положение I). Давление над ртутью в обеих трубках атмосферное; допустим, что оно равно 76 см рт. ст. Закроем теперь кран, отделив этим массу воздуха в трубке А от атмосферного воздуха. Таким образом, в этой стадии опыта мы будем иметь в трубке А определённую массу воздуха, находящегося под давлением p1 = 76 см рт. ст.

Поднимем теперь трубку В вверх на столько, чтобы объём воздуха в трубке А уменьшился вдвое (положение II). Уровень ртути в трубке В при этом значительно поднимется над уровнем в трубке А.

Рассмотрим теперь, чему будет равно давление воздуха в трубке А. Это давление уравновешивает атмосферное давление и давление всего столба ртути в трубке В, стоящего выше уровня n1 высота этого столба n1n оказывается равной 76 см. Таким образом, давление воздуха в трубке А уравновешивает не одну, как в первом случае, а две атмосферы 2 = 2 am).

Значит, с уменьшением объёма данной массы газа в два раза давление его увеличивается в два раза. Если уменьшить объём газа в 1,5; 2,5; 3 раза, то соответственно в 1,5; 2,5; 3 раза увеличится его давление.

Опустим теперь трубку В так, чтобы масса воздуха в трубке А заняла вдвое больший объём (положение III). Уровень ртути в трубке А при этом понизится. Атмосферное давление теперь уравновешивает давление воздуха в трубке А и давление столба ртути от уровня n в трубке А до уровня в трубке В. Измерения показывают, что высота этого столба ртути равна 38 см. Давление, производимое воздухом в трубке А, найдём, вычтя из атмосферного давления давление столба ртути: р3 = 76 см—38 см = 38 см; следовательно, р3 = 0,5 am.

Итак, при увеличении объёма газа в два раза его давление уменьшается в два раза.

Перемещая трубку В в различные положения и отсчитывая каждый раз объём и давление воздуха в трубке А, найдём, что при уменьшении объёма исследуемой массы воздуха в некоторое число раз давление его увеличивается во столько же раз. Температура воздуха при всех опытах остаётся постоянной.

Опыты, проведённые с другими газами, дали те же результаты.

Изучая на опыте зависимость давления газа от его объёма, английский учёный Бойль (1627—1691) и французский учёный Мариотт (1620—1684) независимо один от другого открыли следующий закон.

Давление данной массы газа при неизменной температуре обратно пропорционально объёму газа.

Этот закон называется законом Бойля — Мариотта.

Выразим закон Бойля — Мариотта математически. Пусть температура некоторой массы газа постоянная и пусть:

Согласно закону Бойля — Мариотта можно написать:

Из этой формулы следует, что:

Полученное равенство можно рассматривать как новое выражение закона Бойля — Мариотта.

Произведение объёма данной массы газа на его давление при неизменной температуре есть величина постоянная.

Изобразим графически изотермическое изменение состояния газа. Для этого по оси абсцисс будем откладывать значения объёмов газа, а по оси ординат соответствующие им значения давлений. Выберем масштаб так, чтобы начальные значения объёма и давления были равны 1. Тогда начальное состояние газа будет изображено точкой А (рис. 135). Если давление увеличится вдвое, объём уменьшится в два раза, состояние газа изобразится на графике точкой В. При уменьшении первоначального давления вдвое объём удвоится, получим точку С. Беря далее давления в три, четыре и т. д. раза больше или меньше начального, а объёмы соответственно в три, четыре и т. д. раза меньше или больше, получим ряд точек, изображающих различные состояния одной и той же массы газа при одинаковой температуре.

Рис. 135. График изотермического процесса.

Проведя через эти точки линию, получим кривую, которая называется изотермой.

Тщательными исследованиями установлено, что для реально существующих газов закон Бойля — Мариотта имеет лишь приближённое значение. Так, например, если произведение pV при 1 am равно единице, то при 2 am оно имеет следующие значения:

для воздуха . 0,99977

» окиси углерода. 0,99974

» двуокиси углерода. 0,99720

При очень больших давлениях (в сотни и тысячи атмосфер) закон Бойля — Мариотта становится совершенно неприменимым; в таких случаях зависимость между объёмом и давлением газа выражается более сложными уравнениями.

Зависимость между плотностью газа и его давлением

Плотность газа численно равна массе, заключённой в единице объёма.

Масса газа не меняется при его сжатии или расширении, но объём меняется; следовательно, меняется и плотность газа.

