Действительные числа рациональные уравнения и неравенства 10 класс

Презентация по подготовке к контрольной работе в 10 классе по теме «Рациональные уравнения и неравенства»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Подготовка к контрольной работе

Выполнить действие в скобках, предварительно разложив знаменатели на множители (где это возможно), изменить знаменатель третьей дроби на противоположный, изменив у дроби знак
Привести дроби к общему знаменателю и выполнить действия
Упростить числитель, сократить дробь, если необходимо

Выполнить деление дробей
Записать ответ

Выполнить преобразование левой части по той же схеме, что и предыдущее задание: разложение знаменателей на множители, приведение к общему знаменателю, вычитание дробей.

Дробь равна нулю тогда и только тогда, когда числитель равен нулю, а знаменатель отличен от нуля. Поэтому далее находим нули числителя и делаем проверку в знаменателе.
Заметим, что при х = -1 знаменатель обращается в нуль, значит, это посторонний корень.
ОТВЕТ: х = -12

Такие неравенства мы решали на последних двух уроках. Пересмотрите свои записи, выполненное домашнее задание и решите данные неравенства самостоятельно, затем проверьте ответ.
ОТВЕТ: а) (-∞;-4);(-1;1) б) (-∞;-1);<3>;(5;+∞)

Попробуйте упростить выражение сами, а затем посмотрите последовательность выполнения действий (или преобразований)
Поставив в выражение вместо n нуль, получим значение выражения

При доказательстве неравенств а) и б) необходимо преобразовать левые части, оценить их, сделать выводы.
Получили сумму квадратов выражений, т.е. сумму двух неотрицательных значений, а она так же неотрицательна

При доказательстве неравенств а) и б) необходимо преобразовать левые части, оценить их, сделать выводы.
Сумма первых трех слагаемых будет неотрицательной, т.е. больше или равна 0, а прибавив к данному выражению 1, получим больше или равно 1, т.е. строго больше 0. Значит, неравенство доказано.

При доказательстве неравенства в) заметим, что обе части неравенств принимают положительные значения. Тогда можно сравнить их квадраты. Т.е. возвести обе части в квадрат и найти разность
Значит, неравенство доказано.

Разложим левую часть уравнения на множители, применив теорему Безу и схему Горнера. Будем искать корни многочлена среди делителей числа 9.

Для нахождения трехзначного числа обозначим цифры, из которых оно состоит буквами и решим числовой ребус
Подбирая последовательно цифры, получим, что А = 6, Б = 7, В = 9.
Т.е. искомое число равно 679.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 924 человека из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 686 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 309 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 579 494 материала в базе

Материал подходит для УМК

«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни)», Никольский С.М., Потапов М.К., Решетников Н.Н. и др.

§ 2. Рациональные уравнения и неравенства

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Другие материалы

  • 07.01.2021
  • 884
  • 18

  • 07.01.2021
  • 1773
  • 27

  • 07.01.2021
  • 134
  • 6

  • 07.01.2021
  • 354
  • 23

  • 07.01.2021
  • 97
  • 1

  • 07.01.2021
  • 1443
  • 32

  • 07.01.2021
  • 102
  • 0
  • 07.01.2021
  • 81
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 08.01.2021 218
  • PPTX 233.9 кбайт
  • 17 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Петрова Наталья Викторовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 4 года и 9 месяцев
  • Подписчики: 0
  • Всего просмотров: 21254
  • Всего материалов: 39

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Ростовской и Воронежской областях организуют обучение эвакуированных из Донбасса детей

Время чтения: 1 минута

Минпросвещения упростит процедуру подачи документов в детский сад

Время чтения: 1 минута

Объявлен конкурс дизайн-проектов для школьных пространств

Время чтения: 2 минуты

Университет им. Герцена и РАО создадут портрет современного школьника

Время чтения: 2 минуты

В школах Хабаровского края введут уроки спортивной борьбы

Время чтения: 1 минута

Онлайн-конференция о создании школьных служб примирения

Время чтения: 3 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Урок в 10 классе «Рациональные уравнения».
методическая разработка по алгебре (10 класс) по теме

Данный урок предназначен для изучения темы в 10 классе: «Рациональные уравнения.» Тип урока: урок- лекция.

