Дифференциальное уравнение апериодического звена 1 го порядка

Апериодическое звено 1-го порядка

Лекция №4. Характеристики типовых звеньев САР

Общие положения

Под типовым звеном понимается такое звено, которое описывается дифференциальным уравнением не выше второго порядка. На рис. 4.1 представлена классификация типовых звеньев, в соответствии с видом дифференциального уравнения.

Рис. 4.1. Классификация типовых звеньев

Характеристики типовых звеньев более подробно рассмотрены ниже

Безынерционное звено

Безынерционным или идеальным звеном называется звено, которое не только в статике, но и в динамике описывается алгебраическим уравнением

. (4.1)

Передаточная функция звена равна постоянной величине

. (4.2)

Безынерционное звено относится к группе позиционных звеньев. Примером такого звена являются делитель напряжения, безынерционный усилитель, редуктор (без учета явления скручивания и люфтов) и т. п.

Переходная функция такого звена представляет собой ступенчатую функцию (рис. 4.2, а), то есть при x1 = 1(t), x2 = A(t) = k 1(t).

Рис. 4.2. Переходная функция (а), дельта-функция (б) и АФЧХ (в)

Функция веса представляет собой импульсную функцию, площадь которой равна k (рис. 4.2, б), то есть при , .

Амплитудно-фазовая характеристика вырождается в точку, расположенную на вещественной оси на расстоянии k от начала координат (рис. 4.2, в).

Логарифмическая амплитудная частотная характеристика представляет собой прямую, параллельную оси частот, проходящую на высоте 20 lg k.

Фазовые сдвиги в рассматриваемом звене отсутствуют при любой частоте входного воздействия, то есть y = 0. Поэтому фазовая характеристика совпадает с осью частот и здесь не приводится.

Следует подчеркнуть, что безынерционное звено является некоторой идеализацией реальных звеньев. В действительности ни одно звено не в состоянии равномерно пропускать все частоты от 0 до ∞. Обычно к такому виду звена сводится одно из реальных звеньев, например апериодическое или колебательное, если динамическими (переходными) процессами в этом звене можно пренебречь.

Апериодическое звено 1-го порядка

Звено относится к группе позиционных звеньев и описывается уравнением

. (4.3)

Передаточная функция этого звена

. (4.4)

Одним из примеров апериодического звена первого порядка является RL – цепь (рис. 4.3, а), где входной величиной является напряжение U1, поступающее на цепь, а в качестве выходной величины может рассматриваться ток или напряжение U2 на сопротивлении R .В первом случае коэффициент передачи k = 1 / R, а во втором k = 1 Постоянная времени звена T = L / R.

Рис. 4.3. Апериодические звенья первого порядка

Другим примером является RC-цепь (рис. 4.3, б) с коэффициентом передачи k = 1 и постоянной времени T = RC.

Переходная функция звена найдется как решение уравнения (4.3) при x1 = 1 и начальном условии x2 = 0 при t = 0. Это решение представляет собой экспоненту (рис. 4.4, а)

. (4.5)

Множитель 1(t) указывает, что экспонента рассматривается, начиная с момента t = 0, то есть для положительного времени. Во многих случаях этот множитель опускается, но то, что экспонента рассматривается для t ≥ 0 необходимо иметь в виду.

Отрезок, отсекаемый касательной к кривой, в любой точке кривой на асимптоте равен постоянной времени T. Видно, что чем больше постоянная времени звена, тем больше длится переходный процесс, то есть медленнее устанавливается статическое значение x2 = k на выходе звена.

Строго говоря, экспонента приближается к этому значению в бесконечности. Принято, что переходный процесс считается уже закончившимся через промежуток времени 3T.

Рис. 4.4. Переходная функция (а) и дельта-функция (б)
апериодического звена первого порядка

Постоянная времени характеризует «инерционность» или «инерционное запаздывание» апериодического звена. Выходное значение x2 = k x1 в апериодическом звене устанавливается только спустя некоторое время после подачи входного воздействия tп.

Функция веса (рис. 4.4, б) может быть найдена дифференцированием (4.5)

. (4.6)

Частотная передаточная функция согласно (4.3), её модуль и фаза соответственно равны

; (4.7)

. (4.8)

Все три характеристики изображены на рис. 4.5. АФЧХ для положительных частот имеет вид полуокружности с диаметром, равным коэффициенту передачи звена k .Величина постоянной времени звена Т определяет распределение отметок w вдоль кривой. Три характерные отметки показаны на рис. 4.5, а (w = 0; w = 1 / T и w → µ).