Пусть при постоянной температуре: D1 — плотность газа при объёме V1 и давлении p1 , a D2 — плотность газа при объёме V2 и давлении p2.

Если масса газа равна m, то можно написать:

Но на основании закона Бойля — Мариотта; поэтому

При постоянной температуре плотность газа прямо пропорциональна его давлению.

Нетрудно понять справедливость этого вывода, исходя из молекулярно-кинетической теории. В самом деле, давление газа обусловлено ударами его молекул. Если объём газа уменьшится вдвое, то в новом объёме , плотность газа станет вдвое больше. Вдвое увеличится и число ударов молекул о стенки, т. е. давление газа возрастёт в два раза.

Зависимость объёма газа от температуры. Закон Гей-Люссака

Как и все тела, газы при нагревании расширяются, причём весьма заметно даже при незначительном нагревании. Это легко обнаружить на следующем простом опыте (рис. 136).

Рис. 136. Установка для наблюдения расширения газа при нагревании.

Колба А соединяется с расположенной горизонтально трубкой CD, которая укреплена вдоль шкалы. Внутри этой трубки находится небольшой столбик ртути. Достаточно к колбе прикоснуться рукой, как столбик ртути в трубке CD начнёт двигаться.

При охлаждении колбы столбик ртути перемещается влево, а при нагревании — вправо; следовательно, газ при охлаждении сжимается, а при нагревании расширяется. Зная объём колбы и диаметр трубки, можно измерить увеличение объёма газа.

Постепенно нагревая газ в колбе, можно установить, что при постоянном давлении изменение объёма данной массы газа пропорционально изменению температуры. Поэтому тепловое расширение газа, так же как и других тел, можно охарактеризовать при помощи коэффициента объёмного расширения.

Пусть при температуре 0°С объём газа равен V0 , а при температуре t объём Vt. Увеличение объёма, приходящееся на каждую единицу объёма, взятого при 0°С, при нагревании на один градус будет равно:

откуда: (1)

Величина входящая в писанные выше формулы, называется коэффициентом объёмного расширения газа.

Жозеф Луи Гей-Люссак (1778—1850)— один из выдающихся французских химиков и физиков. Он открыл ряд важных химических и физических законов, из которых в физике широко известен закон одинакового расширения газов и паров при одинаковом повышении температуры.

Французский учёный Гей-Люссак, исследуя на опыте тепловое расширение газов, открыл, что, коэффициент объёмного расширения у всех газов при постоянном давлении одинаков и численно равен

В этом отношении расширение газов при нагревании отличается от расширения твёрдых и жидких тел, где, как мы видели (см. § 81 и 82), коэффициент объёмного расширения зависит от химического состава тел.

Положим в формуле (1):

получим: откуда следует, что при нагревании на 1° под постоянным давлением объём данной массы газа увеличивается на того объёма, который газ занимал при 0°С.

Этот закон получил название закона Гей-Люссака. Процессы, подобные рассмотренному, протекающие при постоянном давлении, называются изобарными 1 .

1 От греч. слов: изос — равный, барос — тяжесть, вес.

Формула (1) показывает, что объём газа при температуре равен произведению его объёма, взятого при 0°С, на двучлен объёмного расширения

Пример. 1. Объём некоторой массы газа при 0°С равен 10 л. Найти объём его при t=273°С, если давление постоянно.

По условиям задачи нам известен объём газа при 0°С, т. е. V0 = 10 л; подставляя числовые данные задачи в формулу найдем, что

Пример 2. При температуре 273°С объём некоторой массы газа равен 10 л. Чему будет равняться объём этого газа при температуре 546°С, если давление постоянно?

Нам известен объём газа при температуре 273°С; чтобы определить объём этого газа при t2 = 546°С, надо предварительно найти его объём при 0°.

Этот объём найдётся из равенства:

Найдём теперь объём газа при 546°:

Зависимость давления газа от температуры. Закон Шарля

Нагревая газ в закрытом цилиндре, например в папиновом котле (рис. 136а), можно по манометру заметить, что давление газа увеличивается. Следя по термометру за повышением температуры, легко установить, что при постоянном объёме давление газа возрастает пропорционально повышению температуры.

Рис. 136а. При нагревании газа в закрытом цилиндре давление его повышается.

Аналогично тому, как для характеристики теплового расширения газов мы ввели коэффициент объёмного расширения, введём величину, характеризующую изменение давления газа при изменении его температуры.

