Давление в жидкостях и газах уравнение непрерывности

Движение жидкостей и газов в физике — формулы и определение с примерами

Содержание:

Движение жидкостей и газов:

Вы знаете, что в состоянии покоя жидкости и газы оказывают давление на стенки сосуда. В природе и в быту жидкость находится не только в состоянии покоя, но и в движении. Какие силы возникают в текущей по арыкам, каналам, рекам и водопроводным трубам воде?

Для изучения этого явления рассмотрим поверхность воды, текущей в арыке. В середине широкого полноводного канала вода, в основном, течет равномерно по одной линии. В этом можно удостовериться, наблюдая за телами, плывущими в воде (рис. 4.14). Такое течение называется послойным или ламинарным. Вода в горной реке течет быстро. Если наблюдать за телами, плывущими по этой реке, то можно увидеть, что течение образовывает водовороты (рис. 4.15). Такое течение называется турбулентным. Значит, если жидкость течет по трубам, то за счет трения о стенки трубы слои жидкости текут с разной скоростью: в середине трубы – быстрее, у стенок – медленнее. Рассмотрим течение жидкости по трубке с изменяющим поперечным сечением, не учитывая трение (рис. 4.16).
Жидкость затекает в часть трубки с сечением

Обе стороны уравнения делим на и получаем:

Полученный результат можно сформулировать следующим образом:

Модули скоростей несжимаемой жидкости, текущей по трубам с разными сечениями, обратно пропорциональны сечениям трубы.

Это называется уравнением непрерывности течения для несжимаемой жидкости.

Таким образом, в широком месте трубки скорость жидкости будет меньше, чем в узком месте. Например, когда нужно, чтобы вода из водопроводного шланга брызгала дальше, нужно сжать отверстие шланга.
Рассмотрим распределение давления в двигающихся жидкостях.

Пусть вода течет по трубе разного сечения, с тонкими измерительными трубками наверху (рис 4.17). При стационарном течении жидкость по измерительным трубкам поднимается вверх. По высоте подъема жидкости можно сделать вывод об оказываемом ею на стенки трубы давлении. Опыты показывают, что в широких местах трубы давление будет больше, чем в узких местах. Согласно уравнению непрерывности течения, скорость течения в широкой части будет меньшей, а в узкой части будет больше.

На основании вышеизложенного можно сделать следующий вывод:

  • В потоке жидкости давление велико, если скорость течения мала, и давление мало, если скорость велика.

Математическое выражение зависимости давления жидкости от скорости течения определил в 1738 году Д. Бернулли.

Уравнение Бернулли можно вывести из закона сохранения механической энергии применительно к течению жидкости.

Установим трубку с изменяющимся сечением, по которой течет жидкость, под наклоном относительно горизонта. (рис. 4.18).

На широком отрезке трубки за время через сечение протекает определенный объем жидкости. Поскольку жидкость считается несжимаемой, через сечение за это время протекает такое же количество жидкости. Обозначим площадь сечения как , скорость течения жидкости через это сечение , соответственно площадь сечении обозначим и скорость .

Сила давления и . Под действием силы тяжести выделенный объем жидкости в течение времени смещается в правую сторону.
Выполненная при этом работа равна:

При стационарном течении энергия жидкости в части и не меняется, т.е. жидкость, занимающая объем , переносится и занимает объем . Согласно закону сохранения энергии выполненная работа внешних сил равна изменению энергии:

Учитывая, что , сокращаем выражение на , получаем:

Это выражение называется уравнением Бернулли для течения идеальной жидкости или газа.
Если получаем

Образец решения задачи:

Емкость имеет на дне маленькое отверстие закрытое пробкой. В емкость залили воду высотой 1 м. На поверхности воды установили поршень массой 1 кг и площадью 100 см2 . Через стенки емкости и поршня вода не просачивается. С какой скоростью будет выливаться вода, если резко открыть пробку?
Дано:

Решение:
Используем уравнение Бернулли. Давление потока воды равно давлению . Давление в нижней части на высоте считая от отверстия равно: . По уравнению Бернулли

Отсюда:
Ответ: 4,9 м/c.

