Дифференциальное уравнение для свободных незатухающих колебаний имеет вид

Уравнение свободных незатухающих гармонических колебаний.

Для возбуждения в контуре колебаний предварительно заряжают конденсатор, сообщая его обкладкам заряд ±q. Тогда в начальный момент времени t=0 (рис. 19, а) между обкладками конденсатора возникнет электрическое поле. Если замкнуть конденсатор на катушку индуктивности, конденсатор начнет разряжаться, и в контуре потечет возрастающий со временем ток I. Когда конден­сатор полностью разрядится, энергия электрического поля конденсатора полностью перейдет в энер­гию магнитного поля катушки (рис. 19, б). Начиная с этого момента ток в контуре будет убывать, и, следовательно, начнет ослабевать магнитное поле катушки, тогда в ней согласно закону Фарадея индуцируется ток, который течет в соответствии с правилом Ленца в том же направлении, что и ток разрядки конденсатора. Конденсатор начнет перезаряжаться, возникнет электрическое поле, стремящееся осла­бить ток, который, в конце концов, обратится в нуль, а заряд на обкладках конденсатора достигнет максимума (рис. 19, в). Далее те же процессы начнут протекать в обратном направлении (рис. 19, г), и система к моменту времени t=Т (Т – период колебаний) придет в первоначальное состояние (рис. 19, а). После этого начнется повторение рассмотренного цикла разряд­ки и зарядки конденсатора, то есть начнутся периодические незатухающие колебания величины заряда q на обкладках конденсатора, напряжения UC на конденсаторе и силы тока I, текущего через катушку индуктивности. Согласно закону Фарадея напряжение UC на конденсаторе определяется скоростью изменения силы тока в катушке индуктивности идеального контура, то есть :

.

Исходя из того, что UC=q/C, а I=dq/dt, получаем дифференциальное уравнение свободных незатухающих гармонических колебаний величины заряда q на обкладках конденсатора:

или .

Решением этого дифференциального уравнения является функция q(t), то естьуравнение свободных незатухающих гармонических колебаний величины заряда q на обкладках конденсатора:

,

где q(t) – величина заряда на обкладках конденсатора в момент времени t;

q0 – амплитуда колебаний заряда на обкладках конденсатора;

– круговая (или циклическая) частота колебаний ( ) ;

=2 /T (T – период колебаний, формула Томсона);

– фаза колебаний в момент времени t;

– начальная фаза колебаний, то есть фаза колебаний в момент времени t=0.

Уравнение свободных затухающих гармонических колебаний.В реальном колебательном контуре учитывается, что кроме катушки индуктивностью L, конденсатора емкостью С, в цепи также имеется резистор сопротивлением R,отличным от нуля, что является причиной затухания колебаний в реальном колебательном контуре. Свободные затухающие колебания – колебания, амплитуда которых из-за потерь энергии реальной колебательной системой с течением времени уменьшается.

Для цепи реального колебательного контура напряжения на последовательно включенных конденсаторе емкостью С и резисторе сопротивлением R складываются. Тогда с учетом закона Фарадея для цепи реального колебательного контура можно записать:

,

где – электродвижущая сила самоиндукции в катушке;

IR – напряжения на резисторе.

Исходя из того, что I=dq/dt, получаем дифференциальное уравнение свободных затухающих гармонических колебаний величины заряда q на обкладках конденсатора:

или ,

где – коэффициент затухания колебаний ( ) , .

Решением полученного дифференциального уравнения является функция q(t), то естьуравнение свободных затухающих гармонических колебаний величины заряда q на обкладках конденсатора:

,

где q(t) – величина заряда на обкладках конденсатора в момент времени t;

– амплитуда затухающих колебаний заряда в момент времени t ;

q0 – начальная амплитуда затухающих колебаний заряда;

– круговая (или циклическая) частота колебаний ( );

– фаза затухающих колебаний в момент времени t;

– начальная фаза затухающих колебаний.

Период свободных затухающих колебаний в реальном колебательном контуре :

.

Вынужденные электромагнитные колебания. Чтобы в реальной колебательной системе получить незатухающие колебания, необходимо в процессе колебаний компенсировать потери энергии. Такая компенсация в реальном колебательном контуре возможна с помощью внешнего периодически изменяющегося по гармоническому закону переменного напряжения U(t):

.

В этом случае дифференциальное уравнение вынужденных электромагнитных колебанийпримет вид:

или .

Решением полученного дифференциального уравнения является функция q(t):

.

В установившемся режиме вынужденные колебания происходят с частотой w и являют­ся гармоническими, а амплитуда и фаза колебаний определяются следующими выражениями:

; .

Отсюда следует, что амплитуда колебаний величины заряда имеет максимум при резонансной частоте внешнего источника :

.

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающего переменного напряжения к ча­стоте, близкой частоте , называется резонансом.