Скачать:

ВложениеРазмер
Данный урок предназначен для изучения темы в 10 классе: «Рациональные уравнения.» Тип урока: урок- лекция.166 КБ
10 класс: «Рациональные уравнения.»209.5 КБ

Предварительный просмотр:

МОУ «Гимназия № 5 г. Белгорода»

Тема урока: Рациональные уравнения.

УМК : Алгебра и начала анализа: учеб. Для 10кл. общеобразоват. учреждений/[С.М.Никольский, М.К. Потапов.].-5-е изд., доп.-М.: Просвещение , 2006.-432с. Стр.65-74., 45-47.

Образовательная: систематизировать и обобщить известные из основной школы сведения о рациональных выражениях; показать способы решения рациональных уравнений;

Развивающая: расширить и углубить изучение различных видов рациональных уравнений разнообразными методами.

Воспитывающая: показать значимость изучаемой темы в разделе математика.

Тип урока: урок- лекция.

  1. Постановка цели урока (1мин).
  2. Подготовка к изучению нового материала(2 мин).
  3. 3.Ознакомление с новым материалом(38мин).
  4. 4.Итог урока.(2 мин)
  5. 5.Домашнее задание (2 мин)

Оборудование урока: интерактивная доска, проектор, компьютер.

1. Рациональные выражения.

2. Рациональные уравнения.

3.Системы рациональных уравнений.

Алгебра возникла из решения практических задач с помощью уравнений. Цели алгебры оставались неизменными на протяжении тысячелетий- решались уравнения: сначала линейные, потом квадратные, а там и уравнения еще больших степеней. Но форма, в которой излагались алгебраические результаты, менялись до неузнаваемости.

Уравнение- это самая распространенная форма математической задачи. Учение об уравнениях является главным содержанием школьного курса алгебры. Для решения уравнений нужно уметь производить действия над одночленами, многочленами алгебраическими дробями, уметь производить разложение на множители, раскрывать скобки и т. д. Нужно привести свои знания в порядок. Мы начнем повторение с понятия «рациональные выражения». Сообщение ученика о рациональных выражениях известных из основной школы. Таким образом, учение об уравнениях невозможно без учения о законах действий.

II. Основная часть.

Главное в понятии уравнения – это постановка вопроса о его решении. Уравнение, левая и правая части которого есть рациональные выражения относительно х, называют рациональным уравнением с неизвестным х.

Например, уравнения 5х 6 — 9х 5 + 4х — Зх + 1 = 0, являются рациональными.

Корнем (или решением) уравнения с неизвестным х называют число, при подстановке которого в уравнение вместо х получается верное числовое равенство.

Решить уравнение — значит найти все его корни или показать, что их нет. При решении рациональных уравнений приходится умножать и делить обе части уравнения на не равное нулю число, переносить члены уравнения из одной части в другую, применять правила сложения и вычитания алгебраических дробей. В результате будет получаться уравнение, равносильное предшествующему, т. е. уравнение, имеющее те же корни, и только их.

Перечислим стандартные уравнения, которые были нами изучены. Ответы учащихся.( линейное уравнение , квадратное уравнение, простейшее степенное уравнение х n =а). Преобразование уравнений к одному из стандартных является основным шагом в решении уравнения. Полностью алгоритмизировать процесс преобразования нельзя, однако полезно запомнить некоторые приемы, общие для всех типов уравнений.

1).Уравнение вида А(х)•В(х) = О, где А(х) и В(х) — многочлены относительно х, называют распадающимся уравнением .

Множество всех корней распадающегося уравнения есть объединение множеств всех корней двух уравнений А(х)=0 и В(х)=0. К уравнениям вида А(х)=0 применяется метод разложения на множители. Суть этого метода : нужно решить уравнение А(х)=0, где А(х)=А 1 (х)А 2 (х)А 3 (х). Уравнение А(х)=0 заменяют совокупностью простых уравнений: А 1 (х)=0,А 2 (х)=0,А 3 (х)=0. Находят корни уравнений этой совокупности и делают проверку. Метод разложения на множители используется в основном для рациональных и тригонометрических уравнений.

Решим уравнение (х 2 — 5х + 6) (х 2 + х — 2) = 0.

Уравнение распадается на два уравнения.

х 2 — 5х + 6 = 0 х 1 = 2 и х 2 = 3

х 2 + х — 2 = 0. х 3 = -2 и х 4 = 1

Значит, уравнение исходное имеет корни х 1 = 2, х 2 = 3, х 3 = -2, х 4 =1.