Использование в технике зависимости давления от скорости двигающихся газов и жидкостей

Мы наблюдали, что при движении жидкости по сравнению с состоянием покоя давление изменяется. Это давление зависит от динамического давления. Для наблюдения зависимости динамического давления от скорости жидкости или газа проведем следующий опыт. Возьмем два листа бумаги и зафиксируем их в вертикальном положении. Затем подуем в промежуток между листами (рис. 4.19). Листы начнут приближаться друг к другу. Причиной этого явилось то, что воздух между листами пришел в движение, и давление между ними уменьшилось.

Давление с внешней стороны листа будет больше, чем с внутренней, и за счет этого появится сила, сдавливающая листы.

Иногда корабли, плывущие в одну сторону, сталкиваются без видимых причин. Это явление объясняется появлением разности давления в пространстве между ними.

Сила, поднимающая крылья самолета

Полет самолетов тоже возможен благодаря этому явлению, на котором основано специальное устройство крыла (рис. 4.20). Крылья самолета имеют вогнутую форму для того, чтобы встречный поток воздуха обтекал крыло снизу и сверху. Путь, денный потоком снизу. Поэтому скорость потока воздуха над крылом больше, чем его скорость под крылом. Значит, давление в том месте, где скорость потока выше, меньше давления под крылом, где скорость потока меньше. В результате появляется разность давлений , направленная снизу вверх. Если поток будет турбулентным, разность давлений будет больше. В результате разницы этих давлений появляется сила, которая называется подъемной силой крыла.

Эффект Магнуса

Многие видели, как футбольный мяч, отправленный с угла поля, по дуге попадает в ворота. Что заставляет мяч поворачиваться? Опытный футболист пинает мяч не по центру, как обычно делают все, а ударяет по его краю. В результате под воздействием такого удара мяч во время движения поворачивается. Кроме того, в результате такого удара меняется
скорость течения воздуха с левой и правой сторон мяча, что создает разницу давлений в воздухе, и мяч попадает в ворота. Такое явление называется эффектом Магнуса (рис. 4.21).

Расчет скорости воды, вытекающей из отверстия сосуда

Используя уравнение Бернулли, можно вычислить скорость вытекания жидкости из отверстия, находящегося на глубине от поверхности жидкости (рис. 4.22).

Давление на поверхности жидкости, которая находится в сосуде, равно давлению атмосферы . Скорость жидкости . Давление жидкости перед отверстием тоже равно . Скорость
жидкости, вытекающей из отверстия, обозначим , и для этих двух случаев применим формулу:

отсюда получим:

Эта формула называется формулой Торричелли для идеальной жидкости.

Образец решения задачи:

В баке высотой 5 м, на высоте 50 см от земли установлен кран. С какой скоростью будет вытекать вода, если открыть кран?

Ответ:

Основные понятия, правила и законы

Устойчивое равновесиеПри выведении тела из положения равновесия
возникают силы, возвращающие тело в прежнее
положение. Это явление называется устойчивым
равновесием.
Неустойчивое равновесиеПри выведении тела из положения равновесия
возникают силы, удаляющие его от положения
равновесия. Такое равновесие называется
неустойчивым равновесием
Безразличное равновесиеБезразличным равновесием называется явление,
при котором тело выводится из равновесного
состояния и не появляется сила, изменяющая его
состояние.
Момент силыПроизведение силы на плечо силы:
Условие равновесия
тела, которое имеет ось
вращения
Когда векторная сумма моментов сил, действующих на тело, равняется нулю, тело остается в
равновесии:
Двухплечный рычагОпора находится между точками, к которым
приложены силы.
Одноплечный рычагОпора расположена на одном конце рычага, а груз
устанавливается на второй конец рычага
Степенной полиспастКомплекс подвижных и неподвижных блоков
– вес груза; – сила тяги.
Ламинарное течениеТечение жидкости отдельными слоями
Турбулентное течениеДвижение жидкости в виде воронки
Уравнение
непрерывности течения
Модули скоростей несжимаемой жидкости, теку-
щей по трубам разного сечения, обратно пропорциональны сечениям трубы: .
Уравнение Бернулли
В потоке жидкости давление велико, если скорость течения мала, и давление мало, если скорость велика.
Динамическое давлениеДавление, создаваемое в результате движения
жидкости.
Эффект МагнусаИзменение направления движения предмета в
результате появления разницы давлений газа или
жидкости по сторонам предмета, который совершает вращательное движение.
Формула Торричелли – скорость течение воды; – высота.

