Дифференциальное уравнение для балки онлайн

Дифференциальное уравнение для балки онлайн

Конструкция рассчитана с применением математического аппарата метода конечных элементов. Для получения только численных значений эпюр и опорных реакций необходимо Получить код доступа
(пример подробного текста расчета)

Для получения численных значений эпюр и подробного текста расчета необходимо Получить подробное решение
(пример подробного текста расчета)

Получить подробное решение

Конструкция рассчитана с применением математического аппарата метода конечных элементов. Изгибная жесткость балки на всех участках принята одинаковой. Для получения только численных значений эпюр и опорных реакций необходимо Получить численные значения
(пример подробного текста расчета)
Получить численные значения

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Расчет балки

построение эпюр в балках

Расчетная схема № 252061

Почему не бесплатно? — Сайт создан исключительно на энтузиазме автора и дабы этот энтузиазм не угас, хотелось бы его подкрепить хоть каким-нибудь материальным поощрением. Кроме того, возросшее количество пользователей вынудило перейти на платный хостинг.

Условия оплаты? — Взнос денег считаем спонсорским взносом, поэтому ни о каком возврате речь идти не может, тем более суммы мизерные — практически не о чем спорить.
Но! Если Вы оплатили взнос, но недовольны результатом, Вы всегда можете обратиться за помощью к автору — Telegram: sopromat_xyz WhatsApp

А Ваш сайт не сворует мой номер карты, пароли и т.д. — Это невозможно! После того, как Вы нажмете «Перевести», Вы будете направлены на страницу Яндекса (можете проверить в адресной строке), и все дальнейшие операции будете производить на сервисе Яндекса, так что со стороны сайта Вам ничего не грозит.

Жесткая заделка

Шарнирная опора

Врезной шарнир

Сосредоточенная сила F

Сосредоточенный момент M

Распределенная нагрузка

Подбор сечения и прогибы

подобрать двутавр [σ] = МПа

подобрать круг [σ] = МПа

подобрать квадратное сечение [σ] = МПа

подобрать трубчатое сечение [σ] = МПа при d/D=

подобрать прямоугольное сечение [σ] = МПа при h/b=

записать уравнения начальных параметров для каждого участка и посчитать прогибы и углы поворота в промежуточных точках

Расчет статически неопределимой балки

Поскольку данная балка является статически неопределимой, для нее нельзя определить внутренние усилия и реакции опор только методами статики (с помощью уравнений равновесия).

Как правило, для таких случаев сначала следует раскрыть статическую неопределимость, используя один из методов:

  • метод сил
  • метод уравнения трех моментов
  • метод интегрирования дифференциального уравнения изгиба

При раскрытии статической неопределимости определяются некоторые параметры (реакции опор либо опорные моменты), имея которые дальнейший расчет уже возможен с помощью уравнений равновесия.

Будем считать, что статическая неопределимость раскрыта и эпюры уже построены

Степень статической неопределимости для данной балки равна

где m = — количество связей, s = — к-во шарниров.

Записываем уравнения поперечных сил и изгибающих моментов на участках балки , используя метод сечений

На участке AB: (0 ≤ z1 ≤ 2 м )

На участке BC: (2 ≤ z2 ≤ 3 м )

M(z2) = + RA · z — P·(z — 2) — q1·(z — 2) 2 /2 = + 3.074 · z — 12·(z — 2) — 5·(z — 2) 2 /2

На участке CD: (3 ≤ z3 ≤ 4 м )

M(z3) = + RA · z + RC · (z — 3) — P·(z — 2) — q1·(z — 2) 2 /2 = + 3.074 · z + 19.5 · (z — 3) — 12·(z — 2) — 5·(z — 2) 2 /2

На участке DE: (4 ≤ z4 ≤ 5 м )

Q(z4) = + RA + RC — P — Q1 = + 3.074 + 19.5 — 12 — 10 = 0.57 кН

M(z4) = + RA · z + RC · (z — 3) — P·(z — 2) — Q1·(z — 3) = + 3.074 · z + 19.5 · (z — 3) — 12·(z — 2) — 10·(z — 3)

На участке EF: (5 ≤ z5 ≤ 6 м )

Q(z5) = + RA + RC — RE — P — Q1 = + 3.074 + 19.5 — 6.933 — 12 — 10 = -6.363 кН

M(z5) = + RA · z + RC · (z — 3) — RE · (z — 5) — P·(z — 2) + M — Q1·(z — 3) = + 3.074 · z + 19.5 · (z — 3) — 6.933 · (z — 5) — 12·(z — 2) + 8 — 10·(z — 3)

Максимальный момент в балке составляет Mmax = 6.36 кНм. По этому значению подбираем сечение балки.

Условие прочности при изгибе σ = Mmax / W ≤ [σ]

Отсюда, минимально необходимый момент сопротивления вычисляем по формуле Wmin=Mmax / [σ]

Подбираем двутавровое сечение при допускаемом напряжении [σ] = 160 МПа
Wmin=6360 / 160 = 39.75 см 3
Из сортамента выбираем двутавр №12 с моментом сопротивления W = 58.33 см 3 и площадью A = 14.7 см 2
Максимальные нормальные напряжения в двутавре составляют
σmax = Mmax/Wx = 6360/58.33 = 109.03 МПа
Максимальные касательные напряжения в двутавре (на центральной оси) составляют
τmax = Qmax×Sx/b×Ix = 13900×29.66×10 -6 /0.0048×350×10 -8 = 24.54×10 6 Па = 24.54 МПа
Касательные напряжения на границе полки и стенки составляют
τmax = Qmax×Sx’/b×Ix = 13900×26.33×10 -6 /0.0048×350×10 -8 = 21.785×10 6 Па = 21.785 МПа,
где статический момент отсеченной полки составляет
Sx’=b×t×(h-t)/2=6.4×0.73×(12-0.73)/2=26.33 см 3 .
Эпюры нормальных и касательных напряжений для двутавра:

Подбираем прямоугольное сечение с отношением сторон h / b=2
Wmin=6360 / 160 = 40 см 3
Момент сопротивления прямоугольного сечения
W=b×h 2 / 6 = b 3 × 2 2 / 6 = b 3 ×0.67
b 3 =40 / 0.67=60
Ширина сечения b=3.9 см, Высота сечения h=b×2=3.9×2=7.8 см
Площадь сечения A=b×h=3.9×7.8=30.42 см 2
Максимальные нормальные напряжения составляют
σmax = 6×Mmax/b×h 2 = 6×6360/3.9×7.8 2 = 160.83 МПа
Максимальные касательные напряжения для прямоугольника составляют
τmax = 3Qmax/2A = 3×13900/2×30.42×100 = 6.854 МПа
Эпюры нормальных и касательных напряжений для прямоугольного сечения:


источники:

http://mathdf.com/dif/ru/

http://sopromat.xyz/projects/beams?id=252061