Обозначим буквой р0 давление газа при 0°С, a pt — давление при . Увеличение давления, приходящееся на каждую единицу начального давления при нагревании на 1°С, будет равно:

(1)

Величина (греч. «гамма») называется термическим коэффициентом давления газа.

Измерения показывают, что величина термического коэффициента давления для всех

газов одинакова и равна

Определяя из формулы (1) величину pt получим:

(2)

Положим в формуле (2) тогда

Отсюда следует, что давление данной массы газа при нагревании на 1° при постоянном объеме увеличивается на того давления, которым обладал газ при 0°C.

Этот закон называется законом Шарля, по имени французского учёного, открывшего его в 1787 г.

Из закона Шарля следует, что термический коэффициент давления газа равен коэффициенту объёмного расширения Это равенство вытекает из закона Бойля — Мариотта. Докажем это.

Пусть некоторая масса газа заключена в цилиндре под поршнем (рис. 137, а) и пусть температура её в этом начальном состоянии равна 0°, объём V0 и давление р0. Закрепим поршень АВ и нагреем газ до температуры (рис. 137, б); тогда давление газа увеличится и станет равным рt объём же его останется прежним.

По закону Шарля:

Будем теперь газ нагревать от 0 до (рис. 137, в), предоставив поршню свободно перемещаться. Давление газа останется таким же, каким было в начальном его состоянии, т. е. р0 , объём же увеличится до Vt. По закону Гей-Люссака:

б) состояние газа, определяемое величинами:

в) состояние газа, определяемое величинами:

Итак, имеем: при температуре объём данной массы газа V 0 и давление при той же температуре: давление р0 и объём По закону Бойля— Мариотта:

После упрощения этого выражения получаем равенство:

Выразим сначала в виде таблицы, а потом графически зависимость давления газа от температуры. Для этого воспользуемся уравнением:

Рис. 138. График изменения давления газа от температуры.

Отложим по оси абсцисс в некотором условном масштабе температуры газа, а по оси ординат соответствующие этим температурам давления, взятые из написанной выше таблицы.

Соединяя на графике отмеченные точки, получим прямую LM (рис. 138), представляющую собой график зависимости давления газа от температуры при постоянном объёме.

Процесс изменения состояния газа, происходящий при неизменном объёме газа, называется изохорным 1 процессом, а линия LM, изображающая изменение давления газа при постоянном объеме в зависимости от температуры, называется изохорой.

1 От греч. слов: изос — разный, хорема — вместимость.

Пример 1. Давление газа при 0°С равно 780 мм рт. ст. Определить давление этого газа при температуре 273°С.

По формуле найдем, что

Пример 2. Чему будет равно давление газа при температуре 546°, если давление его при температуре 273° равно 780 мм рт. cm.?

В этой задаче прежде всего надо определить давление газа при 0°С. По формуле находим:

Теперь можно определить давление газа при t = 546°:

Законы Гей-Люссака и Шарля так же, как и закон Бойля — Мариотта, лишь приближённо отражают свойства газов. Это можно видеть хотя бы. из того факта, что для разных газов величины и несколько различаются между собой (см. таблицу).

Точные измерения показывают, что для каждого данного газа значения и получаются разные в зависимости от того, в каком температурном интервале и при каком давлении они определены. Однако эти различия очень незначительны, они учитываются лишь при весьма точных расчётах.

Абсолютная шкала температур

Вернёмся ещё раз к графику изменения давления газа с температурой (рис. 138).

Продолжим прямую LM на этом графике до пересечения её с горизонтальной осью, по которой откладываются температуры газа, она пересечёт эту ось в точке K. Отрезок ОК будет изображать на этом графике такую температуру газа, при которой давление его равно нулю. Чему равна эта температура?

Обратимся к уравнению Положим в этом уравнении pt = 0, т. е. напишем следующее равенство:

Так как давление газа при 0°С не равно нулю то из написанного равенства следует, что:

откуда: или, так как

Итак, давление газа равняется нулю при температуре —273°С.

Вильям Томсон (Кельвин) (1824— 1907) — выдающийся английский физик. Ему принадлежат важные открытия в области теории электричества и теплоты и изобретения, из которых наиболее значительным было усовершенствование телеграфной связи. Он ввёл в физику понятие об абсолютной температуре. Его именем названы градусы шкалы абсолютных температур — градусы Кельвина.