ПРИМЕР. Решим уравнение х 3 -7х+6=0.

х-1=0 , х 1 =1; х 2 +х-6=0, х 2 =2,х 3 =-3.

2).Уравнение вида , где А(х) и В(х) — многочлены относительно х.

Сначала решим уравнение

х 2 + 4х — 21 = 0. х 1 = 3 и х 2 = -7

Подставив эти числа в знаменатель левой части исходного уравнения, получим

х 1 2 — х 1 -6 = 9-3-6 = 0,

х 2 2 — х 2 — 6 = 49 + 7 — 6 = 50 ≠0.

Это показывает, что число х 1 = 3 не является корнем исходного уравнения, а число х 2 =- 7 — корень этого уравнения.

где А(х), В(х), С(х) и D(х) — многочлены относительно х, обычно решают по следующему правилу.

Решают уравнение А(х)•D(х) — С(х)·В(х) = 0 и отбирают из его корней те, которые не обращают в нуль знаменатель уравнения.

х 2 — 5х + 6 — (2х + 3) (х — 3) = 0.

х 1 = -5 и х 2 = 3.

Число х 1 не обращает в нуль знаменатель х — 3, а число х 2 обращает. Следовательно, уравнение имеет единственный корень = -5.

Найти корни рационального уравнения часто помогает замена неизвестного. Умение удачно ввести новую переменную- важный элемент математической культуры. Удачный выбор новой переменной делает структуру уравнения более прозрачной.

Решим уравнение х 8 + 4х 6 -10х 4 + 4х 2 + 1 = 0.

Число х 0 = 0 не является корнем уравнения, поэтому уравнение равносильно уравнению

х 4 + 4х 2 — 10 + + =0

Обозначим t = ,тогда х 4 + =t 2 -2 ,

получаем t 2 + 4t — 12 = 0, х 1 = 2 и х 2 = -6.

Следовательно, корни уравнения найдем, объединив все корни двух уравнений: =2, и =-6,

Первое уравнение имеет два корня -1 и 1, а второе уравнение не имеет действительных корней, поэтому уравнение имеет только два корня: -1 и 1. Ответ. -1; 1.

4). Симметрические уравнения.

Многочлен от нескольких переменных называют симметрическим многочленом, если его вид не изменяется при любой перестановке этих переменных.

Например, многочлены х + у, а 2 + b 2 — 1, zt и 5а 3 + 6ab + 5b 3 — симметрические многочлены от двух переменных, а многочлены х + у + г, а 3 + b 3 + с 3 , — симметрические многочлены от трех переменных.

В то же время многочлены х — у, а 2 –b 2 и а 3 + аb – b 3 — не симметрические многочлены.

Уравнение ax 4 +bx 3 +cx 2 +bx+a=0, где а R/ ,b R, с R называется симметрическим уравнением четвертой степени. Чтобы решить это уравнение необходимо:

1).Поделить обе части уравнения на х 2 и сгруппировать полученные выражения: .

2).Введение переменной уравнение приводится к квадратному.

Решите уравнение х 4 +5х 3 +4х 2 -5х+1=0.

Число 0 не является корнем уравнения. Поделим обе части уравнения на х 2 ≠0.

Системы рациональных уравнений.

Системы уравнений появляются при решении задач, в которых неизвестными являются несколько величин. Эти величины связаны определенной зависимостью, которые записываются в виде уравнений.

Уравнение, левая и правая части которого есть рациональные выражения относительно х и у, называют рациональным уравнением с двумя неизвестными х и у.

Если надо найти все пары чисел х и у, каждая из которых является решением каждого из данных уравнений с двумя неизвестными х и у, то говорят, что надо решить систему уравнений с двумя неизвестными х и у и каждую такую пару называют решением этой системы.

Неизвестные могут обозначаться и другими буквами. Аналогично определяется система уравнений, число неизвестных в которой больше двух.

Если каждое решение первой системы уравнений является решением второй системы, а каждое решение второй системы уравнений является решением первой системы, то такие системы называют равносильными. В частности, равносильными считаются две системы, не имеющие решений.

Например, равносильны системы

1). Способ подстановки .

