Дифференциальная и интегральная форма уравнений

Уравнения Максвелла

Уравнения Максвелла — это 4 уравнения, которые описывают, как электрические и магнитные поля распространяются и взаимодействуют; т.е. эти уравнения (правила или даже законы) описывают процессы/взаимодействия электромагнетизма.

Эти правила описывают, как проходит управление поведением электрических и магнитных полей. Уравнения Максвелла показывают, что электрический заряд (положительный и отрицательный):

  1. Порождает электрическое поле (также если заряд изменяется со временем, то он вызывает появление электрического поля).
  2. В дальнейшем он вызывает появление магнитного поля.

Уравнения Максвелла в дифференциальной форме

Уравнение 1: Закон Гаусса или Теорема Гаусса

Дивергенция электрического поля равняется плотности заряда. Существует вязь между электрическим полем и электрическим зарядом.

Дивергенция в физике показывает, насколько данная точка пространства является источником или потребителем потока поля.

Очень кратко: Электрические поля расходятся от электрических зарядов: электрический заряд создаёт поле вокруг себя и, таким образом, действует как источник электрических полей. Это можно сравнить с краном, который является источником воды.

Ещё закон Гаусса говорит о том, что отрицательные заряды действуют как сток для электрических полей (способ, как вода стекает через отверстие стока). Это означает, что линии электрического поля имеют начало и поглощаются при электрическом заряде.

Заряды с одинаковым знаком отталкиваются друг от друга, а противоположные заряды притягиваются друг к другу (если есть два положительных заряда, они будут отталкиваться; а если есть один отрицательный и один положительный, они будут притягиваться друг к другу).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

Можно создать электрическое поле, изменив магнитное поле.

Очень кратко: Закон Фарадея гласит, что изменяющееся магнитное поле внутри контура вызывает индуцированный ток, который возникает из-за силы или напряжения внутри контура. Это значит:

  1. Электрический ток порождает магнитные поля, а эти магнитные поля (вокруг цепи) вызывают электрический ток.
  2. Изменяющееся во времени магнитное поле вызывает распространение электрического поля.
  3. Циркулирующее во времени электрическое поле вызывает изменение магнитного поля во времени.

Уравнение 3: Закон Гаусса для магнетизма

Дивергенция магнитного потока любой замкнутой поверхности равна нулю. Магнитного монополя не существует.

Закон Гаусса для магнетизма утверждает (очень кратко):

  1. Магнитных монополей не существует.
  2. Расхождение полей B или H всегда равно нулю в любом объёме.
  3. На расстоянии от магнитных диполей (это круговой ток) магнитные поля текут по замкнутому контуру.

Уравнение 4: Закон Ампера

Магнитное поле создаётся с помощью тока или изменяющегося электрического поля.

Очень кратко: Электрический ток порождает магнитное поле вокруг тока. Изменяющийся во времени электрический поток порождает магнитное поле.

Уравнения Максвелла в интегральной и дифференциальной форме

Вспомним сначала в дифференциальной форме и следом будет в интегральной форме.

Уравнение 1: Закон Гаусса (Теорема Гаусса)

Это же уравнение в интегральной форме:

Поток вектора электрической индукции D через любую замкнутую поверхность равняется сумме свободных зарядов, охваченных этой поверхностью. Электрическое поле создаётся нескомпенсированными электрическими зарядами (это те, что создают вокруг себя своё собственное электрическое поле).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

И это же уравнение в интегральной форме:

Циркуляция вектора напряжённости Е вихревого электрического поля (по любому замкнутому контуру) равняется скорости изменения магнитного потока через площадь контура (S) с противоположным знаком.

Уравнение 3: Закон Гаусса для магнетизма

И это же уравнение в интегральной форме:

Силовые линии магнитного поля замкнуты, т.к. поток вектора индукции В магнитного поля через любую замкнутую поверхность равняется нулю.

Уравнение 4: Закон Ампера

И это же уравнение в интегральной форме:

Циркуляция вектора напряжённости Н магнитного поля по замкнутому контуру равняется алгебраической сумме токов, которые пронизывают этот контур. Магнитное поле создаётся не только током проводимости, но и переменным электрическим полем.

Уравнения Максвелла в интегральной и дифференциальной форме

Вы будете перенаправлены на Автор24

Введение тока смещения позволило Дж. Максвеллу создать теорию, которая объяснила все известные на тот момент явления из области электромагнетизма и позволила выдвинуть ряд новых гипотез, которые позднее были подтверждены.

В основу данной теории легли уравнения Максвелла, которые в электромагнетизме играют такую же роль, как начала в термодинамике или законы Ньютона в классической механике.