Движение жидкости и газа

Можно ли не очень опытному пловцу попробовать переплыть горную реку? Казалось бы, почему нет, особенно если река не очень широкая. Но этого не стоит делать ни в коем случае — это очень опасно! И дело не в ширине реки, а в том, что, как правило, в горных реках есть стремнины — участки с большой скоростью течения. Выплыть из стремнины очень трудно — она затягивает и «не отпускает» пловца.

Где жидкость движется быстрее

Возьмем горизонтальную трубку с разными поперечными сечениями, закрытую поршнем (можно взять шприц без иглы). Наполним трубку водой и будем перемещать поршень с некоторой постоянной скоростью (рис. 18.1). Увидим, что скорость воды в узкой части трубки будет больше, чем в широкой части. Результаты этого опыта можно было бы и спрогнозировать.

Рассмотрим стационарный поток идеальной несжимаемой жидкости, то есть поток, в каждой точке которого скорость движения жидкости не изменяется со временем, а силы трения пренебрежимо малы (рис. 18.2). Пусть — скорость течения в широкой части трубы с площадью сечения , а — скорость течения в узкой части трубы с площадью сечения .

За некоторое время t через эти сечения протекают равные объемы жидкости: , где — расстояния, которые проходит жидкость за время t.

Поскольку После сокращения на t получим уравнение неразрывности струи:

Таким образом, и эксперименты, и теоретические исследования подтверждают: чем меньше площадь сечения, тем быстрее движется жидкость. Подобное явление можно наблюдать, если спускаться или подниматься по реке: течение медленное и плавное там, где река глубокая и широкая, а на мелководье или в узкой части русла скорость течения заметно увеличивается.

Как давление внутри жидкости зависит от скорости ее движения

Вернемся к рис. 18.2. Скорость течения в месте перехода из широкой части трубы в узкую увеличивается, то есть жидкость ускоряет свое движение. Наличие ускорения означает, что в этом месте на жидкость действует некая сила. Труба расположена горизонтально, поэтому сила, придающая ускорение, не может быть следствием притяжения Земли. Эта сила возникает в результате разности давлений, то есть давление жидкости в широкой части трубы (где скорость течения меньше) больше давления жидкости в узкой части трубы (где скорость течения больше).

Первым к такому выводу пришел швейцарский физик и математик Даниил Бернулли (1700–1782), который установил закон, касающийся любого стационарного потока жидкости, — закон Бернулли:

При стационарном движении жидкости давление жидкости меньше там, где скорость течения больше, и наоборот, давление жидкости больше там, где скорость течения меньше.

Закон Бернулли является следствием закона сохранения механической энергии: жидкость получает кинетическую энергию (увеличивает скорость своего движения) благодаря тому, что потенциальная энергия упругого взаимодействия молекул жидкости уменьшается (и наоборот). Если поток жидкости не горизонтальный, изменение кинетической энергии жидкости происходит еще и за счет изменения ее потенциальной энергии гравитационного взаимодействия с Землей.

Почему летают самолеты

Садясь в самолет или наблюдая за его полетом, вы, вероятно, задумывались о том, почему самолет поднимается и какая сила удерживает его в воздухе. Кто-то скажет, что это архимедова сила (но это не так, ведь неподвижный самолет не поднимется). Некоторые предположат, что самолет держит сила реактивной тяги двигателей (и это тоже неправильно, ведь эта сила только разгоняет самолет и поддерживает скорость его движения). Самолет держится в воздухе благодаря силе давления, создающей подъемную силу.

Возникновение подъемной силы можно объяснить с помощью закона Бернулли, ведь при определенных условиях воздушный поток можно рассматривать как стационарный поток жидкости.

Во время полета на крылья самолета все время набегает встречный поток воздуха, и крылья как бы «разрезают» его на две части: одна часть обтекает верхнюю поверхность крыла, другая — нижнюю. Форма большинства крыльев такова, что поток, обтекающий верхнюю (выпуклую) часть крыла, преодолевает за то же время большее расстояние (движется с большей скоростью), чем поток, обтекающий крыло снизу (рис. 18.3). Согласно закону Бернулли там, где скорость потока больше, давление меньше. Следовательно, сила давления, действующая на крыло сверху, меньше силы давления, действующей на крыло снизу.