Тема 10. Электромагнитные волны

Согласно теории Максвелла электромагнитные поля могут существовать в виде электромагнитных волн, фазовая скорость распространения которых определяет­ся выражением:

,

где и – соответственно электрическая и магнитная постоянные,

e и m – соответственно электрическая и магнитная проницаемости среды,

с – скорость света в вакууме ( ) .

В вакууме (e = 1, m = l) скорость распространения электромагнитных волн совпадает со скоростью света( с ), что согласуется с теорией Максвелла о том,

что свет представляет собой электромагнитные волны.

По теории Максвелла электромагнитные волны являются поперечными,то есть век­торы и напряженностей электрического и магнитного полей взаимно перпендикулярны и лежат в плоскости, перпендикулярной вектору

скорости рас­пространения волны, причем векторы , и образуют правовинтовую систему (рис. 20).

Из теории Максвелла следует также, что в электромагнитной волне векторы и колеблются в одинаковых фазах (рис. 20), то есть значения напряженностей Е и Н электрического и магнитного полей одновременно достигают максимума и одновременно обращаются в нуль, причем мгновенные значения Е и Н связаны соотношением: .

Уравнение плоской монохроматической электромагнитной волны (индексы у и z при Е и Н подчеркивают лишь то, что векторы и направлены вдоль взаимно перпендикулярных осей в соответствии с рис. 20):

,

,

где E0 и Н0– соответственно амплитуды напряженностей электрического и магнит­ного полей,

w – круговая частота волны, (T – период колебаний),

k – волновое число, ( – длина волны),

j – на­чальная фаза колебаний (на­чальная фаза колебаний j имеет одинаковое значение как для колебания электрического, так и магнитного векторов, так как в электромаг­нитной волне эти колебания происходят в одинаковых фазах).

Энергия электромагнитных волн. Электромагнитные волны переносят энергию. Объемная плотность w энергии электромагнитной волны складывается из объемных плотностей wэл электрического и wм магнитного полей:

.

Учитывая выражение связи между величинами Е и Н , можно получить, что суммарная плотность энергии электрического и маг­нитного полей:

.

Умножив плотность энергии w на скорость распространения волны в среде, получим модуль плотности потока энергии:

.

Tax как векторы и взаимно перпендикулярны, то произведение EH совпадает с модулем вектора ( – векторное произведение векторов и ). Кроме того, направление вектора совпадает с направлением распространения волны, то есть с направлением переноса энергии, что позволило ввести вектор ,равныйвекторному произведению , как вектор плотности потока электромагнитной энергии, называемыйвектором УмоваПойнтинга:

.

Итак, вектор направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны.

Дифференциальное уравнение для свободных незатухающих колебаний имеет вид

1.Свободные механические и электрические колебания. Дифференциальное уравнение свободных колебаний и его решения.

Колебания называются свободными, если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему.

Дифференциальное уравнение свободных незатухающих колебаний:

Гармоническими называются колебания, происходящие по законам синуса или косинуса.

— амплитуда колебаний – максимальное смещение колеблющейся величины относительно положения равновесия.

— фаза колебаний. Показывает, какая часть колебаний завершена к данному моменту времени.

— начальная фаза колебаний.

Математический маятник — механическая система, состоящая из материальной точки, подвешенной на невесомой нерастяжимой нити длины l.

Пружинный маятник — механическая система, состоящая из пружины жёсткостью k, один конец которой жёстко закреплён, а на втором находится груз массы m.

Свободные электромагнитные колебания:

(идеальная катушка)

Лекция № 5 Свободные электромагнитные колебания

СВОБОДНЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ

Выписка из рабочей программы дисциплины «Колебания и волны» – 010900

2.1 Свободные электромагнитные колебания.

Колебательный контур. Процессы в идеализированном колебательном контуре. Электромагнитные гармонические колебания. Дифференциальное уравнение свободных незатухающих электромагнитных колебаний и его решение. Собственная частота свободных электромагнитных колебаний. Формула Томсона. Закон сохранения и превращения энергии в идеализированном колебательном контуре.

1. Свободные электромагнитные колебания

Электромагнитные колебания представляют собой взаимосвязанные периодические изменения зарядов, токов, характеристик электрического и магнитного полей, сопровождающиеся взаимными превращениями этих полей.

Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур – цепь, состоящая из конденсатора ёмкостью и катушки индуктивностью .

Если сопротивление контура равно нулю, колебательный контур называют идеальным. В идеальном колебательном контуре отсутствуют потери энергии, поэтому собственные колебания, возникающие в нем, являются незатухающими.

Рассмотрим процесс возникновения свободных незатухающих колебаний в идеальном колебательном контуре. Чтобы возбудить колебания, необходимо сообщить конденсатору некоторый заряд, а потом замкнуть ключ К (рис.1).