Уравнения Максвелла в дифференциальной форме.

В настоящей интерпретации система уравнений Максвелла имеет четыре структурных векторных уравнения:

Первое уравнение устанавливает связь между полным током (суммой тока проводимости и током смещения) и магнитным полем, которое они вызывают.

Второе уравнение является выражением закона электромагнитной индукции в интерпретации Максвелла (переменное магнитное поле — один из источников возникновения электрического поля).

Третье уравнение — указывает на факт отсутствия магнитных зарядов.

Четвертое уравнение говорит о том, что источниками электрического поля являются электрические заряды.

Уравнения (1) — (4) являются уравнениями Максвелла в дифференциальной форме. Каждое из векторных уравнений эквивалентно трем скалярным уравнениям, которые связывают компоненты векторов в правых и левых частях выражений.

Для того, чтобы применять систему уравнений Максвелла для расчета конкретных полей, уравнения данной системы дополняются материальными уравнениями, которые связывают векторы $\overrightarrow\ и\ \overrightarrow$ c вектором $\overrightarrow$, а вектор $\overrightarrow$ c вектором $\overrightarrow$. Эти равнения имеют вид:

где величины $\varepsilon $,$\ \mu $, $\sigma $ — материальные постоянные, характеризующие свойства среды.

Если уравнения (1) — (4) являются фундаментальными, то относительно уравнений (5) надо отметить, что они выполняются совсем не всегда. Так, если речь идет о нелинейных явлениях, получение материальных уравнений составляет отдельную научную задачу.

Готовые работы на аналогичную тему

Уравнения Максвелла в интегральной форме

Систему структурных уравнений Максвелла можно представить в интегральной форме. Так, если проинтегрировать уравнение (1) по произвольной поверхности $S$:

По теореме Стокса левая часть выражения (6) преобразуется к виду:

где интеграл в правой части берется по контуру $L$, который ограничивает поверхность $S$. Если считать, что контур и поверхность неподвижны, то операции дифференцирования по времени и интегрирования по поверхности можно поменять местами в выражении (6) левой части, получим:

здесь интеграл $\int\limits_S<\overrightarrowd\overrightarrow>$ является функцией только от времени, поэтому можно заменить частную производную обычной. Интегрируя уравнение (2) подобным образом, получим второе уравнение системы Максвелла:

Если проинтегрировать уравнение (3) по объему $V$, и использовать для преобразования левой части теорему Остроградского — Гаусса в интеграл по замкнутой поверхности $S$, которая ограничивает объем $V$, то получим:

Аналогичную процедуру проводят с уравнением (4). Получается:

Так получают систему уравнений Максвелла в интегральной форме:

Уравнения Максвелла применимы к поверхностям любого размера. Эти уравнения описывают электрические и магнитные поля в покоящихся средах.

Задание: Ток, текущий по обмотке прямого соленоида, который имеет радиус $R$, изменяется так, что модуль индуктивности магнитного поля внутри соленоида растет в соответствии с законом: $B=Ct^2,\ $где $C=const.$ Запишите функцию тока смещения $j_\left(r\right),$ где $r$ — расстояние от оси соленоида.

Решение:

По определению, плотность тока смещения можно записать как:

Используя одно из уравнений системы Максвелла:

найдем напряженность электрического поля, которое порождается переменным магнитным полем, а зная связь напряжённости электрического поля и электрического смещения:

получим функцию $D(r)$.

Итак, используя уравнение изменения индукции магнитного поля из условий задачи, найдем частную производную $\frac<\partial \overrightarrow><\partial t>:$

Для $r \[2\pi rE=-\pi r^22Ct\to E=-rCt\to D=-C\varepsilon <\varepsilon >_0rt\to j_=-C\varepsilon <\varepsilon >_0r.\]

Для $r>R$, из (1.2) — (1.4) получим:

Для $r=R$, из (1.2) — (1.4) найдем ток смещения:

Ответ: $j_=-C\varepsilon <\varepsilon >_0r\ \left(rR\right),\ j_=-C\varepsilon <\varepsilon >_0R\ \left(r=R\right).$

Задание: Запишите систему уравнений Максвелла для стационарных полей ($\overrightarrow=const,\overrightarrow=const\ $) в интегральной форме.

Решение:

В том случае, если поля стационарны, система уравнений максвелла распадается на две группы независимых уравнений. Первую группу составляют уравнения электростатики:

Вторая группа — уравнения магнитостатики:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 02 03 2021


источники:

http://spravochnick.ru/fizika/uravneniya_maksvella/uravneniya_maksvella_v_integralnoy_i_differencialnoy_forme/