Рис. 4.5. АФЧХ (а), АЧХ (б) и ФЧХ (в) апериодического звена первого порядка

Амплитудно-фазовая характеристика для положительных частот может быть дополнена зеркальной полуокружностью для отрицательных частот (показана пунктиром). В результате амплитудно-фазовая характеристика будет представлять замкнутую кривую – окружность.

Из амплитудной характеристики видно, что колебания малых частот w 1 / T проходят с сильным ослаблением амплитуды (малое значение А), то есть «плохо пропускаются» или практически «не пропускаются» звеном. Чем меньше постоянная времени Т, то есть чем меньше инерционность звена, тем более вытянута амплитудная характеристика А(w) вдоль оси частот, или тем шире полоса пропускания частот у данного звена

. (4.9)

Кроме того, чем меньше постоянная времени звена, тем меньше получаются фазовые сдвиги между выходным и входным колебаниями.

Найдем выражения для вещественной и мнимой частей частотной передаточной функции. Для этого умножим числитель и знаменатель (4.7) на комплекс, сопряженный знаменателю

(4.10)

(4.11)

Построим теперь логарифмические частотные характеристики апериодического звена первого порядка. Для построения ЛАХ здесь и далее будем считать, что коэффициент k безразмерный. Для (4.7) имеем

. (4.12)

Построим приближенную так называемую асимптотическую ЛАХ. Для этой цели на стандартной сетке (рис. 4.6) проведем вертикальную пунктирную прямую при частоте, называемой сопрягающей частотой w = 1 / T.

Для частот, меньших, чем сопрягающая, то есть при w 2 T 2 2 Т 2 . Тогда вместо (3.37) будем иметь приближенное выражение L(w) » 20 lg(k / wT) при w > 1 / T, которому соответствует прямая с отрицательным наклоном 20 дБ/дек (прямая b-с).

Рис. 4.6. ЛАХ и ЛФХ апериодического звена первого порядка

Ломаная линия а-b-с и называется асимптотической (приближенной) ЛАХ. Как было видно, построение ее производится весьма просто – практически без вычислительной работы. Действительная ЛАХ (показана пунктиром) будет несколько отличаться от асимптотической, причем наибольшее отклонение будет в точке b. Оно равно – 3 дБ, так как

, (4.13)

что в линейном масштабе соответствует отклонению в раз.

На всем остальном протяжении влево от сопрягающей частоты действительная ЛАХ будет отличаться от асимптотической менее чем на 3 дБ. Поэтому во многих практических расчетах достаточно ограничиться построением асимптотической ЛАХ.

На том же рис. 4.6 показана логарифмическая фазовая характеристика (ЛФХ). Характерной ее особенностью является сдвиг по фазе, равный
45° при сопрягающей частоте (так как – arctg wT = – arctg 1 = – 45°), и симметрия ЛФХ относительно сопрягающей частоты. Для частоты w = 0 фазовый сдвиг y = 0 и при w → ∞ фазовый сдвиг y → 90°.

Апериодическое (инерционное, статическое) звено. Передаточная функция и уравнения

Дифференциальное уравнение, описывающее взаимосвязь входного и выходного сигналов апериодического типового динамического звена (ТДЗ), можно представить в следующем виде:

Где: k – коэффициент передачи, Т0 – постоянная времени.

Дифференциальное уравнение является не самой удобной формой представления математической модели объекта или звена. Это связано с тем, что решения любого дифференциального уравнения довольно сложная вычислительная процедура. Более удобна и, соответственно чаще используемая, математическая модель объекта, записанная в виде передаточной функции.

Передаточная функция – это преобразованное по Лапласу исходное дифференциальное уравнение, то есть уравнение, записанное в виде преобразованных по Лапласу выходного и входного сигналов объекта (звена).

Исходное дифференциальное уравнение в преобразовании Лапласа называют оригиналом, а записанное в операторной форме преобразованное уравнение – его изображением. Суть преобразования Лапласа заключается в замене на функции комплексных переменных Хвых(р) и Хвх(р) функций вещественных переменных Хвых(τ) и Хвх(τ), где р – оператор Лапласа (комплексное число р = ±m±in). Данные функции связываются между собой интегралом Лапласа:

Для большинства используемых в ТДЗ дифференциальных уравнений, чисто формальным условием перехода от оригинала к изображению будут представленные ниже замены:

Использовав приведенное выше условие довольно легко получить изображение, то есть перейти к операторной форме записи дифференциального уравнения апериодического звена.