Пусть в начальный момент времени () конденсатору сообщили некоторый заряд . При этом напряжение между его обкладками , напряженность электрического поля и энергия электрического поля – максимальны, а ток в цепи отсутствует (рис. 2,а). Затем начинается разряд конденсатора. Возникающий при этом разрядный ток, проходя через катушку , создает в ней изменяющееся магнитное поле, которое продолжает расти до тех пор, пока ток не достигает максимального значения . При этом вся энергия электрического поля конденсатора переходит в энергию магнитного поля катушки , а индукция магнитного поля достигает максимума (рис. 2,б). Несмотря на то, что конденсатор полностью разрядился, ток в колебательном контуре не прекращается и поддерживается э. д.с. самоиндукции, что в итоге приведет к перезарядке конденсатора. При этом заряд конденсатора, напряжение между обкладками, напряженность и энергия электрического поля вновь достигают максимальных значений, однако полярность обкладок конденсатора и направление напряженности электрического поля между ними противоположны тем, какие были в начальный момент времени (рис. 2, в). По окончании перезарядки энергия магнитного поля катушки перейдет в энергию электрического поля конденсатора. Начиная с этого момента, ток в контуре меняет направление, и процесс воспроизводится в обратном направлении (рис. 2, г). Система возвращается в исходное состояние (рис. 2, д), и начинается следующий период колебаний.

В контуре возникают электромагнитные колебания, при которых происходит превращение энергии электрического поля в энергию магнитного поля и наоборот. Рисунок 2 представляет собой график зависимости заряда конденсатора от времени , , на котором значениям заряда в моменты времени сопоставлены соответствующие состояния колебательного

контура (а; б; в; г; д).

Так как сопротивление контура равно нулю, т. е. нет потерь энергии, такой процесс должен продолжаться бесконечно, а возникающие колебания называются собственными или свободными.

Период собственных незатухающих колебаний в колебательном контуре определяется формулой Томсона

, (5)

а циклическая частота

. (6)

Колебания заряда происходят по гармоническому закону

, (7)

где – максимальный заряд на обкладках конденсатора;

– циклическая частота собственных колебаний;

– начальная фаза.

На рисунках 3 и 4 представлены соответственно идеальный колебательный контур и график зависимости при .

Очевидно, что изменение напряжения между обкладками описывается таким же законом

(8)

где – максимальное напряжение между обкладками конденсатора.

Так как электрический ток характеризует скорость изменения заряда на обкладках конденсатора,

(9)

где – амплитуда силы тока.

Из выражений (7), (8), (9) следует, что колебания заряда (напряжения) и тока в контуре сдвинуты по фазе на , т. е. ток достигает максимального значения в те моменты времени, когда заряд и напряжение на обкладках конденсатора равны нулю, и наоборот. Этот же вывод следует из анализа рис. 2 (а, б, в, г, д).

Идеальный колебательный контур (рис. 3), в котором происходят свободные незатухающие электромагнитные колебания, представляет собой электрическую цепь, состоящую из конденсатора емкостью и катушки индуктивности . Запишем для этого замкнутого контура второе правило Кирхгофа: сумма падений напряжений равна сумме э. д.с., действующих в контуре.

В контуре действует только одна э. д.с. – э. д.с. самоиндукции, следовательно

,

где – падение напряжения на конденсаторе;

– мгновенное значение заряда на обкладках конденсатора;

.

Так как , , то дифференциальное уравнение свободных незатухающих электромагнитных колебаний может быть записано в виде

,

,

где – собственная циклическая частота контура.

Уравнение колебаний принимает вид

и называется уравнением свободных незатухающих электромагнитных колебаний в дифференциальной форме.

Из математики известно, что решение этого уравнения имеет вид

,

т. е. соответствует формуле (7) и рис. 4 (при ).

Таким образом, свободные незатухающие электромагнитные колебания являются гармоническими, а их период определяется формулой Томсона:

2. Закон сохранения и превращения энергии в идеализированном колебательном контуре

Исключительно важным является вопрос об энергии гармонических колебаний. С энергетической точки зрения гармоническое колебание представляет собой непрерывный процесс перехода кинетической энергии движущихся частей осциллятора в потенциальную энергию упругого элемента. Полная энергия гармонического осциллятора есть величина постоянная, так как для него потерь нет. Она равна либо максимальной кинетической энергии ( в момент прохождения положения равновесия) , либо максимальной потенциальной энергии (при амплитудном смешении). В задачах используются именно эти энергии, так как с их помощью можно оценить величину амплитуды и частоты собственных колебаний осциллятора.

Расчет энергии W гармонического осциллятора осуществляют стандартным образом. Для механических осцилляторов:


источники:

http://itm-x18.narod.ru/sem3/fizika_z3/01.html

http://pandia.ru/text/80/142/13117.php