Рис. 18.3. Обычно крыло самолета имеет аэродинамическую форму: верхняя поверхность крыла более выпуклая, чем нижняя. Голубыми стрелками показано движение воздуха, набегающего на крыло, зеленой стрелкой — направление движения самолета

Однако самая важная причина образования подъемной силы — это наличие угла атаки — наклона крыльев самолета под определенным углом a к воздушному потоку (рис. 18.4). В таком случае подъемная сила возникает как за счет уменьшения давления над крылом, так и за счет увеличения давления под крылом. Благодаря наличию угла атаки в воздух поднимаются и самолеты с симметричным профилем крыла.

Разницу сил давлений называют полной аэродинамической силой (см. рис. 18.4).

Рис. 18.4. Угол атаки α и полная аэродинамическая сила. Вертикальная составляющая силы — подъемная сила , горизонтальная составляющая — сила сопротивления

  • Для стационарного потока жидкости или газа выполняется закон Бернулли: давление жидкости (газа) больше там, где скорость течения меньше, и наоборот.
  • Закон Бернулли объясняет одну из причин возникновения подъемной силы крыла самолета: аэродинамическая форма крыла заставляет воздух над его верхней поверхностью двигаться с большей скоростью, поэтому давление над крылом меньше, чем давление под крылом.
Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Гидравлические машины в физике
  • Весовое давление жидкостей в физике
  • Сообщающиеся ссуды в физике
  • Атмосферное давление в физике и его измерение
  • Блоки в физике
  • Движение тела под действием нескольких сил
  • Наклонная плоскость в физике
  • Давление газов и жидкостей

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Уравнение неразрывности и уравнение Бернулли.

Уравнение неразрывности потока и уравнения Бернулли являются основными уравнениями гидродинамики. При изучении потоков жидкости вводится ряд понятий, характеризующий потоки с гидравлической и геометрической точек зрения.

Такими понятиями являются: площадь живого сечения потока(или живое сечение потока), расход и средняя скорость.

Площадью живого сечения потока, называют площадь сечения потока, приведенную нормально к направлению линии тока, т.е. перпендикулярно движению струйки жидкости. Живое сечение может быть ограничено твердыми стенками полностью или частично. Если стенки ограничивают поток полностью, то движение жидкости называют напорным; Если же ограничение частичное, то движение называется безнапорным.

Напорное движение характеризуется тем, что гидродинамическое давление в любой точке потока отлично от атмосферного и может быть как больше, так и меньше него. Безнапорное движение характеризуется постоянным давлением на свободной поверхности, обычно равным атмосферному.

Содержание статьи

Расходом потока называется количество жидкости, протекающей через поперечное сечение в единицу времени. Если рассматривать поток жидкости, представляющий собой совокупность большого числа элементарных струек, то очевидно, общий расход жидкости для всего потока в целом представляет собой сумму расходов всех отдельных струек.

Для нахождения этой суммы необходимо знать закон распределения скоростей в сечении потока. Так как во многих случаях движения такой закон неизвестен, в общем случае суммирование становится невозможным. Поэтому в гидродинамике вводится предположение, что все частицы жидкости по всему поперечному сечению потока движутся с одинаковой скоростью. Эту воображаемую фиктивную скорость называют средней скоростью потока υср .

Таким образом уравнение расхода для потока будет

υср – средняя скорость потока

F – площадь сечения потока.

Уравнение неразрывности потока жидкости

Теперь вооружившись основными понятиями перейдем к определению уравнения неразрывности потока.

Отделим сечениями 1-1 и 2-2 некоторый отрезок элементарной струйки. В этот отрезок в единицу времени через сечение 1-1 втекает объем жидкости равный

а через сечение 2-2 из него же вытекает объем, равный

Примем, что жидкость несжимаема и что в ней невозможно образование незаполненных жидкостью пространств – т.е. будем считать, что соблюдается условие сплошности или неразрывности движения.

Учитывая, что форма элементарной струйки с течением времени не изменяется и поперечный приток в струйку или отток из ней отсутствуют, приходим к выводу, что элементарные расходы жидкости, проходящие через сечение 1-1 и 2-2, должны быть одинаковы.

Такие соотношения можно составить для любых двух сечений струйки. Поэтому в более общем виде получаем, что всюду вдоль струйки

Это уравнение называется уравнением неразрывности жидкости – оно является первым основным уравнением гидродинамики. Переходя далее к потоку жидкости в целом получаем, что

т.е. средние скорости в поперечных сечениях потока при неразрывности движения обратно пропорциональны площади этих сечений.

Уравнение неразрывности струи жидкости. Уравнение Бернулли.