Английский учёный Вильям Томсон (Кельвин) предложил такую шкалу температур, при которой за нуль градусов принята температура — 273°. Эта шкала получила название абсолютной шкалы температур, или шкалы Кельвина, а нуль градусов этой шкалы, равный — 273°, называется абсолютным нулём температур.

В шкале Кельвина величина градуса та же, что и в стоградусной шкале.

Будем обозначать температуру по шкале Кельвина буквой Т.

При нормальном атмосферном давлении температура таяния льда по шкале Кельвина Т0 = 273°, температура же кипения воды T = 373°.

Всякая другая температура стоградусной шкалы связана с абсолютной температурой Т соотношениями:

Зависимость между объёмом, давлением и температурой газа

Объединённый закон газового состояния. Мы рассмотрели процессы, в которых одна из трёх величин, характеризующих состояние газа (объём, давление и температура), не меняется.

Вы видели, что если не меняется температура, то давление и объём газа связаны друг с другом законом Бойля —- Мариотта. При постоянном давлении объём газа изменяется с изменением температуры по закону Гей-Люссака, и, наконец, при постоянном объёме давление газа меняется с изменением температуры по закону Шарля.

Однако в природе часто имеют место процессы, когда одновременно меняются все три величины, характеризующие состояние газа. Установим теперь, какая связь существует между объёмом, давлением и температурой.

Пусть для двух каких-либо произвольных состояний некоторой массы газа эти величины будут:

Из этих состояний изменением величин р, V или t газ можно перевести в любые другие состояния. Будем, например, сохраняя постоянным давление, переводить газ из состояний 1) и 2) в состояния, при которых температура газа будет равна 0°С.

По закону Гей-Люссака объём газа V1 после уменьшения температуры от до 0° будет равен объём V2, после уменьшения температуры от t2 до 0° будет

Новые состояния газа выразятся так:

В обоих этих состояниях температура газа одинакова, поэтому на основании закона Бойля — Мариотта можно написать:

(1)

Так как величины р, V, t, характеризующие состояние рассматриваемого газа и обозначенные индексами 1 и 2, выбраны были нами произвольно, то равенство (1) справедливо для любых состояний этого газа. Поэтому можно утверждать, что:

(2)

Для данной массы газа произведение давления газа на его объём, делённое на двучлен объёмного расширения, есть величина постоянная.

Выведенная нами зависимость между объёмом, давлением и температурой газа называется объединённым законом газового состояния, а равенство (1) или (2) — уравнением состояния газа.

Уравнение состояния газа можно упростить, введя в него вместо температуры t по стоградусной шкале температуру Т по абсолютной шкале температур. Для этого преобразуем уравнение:

Введя в него значение получим:

что после сокращения на 273 даст:

Но и ; следовательно, можно написать:

Это означает, что для данной массы газа произведение давления на объём, делённое на абсолютную температуру, постоянно при всех температурах:

В частности, если при температуре Т = 273° объём газа равен V0 и давление его р0 , то можно написать:

Физическая сущность понятия абсолютного нуля

Мы уже отмечали, что реальные газы лишь приближённо следуют законам Гей-Люссака, Шарля и Бойля — Мариотта. Однако можно представить себе газ, для которого эти законы выполнялись бы в точности. Молекулы такого газа можно представить себе в виде упругих шариков исчезающе малого объёма, взаимодействие между которыми осуществляется только через их столкновения друг с другом. В физике такой газ принято называть идеальным газом.

Из уравнения следует, что при t = —273°, т. е. при абсолютном нуле, давление газа равно нулю. Но ведь давление газа есть результат ударов движущихся молекул о стенки сосуда. Следовательно, при температуре абсолютного нуля должно прекратиться тепловое движение молекул идеального газа.

Опыт показывает, что при малых давлениях свойства реальных газов очень близки к свойствам идеального газа. Следовательно, при приближении к температуре абсолютного нуля должно прекратиться тепловое движение молекул и реального газа. Этот вывод относится не только к газам, но и к твёрдым и жидким телам.

Физикой установлено, что такое состояние вещества недостижимо, но к нему можно подойти очень близко. В настоящее время достигнута температура, которая выше абсолютного нуля всего на несколько стотысячных долей градуса.

Изменение температуры газа при быстром расширении и сжатии

Опыты показывают, что при быстром сжатии температура газа повышается, а при быстром расширении понижается.