ПРИМЕР 1. Решим систему уравнений

Выразив у через х из первого уравнения системы, получим уравнение:

Решив уравнение 5x 2 -4(3x-1)+3(3x-1) 2 =9, найдем его корни х 1 = 1 и х 2 = . Подставив найденные числа х 1 и х 2 в уравнение у = 3х — 1 , получим у 1 = 2

и у = Следовательно, система имеет два решения: (1; 2) и ( ; )

2). Метод алгебраического сложения.

ПРИМЕР 2. Решим систему уравнений

Оставив без изменения первое уравнение системы и сложив первое уравнение со вторым, получим систему равносильную системе.

Все решения системы есть объединение всех решений двух систем:

Решив каждую из этих систем, найдем все решения системы :

3). Метод введение новых неизвестных.

ПРИМЕР 3. Решим систему уравнений

Обозначив u = ху, v = х — у, перепишем систему в виде

Найдем ее решения: u 1 = 1, v 1 = 0 и u 2 = 5, v 2 = 4. Следовательно, все решения системы есть объединение всех решений двух систем:

Решив методом подстановки каждую из этих систем, найдем ее решения системы: (1; 1), (-1; -1), (5; 1), (-1; -5).

Ответ. (1; 1), (-1; -1), (5; 1), (-1; -5).

4). Уравнение вида ах 2 + bху + су 2 = 0, где а, b, с — данные неравные нулю числа, называют однородным уравнением относительно неизвестных х и у.

Рассмотрим систему уравнений, в котором есть однородное уравнение.

ПРИМЕР 4. Решим систему уравнений

Обозначив t = , перепишем первое уравнение системы в виде t 2 +4t+3=0.

Уравнение имеет два корня t 1 = -1 и t 2 = -3, поэтому все решения системы есть объединение всех решений двух систем:

Решив каждую из этих систем, найдем все решения системы:

При решении некоторых систем помогает знание свойств симметрических многочленов.

Введем новые неизвестные α = х + у и β= ху, тогда, х 4 +у 4 = α 4 -4 α 2 β+2 β 2

Поэтому систему можно переписать в виде

Решим квадратное уравнение относительно β: β 1 =6, β 2 =44.

Следовательно, все решения системы являются объединением

всех решении двух систем:

Первая система имеет два решения х 1 = 2, у 1 = 3 и х 2 = 3, у 2 =2, а вторая система не имеет действительных решений. Следовательно, система имеет два решения: (х: 1 ; у 1 ) и (х 2 ;у 2 )

Сегодня мы подвели итоги изучения темы рациональные уравнения. Мы поговорили об общих идеях, общих методах, на которых основана вся школьная линия уравнений.

Выделили методы решения уравнений:

1) метод разложения на множители;

2) метод введения новых переменных.

Расширили представления о методах решения систем уравнений.

На следующих 4 уроках проведем практические занятия. Для этого необходимо выучить теоретический материал, и подобрать из учебника по 2 примера на рассмотренные методы решения уравнений и систем уравнений, на 6 уроке будет проведен семинар по этой теме, для этого необходимо подготовить вопросы: формула бинома Ньютона, решение симметрических уравнений 3,5 степени. Заключительный урок по этой теме — зачет.

  1. Алгебра и начала анализа: учеб. Для 10кл. общеобразоват. учреждений/[С.М.Никольский, М.К. Потапов.].-5-е изд., доп.-М.: Просвещение , 2006.-432с. Стр.65-74., 45-47.
  2. Математика: тренировочные тематические задания повышенной сложности с ответами для подготовки к ЕГЭ и к другим формам выпускного и вступительного экзаменов/сост. Г.И.Ковалева, Т.И. Бузулина — Волгоград: Учитель,2009.-494с. – стр. 62-72,194-199.
  3. Титаренко А.М. Математика : т9-11 классы: 6000 задач и примеров/А.М. Титаренко.-М.:Эксмо,2007.-336с.

Много можно говорить об уравнениях. В этой области математики существуют вопросы, на которые математики еще не дали ответа. Возможно, кто-то из вас найдет ответы на эти вопросы.

Альберт Эйнштейн говорил: « Мне приходиться делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее. Политика существует только для данного момента. А уравнения будут существовать вечно ».