Вторым основным уравнением гидродинамики является уравнение Бернулли, устанавливающее взаимосвязь между скоростью и давлением в различных сечениях одной и той же струйки.

При рассмотрении уравнения Бернулли также как и в предыдущем случае ограничимся установившемся медленно изменяющимся движением. Выделим в объеме некоторой жидкости одну элементарную струйку и ограничим её в какой-то определенный момент времени Т сечениями 1-1 и 2-2.

Допустим, что через какой-то промежуток времени ΔТ указанный объем переместится в положение 1’ – 1’ и 2’ – 2’. Тогда применяя к движению этого сечению теорему кинетической энергии, определяем, что приращение кинетической энергии движущейся системы материальных частиц равняется сумме работ всех сил, действующих на систему.

Если всё это записать в виде формулы, то

где W – приращение кинетической энергии = m * υ 2 / 2

ΣA – сумма работ действующих сил = P *ΔS

В этих выражениях
m – масса
υ – скорость материальной точки
P – равнодействующая всех сил, приложенных к точке,
ΔS – проекция перемещения точки на направление силы.

Теперь рассмотрим обе части этого выражения по порядку.

Приращение кинетической энергии ΔW

В нашем случае приращение кинетической энергии определяется как разность значений кинетической энергии в двух положениях перемещающегося объема, т.е. как разность кинетической энергии объема образованного сечениями 1-1’ и объема, образованного сечениями 2 – 2’.

Эти объемы являются результатом перемещения за время ΔТ сечений выделенного участка элементарной струйки.

Вспоминая, что по условию неразрывности расход во всех сечениях элементарной струйки одинаков, а следовательно будет равен

масса в этом случае получается равной

Подставляя все это в выражение для кинетической энергии получаем цепочку

ΔW = m * υ 2 2 / 2 — m * υ 2 1 / 2 = ρ * q * ΔТ * υ 2 2 / 2 — ρ * q * ΔТ * υ 2 1 / 2

Работа сил действующих на систему ΣA

Теперь перейдем к рассмотрению работы сил, действующих на рассматриваемый объем жидкости. Работа сил тяжести AТ равна произведению этой силы на путь, пройденный центром массы движущегося объема жидкости по вертикали.

Для рассматриваемой в нашем примере струйки работа сил тяжести будет равна произведению сил тяжести объема занимаемого сечениями 1-1’ и 2 – 2’ на расстояние Z1 –Z2.

Где Z1 и Z2 – расстояния по вертикали от горизонтальной плоскости, называемой плоскостью сравнения до центров масс объемов 1-1’ и 2 – 2’.

Силы давления АД , действующие на объем жидкости складываются из сил давления на его боковую поверхность и на концевые поперечные сечения. Работа сил давления на боковую поверхность равна нулю, так как эти силы за все время движения нормальны к перемещению их точек приложения.

Суммарно работа сил давления будет

Подставляя в начальное уравнение

Полученные выражения для ΔW и ΣA получаем

Разделим обе части этого уравнения на m = ρ*q*ΔТ и перегруппируем слагаемые

Учитывая, что сечения 1-1 и 2-2 взяты нами совершенно произвольным образом, это уравнение возможно распространить на всю струйку. Применив его для любых поперечных сечений, взятых по её длине, и представить в общем виде:

Записанные выше два уравнения представляют собой уравнение Бернулли для элементарной струйки жидкости. Сумма трех слагаемых, входящих в это уравнение, называется удельной энергией жидкости в данном сечении струйки. Различают такие энергии как:
Удельная энергия положения = qz
Удельная энергия давления = p/ ρ
Кинетическая удельная энергия = υ 2 / 2

В соответствии с этим уравнение Бернулли для струйки жидкости можно сформулировать следующим образом: для элементарной струйки идеальной жидкости полная удельная энергия, т.е. сумма удельной энергии положения, удельной энергии давления и кинетической удельной энергии – есть величина постоянная во всех сечениях струйки.

Видео по теме уравнение неразрывности

Полученные в результате многочисленных экспериментов данные из уравнения Бернулли и уравнения неразрывности потока жидкости нашли широкое применение в повседневной жизни.

Уравнение Бернулли широко используется для нахождения скорости истечения жидкости через отверстия.

Уравнение неразрывности обладает широкой универсальностью и справедливо для любой сплошной среды. Принцип уравнения неразрывности используется для формирования сильной и дальнобойной струи воды при тушении пожаров.