Увеличение температуры газа при сжатии можно показать на следующем простом опыте. Возьмём толстостенный цилиндрический стеклянный сосуд, внутри которого может двигаться поршень (рис. 139). При быстром сжатии воздух в сосуде сильно нагревается, и легко воспламеняющееся вещество (например, ватка, смоченная эфиром), положенное на дно сосуда, вспыхивает. Такого рода явление используется, например, в двигателях внутреннего сгорания —дизелях: при сжатии воздуха в цилиндре двигателя горючая смесь, введённая в цилиндр, нагревается до температуры воспламенения (работа двигателя описана в § 131).

Рис. 139. При быстром сжатии воздух в цилиндре сильно нагревается и легко воспламеняющееся вещество вспыхивает.

При быстром же расширении газа температура его понижается. Это можно наблюдать на следующем опыте. Будем накачивать воздух в прочную закрытую пробкой стеклянную банку, содержащую пары воды. При достижении определённого давления пробка выскочит; при этом воздух, расширяясь, совершит работу и охладится, вследствие чего водяной пар превратится в туман (рис. 140).

Рис. 140. Сжатый в сосуде воздух, выбрасывая пробку, расширяется. Совершая при этом работу, он охлаждается, вследствие чего водяной пар в сосуде превращается в туман.

Понижение температуры при быстром расширении газа используется для получения сжиженных газов; об этом будет рассказано в § 122.

Изменение температуры тела, как было установлено в § 71, связано с изменением внутренней энергии тела. Так как при быстром сжатии температура газа повышается, то внутренняя энергия его при этом увеличивается. Увеличение внутренней энергии газа происходит в результате работы, совершённой при его сжатии. Расширяясь же, газ совершает работу; при этом внутренняя энергия его уменьшается, и если расширение происходит быстро, то температура газа, как мы видели в наших опытах, понижается.

Процесс, происходящий в теле без теплообмена с окружающими его другими телами, называется адиабатным процессом.

Все быстро протекающие процессы практически могут считаться адиабатными.

Применение сжатых газов

Многие сжатые газы в настоящее время находят широкое применение в технике.

Сжатый воздух, например, применяется в работе различных пневматических инструментов: отбойных молотков, заклёпочных молотков, в разбрызгивателях краски и др.

На рисунке 141 показана схема устройства отбойного молотка. Сжатый воздух подаётся в молоток по шлангу М. Золотники Z, аналогичные применяемым в паровых машинах, направляют его поочерёдно то в заднюю, то в переднюю часть цилиндра. Поэтому воздух давит на поршень Р то с одной, то с другой стороны, что вызывает быстрое возвратно-поступательное движение поршня и пики молотка В. Последняя наносит быстро следующие друг за другом удары, внедряется в уголь и откалывает куски его от массива.

Рис. 141. Схема устройства отбойного молотка.

Существуют также пескоструйные аппараты, которые дают сильную струю воздуха, смешанную с песком. Эти аппараты применяются, например, для очистки стен. Сейчас нередко можно видеть работу специальных аппаратов, применяемых для окраски стен, где краска распыляется сжатым воздухом. Сжатым воздухом открываются двери вагонов метро и троллейбусов. Сжатый воздух используется в работе тормозов на транспорте. Схематическое устройство одного из видов пневматического тормоза железнодорожного вагона изображено на рисунке 142.

Компрессор подаёт воздух по магистрали в стальной резервуар А. Поршень В тормозного цилиндра оказывается под одинаковым давлением справа и слева; поэтому соединённая с ним тормозная колодка D отжата от колеса. Если открыть тормозной кран М, то находящийся в магистрали под давлением воздух устремится в атмосферу; клапан К захлопнется, и, таким образом, стальной резервуар изолируется от магистрали. Теперь давление на поршень В справа станет больше, чем давление слева, вследствие чего тормозная колодка прижмётся к ободу колеса. Если теперь кран М закрыть и снова подать в магистраль сжатый воздух, то восстановится первоначальное положение.

Рис. 142. Схема устройства железнодорожного пневматического тормоза.

В технике применяется не только сжатый воздух, но и некоторые другие газы, так, например, водород, ацетилен и кислород применяются при газовой сварке; аммиак используется в холодильном деле. Чтобы газы было удобно перевозить, их помещают в прочные стальные баллоны, накачивая до давления 60—200 am.

Рис. 142а. Внешний вид мощного компрессора.

Сжатие газов осуществляется с помощью мощных нагнетательных насосов — компрессоров.

На рисунке 143, а, б дана схема работы компрессора.