Уроки 2-5 отводиться практическим занятиям. Основным видом занятий на этих уроках является самостоятельная работа учащихся по закреплению и углублению теоретического материала, изложенного на лекции. На каждом из них проводится повторение вопросов теории и опрос учащихся. На основе самостоятельной работы на уроке и дома обеспечивается повторение и усвоение вопросов теории, ведется целенаправленная работа по выработке умений и навыков решения задач различного уровня сложности, проводится опрос учащихся. Цель: закрепить и углубить теоретический материал изложенный на лекции, научиться применять его на практике, усвоить алгоритмы решения типовых примеров и задач, добиться, чтобы все учащиеся усвоили основное содержание изучаемого раздела на уровне программных требований.

На семинар отводится 6-й и 7-й уроки, причем целесообразно на 6-м уроке провести семинар, а 7-м- зачет.

План урока – семинара.

Цель: повторение, углубление и обобщение пройденного материала, отработать основные методы, способы и приемы решения математических задач, приобретение новых знаний, обучение самостоятельному применению знаний в нестандартных ситуациях.

1. В начале урока организуется программный контроль. Цель проведения работы- проверка сформированности умений и навыков выполнения несложных упражнений. В процессе фронтального опроса учеников, неверно указавших номер ответа, учитель выясняет, какие из заданий вызвали затруднение. Далее ведется устная или письменная работа по устранению ошибок. На проведение программированного контроля отводится не более 10 минут.

2. Дифференцированный опрос нескольких учащихся по вопросам теории.

3. Историческая справка о возникновении и развитии понятия уравнения (сообщение ученика). Формула бином Ньютона. Решение симметрических уравнений третьей степени, четвертой степени, пятой степени.

х 4 -2х 3 -х 2 -2х+1=0

2х 4 +х 3 -11х 2 +х+2=0

х 5 -х 4 -3х 3 -3х 2 -х+1=0

2х 5 +3х 4 -5х 3 -5х 2 +3х+2=0

4. Решение примеров, проверка готовности учащихся к выполнению контрольной работы – это одна из главных задач семинара.

Проведение зачета не означает отказ от текущего контроля знаний учащихся. Оценки выставляются на практических и семинарских занятиях. На зачет выносятся некоторые типичные упражнения. Заранее ученикам сообщается, какой теоретический материал и упражнения будут представлены на зачете. Приведем содержание одной из карточек для проведения зачета по рассматриваемой теме.

Решите уравнения: (х+3) 4 +(х 2 +х-6) 2 =2(х-2) 4

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №15. Действительные числа.

Перечень вопросов, рассматриваемых в теме

1) множество иррациональных чисел;

2) множество рациональных чисел;

3) правила выполнения действий с бесконечными десятичными дробями;

4)определение бесконечно убывающей геометрической прогрессии.

Глоссарий по теме

Рациональные числа – это такие числа, которые можно записать в виде обыкновенной дроби , где m — целое число, n — натуральное число , обозначаются буквой Q.

Иррациональные числа— это действительные числа, которые нельзя представить в виде обыкновенной дроби. Иррациональное число может быть представлено в виде бесконечной непериодической дроби, т.е. числа после запятой в записи данного числа не повторяются.

Дробные числа – это числа, которые можно записать в виде обыкновенной дроби.

Все основные действия над рациональными числами сохраняются и для действительных чисел (переместительный, сочетательный и распределительный законы, правила сравнения, правила раскрытия скобок и т.д.).

Арифметические операции над действительными числами обычно заменяются операциями над их приближениями.

Геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Все числа, которые мы изучаем в школе, называются действительными числами. Они образуют множество действительных чисел, которые принято обозначать латинской буквой R.

В свою очередь все действительные числа можно разделить на 2 группы: рациональные числа и иррациональные числа.

Рациональные числа – это такие числа, которые можно записать в виде обыкновенной дроби , где m —целое число, n — натуральное число , обозначаются буквой Q.

Пример: -3; -0,5; .

Иррациональные числа— это действительные числа, которые нельзя представить в виде обыкновенной дроби. Иррациональное число может быть представлено в виде бесконечной непериодической дроби, т.е. числа после запятой в записи данного числа не повторяются.

Пример: π=3,141592…; 0, 113456. .

Рациональные числа, в свою очередь, можно разделить на 2 вида – это целые числа и дробные числа.

Дробные числа – это числа, которые можно записать в виде обыкновенной дроби.

Целые же числа можно разделить еще на несколько групп: отрицательные целые числа, нуль и положительные (натуральные) целые числа.