Кратко о гидродинамике: уравнения движения

Написав предыдущий пост, исторический и отчасти рекламный (хотя потенциальные абитуриенты такое вряд ли читают), можно перейти и к разговору «по существу». К сожалению, высокой степени популярности описания добиться вряд ли получится, но всё же постараюсь не устраивать курс сухих лекций. Хотя, от сухости избавиться не удалось, да и пост писался в результате ровно месяц.

В нынешней публикации описаны основные уравнения движения идеальной и вязкой жидкости. По возможности кратко рассмотрен их вывод и физический смысл, а также описаны несколько простейших примеров их точных решений. Увы, этими несколькими примерами доступные аналитически решения уравнений Навье-Стокса в значительной мере исчерпываются. Напомню, что Институт Клэя отнёс доказательство существования и гладкости решений к проблемам тысячелетия. Гении уровня Перельмана и выше — задача вас ждёт.

Понятие сплошной среды

В, если можно так выразиться, «традиционной» гидродинамике, сложившейся исторически, фундаментом является модель сплошной среды. Она отвлекается от молекулярной структуры вещества, и описывает среду несколькими непрерывными полевыми величинами: плотностью, скоростью (определяемой через суммарный импульс молекул в заданном элементе объёма) и давлением. Модель сплошной среды предполагает, что в любом бесконечно малом объёме содержится ещё достаточно много частиц (как принято говорить, термодинамически много — числа, близкие по порядку величины к числу Авогадро — 10 23 шт.). Таким образом, модель ограничена снизу дискретностью молекулярной структуры жидкости, что в задачах типичных пространственных масштабов совершенно несущественно.

Однако, такой подход позволяет описать не только воду в пробирке или водоёме, и оказывается куда более универсальным. Поскольку наша Вселенная на больших масштабах практически однородна, то, как ни странно, она начиная с некоторого масштаба превосходно описывается как сплошная среда, с учётом, конечно же, самогравитации.

Другими, более приземлёнными применениями сплошной среды являются описание свойств упругих тел, динамики плазмы, сыпучих тел. Также можно описывать топлу людей как сжимаемую жидкость.

Параллельно с приближением сплошной среды, в последние годы набирает обороты кинетическая модель, основанная на дискретизации среды на небольшие частицы, взаимодействующие между собой (в простейшем случае — как твердые шарики, отталкивающиеся при столкновении). Такой подход возник в первую очередь благодаря развитию вычислительной техники, однако существенно новых результатов в чистую гидродинамику не превнёс, хотя оказался крайне полезен для задач физики плазмы, которая на микроуровне не является однородной, а содержит электроны и положительно заряженные ионы. Ну и опять же для моделирования Вселенной.

Уравнение неразрывности. Закон сохранения массы

Самый элементарный закон. Пусть у нас есть какой-то совершенно произвольный, но макроскопический объём жидкости V, ограниченный поверхностью F (см. рис.). Масса жидкости внутри него определяется интегралом:

И пусть с жидкостью внутри него не происходит ничего, кроме движения. То есть, там нет химических реакций и фазовых переходов, нет трубок с насосами или чёрных дыр. Ну и всё происходит с маленькими скоростями и для малых масс вещества, потому никакой теории относительности, искривления пространства, самогравитации жидкости (она становится существенна на звёздных масштабах). И пусть сам объём и границы еего неподвижны. Тогда единственное, что может изменить массу жидкости в нашем объёме — это её перетекание через границу объёма (для определённости — пусть масса в объёме убывает):

где вектор j — поток вещества через границу. Точкой, напомним, обозначается скалярное произведение. Поскольку границы объёма, как было сказано, неподвижны, то производную по времени можно внести под интеграл. А правую часть можно преобразовать к такому же, как слева, интегралу по объёму по теореме Гаусса-Остроградского.

В итоге, в обеих частях равенства получается интеграл по одному и тому же совершенно произвольному объёму, что позволяет приравнять подинтегральные выражения и перейти к дифференциальной форме уравнения:

Здесь (и далее) использован векторный оператор Гамильтона. Образно говоря, это условный вектор, компоненты которого — операторы дифференцирования по соответствующим координатам. С его помощью можно очень кратко обозначать разного рода операции над скалярами, векторами, тензорами высших рангов и прочей математической нечистью, основные среди которых — градиент, дивергенция и ротор. Не буду останавливаться на них детально, поскольку это отвлекает от основной темы.