Компрессор состоит из цилиндра с поршнем и двумя клапанами; один из них входной, другой выходной. При движении поршня вниз (рис. 143, б) открывается входной клапан и в цилиндр поступает воздух из помещения; при движении поршня вверх (рис. 143, а) входной клапан закрывается, вошедший воздух сжимается поршнем и через выходной клапан поступает в стальной баллон для хранения сжатого газа.

Существуют так называемые многоступенчатые компрессоры, в которых газ последовательно

сжимается в трёх или четырёх цилиндрах. Такие компрессоры позволяют получить газ, сжатый до давления в тысячи атмосфер. На рисунке 142а изображён внешний вид одного из типов многоступенчатых компрессоров.

Рис. 143, а, б. Схема работы компрессора.

Услуги по физике:

Лекции по физике:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Уравнение состояния идеального газа

теория по физике 🧲 молекулярная физика, МКТ, газовые законы

Уравнение состояния идеального газа было открыто экспериментально. Оно носит название уравнения Клапейрона — Менделеева. Это уравнение устанавливает математическую зависимость между параметрами идеального газа, находящегося в одном состоянии. Математически его можно записать следующими способами:

Уравнение состояния идеального газа

Внимание! При решении задач важно все единицы измерения переводить в СИ.

Пример №1. Кислород находится в сосуде вместимостью 0,4 м 3 под давлением 8,3∙10 5 Па и при температуре 320 К. Чему равна масса кислорода? Молярная масса кислорода равна 0,032 кг/моль.

Из основного уравнения состояния идеального газа выразим массу:

Уравнение состояния идеального газа следует использовать, если газ переходит из одного состояния в другое и при этом изменяется его масса (количество вещества, число молекул) или молярная масса. В этом случае необходимо составить уравнение Клапейрона — Менделеева отдельно для каждого состояния. Решая систему уравнений, легко найти недостающий параметр.

Подсказки к задачам

Важна только та масса, что осталась в сосуде. Поэтому:

Давление возросло на 15%p2 = 1,15p1
Объем увеличился на 2%V2 = 1,02V1
Масса увеличилась в 3 разаm2 = 3m1
Газ нагрелся до 25 о СT2 = 25 + 273 = 298 (К)
Температура уменьшилась на 15 К (15 о С)T2 = T1 – 15
Температура уменьшилась в 2 раза
Масса уменьшилась на 20%m2 = 0,8m1
Выпущено 0,7 начальной массы
Какую массу следует удалить из баллона?Нужно найти разность начальной и конечной массы:
Газ потерял половину молекул
Молекулы двухатомного газа (например, водорода), диссоциируют на атомы
Озон (трехатомный кислород) при нагревании превращается в кислород (двухатомный газ)M (O3) = 3Ar (O)∙10 –3 кг/моль M (O2) = 2Ar (O)∙10 –3 кг/моль
Открытый сосудОбъем V и атмосферное давление pатм остаются постоянными
Закрытый сосудМасса m, молярная масса M, количество вещества ν, объем V, число N и концентрация n частиц, плотность ρ— постоянные величины
Нормальные условияТемпература T0 = 273 К Давление p0 = 10 5 Па
Единицы измерения давления1 атм = 10 5 Па

Пример №2. В баллоне содержится газ под давлением 2,8 МПа при температуре 280 К. Удалив половину молекул, баллон перенесли в помещение с другой температурой. Определите конечную температуру газа, если давление уменьшилось до 1,5 МПа.

2,8 МПа = 2,8∙10 6 Па

1,5 МПа = 1,5∙10 6 Па

Так как половина молекул была выпущена, m2 = 0,5m1. Объем остается постоянным, как и молярная масса. Учитывая это, запишем уравнение состояния идеального газа для начального и конечного случая:

Преобразим уравнения и получим:

Приравняем правые части и выразим искомую величину:

На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

Алгоритм решения

Решение

График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева — Клапейрона:

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

ν R = p 1 V 1 T 1 . . = p 2 V 2 T 2 . .

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

pазбирался: Алиса Никитина | обсудить разбор | оценить

На высоте 200 км давление воздуха составляет примерно 10 –9 от нормального атмосферного давления, а температура воздуха Т – примерно 1200 К. Оцените плотность воздуха на этой высоте.


источники:

http://natalibrilenova.ru/svojstva-gazov-v-fizike/

http://spadilo.ru/uravnenie-sostoyaniya-idealnogo-gaza/