Оригинал дифференциального уравнения апериодического звена имеет следующий вид:

Операторная форма записи (изображения) уравнения апериодического звена:

Огромным преимуществом данного преобразования является то, что записанное в операторной форме исходное дифференциальное уравнения становится алгебраическим. Но стоит отметить, что если бы все дифференциальные уравнения можно было бы преобразовать по Лапласу, то в математике произошла бы революция, так как решение алгебраических уравнение значительно проще дифференциальных. К сожалению, такое преобразование возможно лишь для ограниченного количества уравнений, в том числе для уравнений типовых динамических звеньев (ТДЗ).

Поскольку уравнение апериодического звена приняло вид алгебраического, то его можно записать следующим образом:

Из полученного выражения достаточно легко выделить отношение Хвых(р) / Хвх(р), которое называется передаточной функцией и для апериодического звена имеет вид:

У каждого типового динамического звена присутствует ряд типовых частотных характеристик: амплитудно-частотную (АЧХ), фазочастотную (ФЧХ), амплитудно-фазовую частотную (АФЧХ или АФХ), логарифмическую амплитудно-частотную (ЛАЧХ), логарифмическую фазочастотную (ЛФЧХ).

На практике чаще всего используется АФЧХ или АФХ.

Амплитудно-фазовая характеристика это вектор, а график АФХ – годограф этого вектора, то есть кривая на комплексной плоскости, которую описывает конец вектора при изменении частоты ω от 0 до ∞. Вектор характеризуется двумя величинами – длина (скаляр или вектор по модулю) и направление (градиент).

Вектор аналитически можно записать в виде двух проекций на действительную и мнимую оси, и выразить эти проекции через угол α:

После использования формулы Эйлера:

Где |W| — длина вектора или вектор по модулю, i – мнимое число:

Аналитическое выражение для любого вектора АФХ любого типичного динамического звена легко получить из передаточной функции, заменив в ней оператор Лапласа р на выражение iω. Где ω – частота колебаний (ω = 2π/Т), Т – период колебаний.

Для апериодического звена амплитудно-фазовая частотная характеристика (АФХ) имеет вид:

Для записи вектора АФХ в виде проекций на действительную и мнимую ось необходимо произвести следующие преобразования:

Изменяя частоту ω от 0 до ∞ можно построить на комплексной плоскости годораф (график вектора АФХ), представляющий из себя полуокружность (рисунок а)), которая располагается в четвертом квадранте комплексной плоскости. Диаметр полуокружности равен коэффициенту k.

На рисунке б) показана типовая переходная функция апериодического звена. Как видно из графика, она изменяется по экспоненциальному закону. У любой экспоненты есть одно прекрасное свойство – если к любой ее точке провести касательную, а затем точку пересечения касательной с асимптотой и точку касания спроецировать на ось времени, то получится один и тот же отрезок времени на оси времени. Эта проекция, которую называют постоянной времени, соответствует значению коэффициента Т0 в АФХ и передаточной функции апериодического звена, а ордината асимптоты, к которой стремится экспонента, соответствует коэффициенту k в передаточной функции. Таким образом, по переходной характеристике апериодического звена довольно легко найти коэффициенты Т0 и k в передаточной функции звена.

Физическим примером апериодического звена может быть конденсатор, при подаче напряжения на который заряд происходит не мгновенно, а с определенной задержкой, или же электродвигатель, который при подаче питания разгоняется не мгновенно, а через какое-то время t. На рисунке в) показан пример установки, которую также можно считать апериодическим звеном (вода – заполняющая бак).

В бак поступает определенное количество воды с расходом Q1. В то же время из бака вытекает вода с расходом Q2. Регулируемый параметр в этой системе Хвых – уровень воды в баке H.

При подаче единичного скачка Q1 (открыли входной вентиль) уровень воды H в баке повышается. При этом растет гиростатическое давление и возрастает Q2. Через некоторое время уровень воды H в баке стабилизируется (экспонента приближается к асимптоте). Способность самостоятельно восстанавливать равновесие, которое присуща объектам, аппроксимируемым апериодическим звеном, за счет стока или притока вещества или энергии называют самовыравниванием. Количество самовыравнивания определяет коэффициент р, равный обратному значению коэффициента k в передаточной функции звена, то есть р = 1/k.

В литературе объекты с передаточной функцией апериодического звена называют статическими.


источники:

http://elenergi.ru/aperiodicheskoe-zveno.html