Наконец, поток вещества равен массе, переносимой через единичную площадку за единицу времени:

Окончательно, закон сохранения массы (называемый также уравнением неразрывности) для сплошной среды таков:

Это выражение наиболее общее, для среды, обладающей переменной плотностью. В реальности, эксперимент свидетельствует о крайне слабой сжимаемости жидкости и практически постоянном значении плотности, что с высокой точностью позволяет применять закон сохранения массы в виде условия несжимаемости:

которое с не менее хорошей точностью работает и для газов, пока скорость течения мала по сравнению со звуковой.

Уравнение Эйлера. Закон сохранения импульса

Весь относительно громоздкий процесс колдовства преобразования интегралов, использованный выше, даёт нам не только уравнение неразрывности. Точно такие же по сути преобразования позволяют выразить законы сохранения импульса и энергии, и получить в итоге уравнения для скорости жидкости и для переноса тепла в ней. Однако пока не будем сильно торопиться, и займёмся не просто сохранением импульса, а даже сохранением импульса в идеальной несжимаемой жидкости — т.е. рассмотрим модель с полным отсутствием вязкости.

Рассуждения практически те же самые, только теперь нас интересует не масса, а полный импульс жидкости в том же самом объёме V. Он равен:

При тех же самых условиях, что и выше, импульс в объёме может меняться за счёт:

  • конвективного переноса — т.е. импульс «утекает» вместе со скоростью через границу
  • давления окружающих элементов жидкости
  • просто за счёт внешних сил, например — от силы тяжести.

Соответствующие интегралы (порядок отвечает списку) дают такое соотношение:

Начнём их преобразовывать. Правда, для этого нужно воспользоваться тензорным анализом и правилами работы с индексами. Конкретнее, к первому и второму интегралам применяется теорема Гаусса-Остроградского в обобщённой форме (она работает не только для векторных полей). И если перейти к дифференциальной форме уравнения, то получится следующее:

Крестик в кружочке обозначает тензорное произведение, в данном случае — векторов.

В принципе, это уже уравнение Эйлера, однако его можно чуток упростить — ведь закон сохранения массы никто не отменял. Раскрыв здесь скобки в дифференциальных операторах и приведя затем подобные слагаемые, мы увидим, что три слагаемых благополучно собираются в уравнение неразрывности, и потому дают в сумме ноль. Итоговое уравнение оказывается таким:

Если перейти в систему отсчёта, связанную с движущейся жидкостью (не будем заострять внимание на том, как это делается), мы увидим, что уравнение Эйлера выражает второй закон Ньютона для единицы объёма среды.

Учёт вязкости. Уравнение Навье-Стокса

Идеальная жидкость, это, конечно, хорошо (правда, всё равно точно не решается), но во многих случаях учёт вязкости необходим. Даже в той же конвекции, в течении жидкости по трубам. Без вязкости вода вытекала бы из наших кранов с космическими скоростями, а малейшая неоднородность температуры в воде приводила бы к её крайне быстрому и бурному перемешиванию. Потому давайте учтём сопротивление жидкости самой себе.

Дополнить уравнение Эйлера можно различными (но эквивалентными, конечно же) путями. Воспользуемся базовой техникой тензорного анализа — индексной формой записи уравнения. И пока также отбросим внешние силы, чтобы не путались под руками / под ногами / перед глазами (нужное подчеркнуть). При таком раскладе всё, кроме производной по времени, можно собрать в виде дивергенции одного такого тензора:

По смыслу, это плотность потока импульса в жидкости. К нему и нужно добавить вязкие силы в виде ещё одного тензорного слагаемого. Поскольку они явно приводят к потере энергии (и импульса), то они должны вычитаться:

Идя обратно в уравнение с таким тензором, мы получим обобщённое уравнение движения вязкой жидкости:

Оно допускает любой закон для вязкости.