На числовой оси (Ох) между целыми числами будут находиться дробные иррациональные числа. Все вместе они будут представлять собой множество действительных чисел, R.

Обратите внимание, что все основные действия над рациональными числами сохраняются и для действительных чисел (переместительный, сочетательный и распределительный законы, правила сравнения, правила раскрытия скобок и т.д.).

Арифметические операции над действительными числами обычно заменяются операциями над их приближениями.

Числа 4; 4,2; 4,28 и т.д. являются последовательными приближениями значений суммы

.

Пусть это последовательные приближения действительного числа у с точностью до 1, до 0,1, до 0,01 и т.д. Тогда погрешность приближения как угодно близко приближается к нулю.

при или

Читается «модуль разности у и стремится к нулю при n, стремящемся к бесконечности» или «предел модуля разности у и при n, стремящемся к бесконечности, равен нулю»

Т.е. если при или

Модуль действительного числа у обозначается как |у| и определяется так же, как и модуль рационально числа:

.

А теперь давайте вспомним, что такое геометрическая прогрессия.

Рассмотрим квадрат со стороной, равной 1. Нарисуем ещё один квадрат, сторона которого равна половине первого квадрата, затем ещё один, сторона которого – половина второго, потом следующий и т.д. Каждый раз сторона нового квадрата равна половине предыдущего (Рисунок 1).

В результате, мы получили последовательность сторон квадратов образующих геометрическую прогрессию со знаменателем .

И, что очень важно, чем больше мы будем строить таких квадратов, тем меньше будет сторона квадрата. Например,

n=15, ;

n=20, ;

n=21, .

Т.е. с возрастанием номера n члены прогрессии приближаются к нулю.

Рассмотрим ещё один пример. Равносторонний треугольник со стороной равной 1см. Построим следующий треугольник с вершинами в серединах сторон 1-го треугольника, по теореме о средней линии треугольника – сторона 2-го равна половине стороны первого, сторона 3-го – половине стороны 2-го и т.д. Опять получаем последовательность длин сторон треугольников. (рисунок 2)

Если рассмотреть геометрическую прогрессию с отрицательным знаменателем.

То, опять, с возрастанием номера n члены прогрессии приближаются к нулю.

Обратим внимание на знаменатели этих последовательностей. Везде знаменатели были меньше 1 по модулю.

Можно сделать вывод: геометрическая прогрессия будет бесконечно убывающей, если модуль её знаменателя меньше 1.

Геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы.

Используя данное определение можно решить вопрос о том, является ли геометрическая прогрессия бесконечно убывающей или нет.

Рассмотрим квадрат со стороной, равной 1. Разделим его пополам, одну из половинок ещё пополам и т.д. площади всех полученных прямоугольников при этом образуют бесконечно убывающую геометрическую прогрессию: (Рисунок 3)

Сумма площадей всех полученных таким образом прямоугольников будет равна площади 1-го квадрата и равна 1.

Но в левой части этого равенства – сумма бесконечного числа слагаемых.

Рассмотрим сумму n первых слагаемых.

По формуле суммы n первых членов геометрической прогрессии, она равна

Если n неограниченно возрастает, то

или . Поэтому , т.е. .

Сумма бесконечно убывающей геометрической прогрессии есть предел последовательности

Например, для прогрессии , где ,

имеем

Так как то

Сумму бесконечно убывающей геометрической прогрессии можно находить по формуле

Примеры и разборы решений заданий тренировочного модуля

Пример 1:

Найдем значение данного выражения с точностью до единиц.

Округлим полученные результаты до десятых:

Найдем значение данного выражения с точностью до десятых.

Округлим полученные результаты до сотых:

3

Найдем значение данного выражения с точностью до сотых.

Округлим полученные результаты до тысячных:

32

и т.д.

Давайте выясним, является ли последовательность бесконечно убывающей геометрической прогрессией, если она задана формулой:

а) ; б)

. Найдем q.

;;

Следовательно, данная геометрическая прогрессия является бесконечно убывающей.

Следовательно, данная последовательность не является бесконечно убывающей геометрической прогрессией.


источники:

http://nsportal.ru/shkola/algebra/library/2013/03/03/urok-v-10-klasse-ratsionalnye-uravneniya

http://resh.edu.ru/subject/lesson/4730/conspect/149072/