Принято считать очевидным, что сопротивление зависит от скорости движения. Вязкость же, как перенос импульса между участками жидкости с различными скоростями, зависит от градиента скорости (но не от самой скорости — тому мешает принцип относительности). Если ограничиться разложением этой зависимости до линейных слагаемых, получится вот такой жутковатый объект:

в котором величина перед производной содержит 81 коэффициент. Однако, используя ряд совершенно разумных предположений об однородности и изотропности жидкости, от 81 коэффициента можно перейти всего к двум, и в общем случае для сжимаемой среды, тензор вязких напряжений равен:

где η (эта) — сдвиговая вязкость, а ζ (зета или дзета) — объёмная вязкость. Если же среда ещё и несжимаема, то достаточно одного коэффициента сдвиговой вязкости, т.к. второе слагаемое при этом уходит. Такой закон вязкости

носит название закона Навье, а полученное при его подстановке уравнение движения — это уравнение Навье-Стокса:

Точные решения

Главной проблемой гидродинамики является отсутствие точных решений её уравнений. Как бы с этим ни боролись, но получить действительно всеобщих результатов не удаётся до сих пор, и, напомню, вопрос существования и гладкости решений уравнений Навье-Стокса входит в список Проблем тысячелетия института Клэя.

Однако, несмотря на столь грустные факты, некоторые результаты есть. Здесь будут представлены далеко не все, а лишь самые простые случаи.

Потенциальные течения

Особый интерес представляют течения, в которых жидкость не завихряется. Для такой ситуации можно отказаться от рассмотрения векторного поля скорости, поскольку она выражается через градиент скалярной функции — потенциала. Потенциал же удовлетворяет хорошо изученному уравнению Лапласа, решение которого полностью определяется тем, что задано на границах рассматриваемой области:

Более того, при отсутствии вязкости из уравнения Эйлера можно однозначно выразить и давление, что вовсе замечательно и приводит нас к полному решению задачи. Ах, если бы так было всегда… то гидродинамики, наверное, уже бы и не было как современной и актуальной отрасли.

Дополнительно можно упростить задачу предположением, что течение жидкости двумерно — скажем, всё движется в плоскости (x,y), и ни одна частица не перемещается вдоль оси z. Можно показать, что в таком случае скорость может быть также заменена скалярной функцией (на этот раз — функцией тока):

которая при потенциальном течении удовлетворяет условиям Коши-Лагранжа из теории функций комплексной переменной и воспользоваться соответствующим математическим аппаратом. Полностью совпадающим с аппаратом электростатики. Теория потенциальных течений развита на высоком уровне, и в принципе хорошо описывает большой спектр задач.

Простые течения вязкой жидкости

Решения для вязкой жидкости чаще всего удаётся получить, когда из уравнения Навье-Стокса благодаря свойствам симметрии задачи выпадает нелинейное слагаемое.

Сдвиговое течение Куэтта

Самая элементарная задачка. Канал с неподвижной нижней и подвижной верхней стенкой, которая движется равномерно с некоторой скоростью. На границах жидкость прилипает к ним, так что скорость жидкости равна скорости границы. Этот результат является экспериментальным фактом, и как-то даже авторы первых экспериментов не упоминаются, просто — по совокупности экспериментов.

В такой ситуации от уравнения Навье-Стокса останется уравнение вида v» = 0, и потому профиль скорости в канале окажется линейным:

Данная задача является практически базовой для теории смазки, т.к. позволяет непосредственно определить силу, которую требуется приложить к верхней стенке для её движения с конкретной скоростью.

Течение Пуазейля

Вторая по элементарности — ламинарное течение в канале. Или в трубе. Результат оказывается один — профиль скорости является параболическим:

На основе решения Пуазейля можно определить расход жидкости через сечение канала, но, правда, только при ламинарном течении и гладких стенках. С другой стороны, для турбулентного потока и шероховатых стенок точных решений нет, а есть лишь приближённые эмпирические закономерности.

Стекание слоя жидкости по наклонной плоскости

Тут — почти как в задаче Пуазейля, только верхняя граница жидкости будет свободной. Если предположить, что по ней не бегут никакие волны, и вообще сверху нет трения, то профиль скорости будет практически нижней половинкой предыдущего рисунка. Правда, если из полученной зависимости вычислить скорость течения для средней равнинной речки, она составит около 10 км/с, и вода должна самопроизвольно отправляться в космос. Наблюдаемые в природе низкие скорости течения связаны с развитой завихренностью и турбулентностью потока, которые эффективно увеличивают вязкость воды примерно в 1 млн. раз.

В следующем посте планируется рассказать о законе сохранения энергии и соответствующих ему уравнениях переноса тепла при течении жидкости.


источники:

http://www.nektonnasos.ru/article/gidravlika/uravnenie-nerazryvnosti/

http://habr.com/ru/post/171327/