Дифференциальное уравнение конвективного массообмена имеет вид

Дифференциальное уравнение массообмена

Дифференциальное уравнение массообмена

  • Дифференциальное уравнение массопереноса получено на основе законов сохранения материала и закона Фика, составляющей газа. Случай стационарного основного параллелепипеда, массовый баланс компонента газовой смеси (2.23). Где JO-разность масс компонентов, вошедших и вышедших из основного объема за время m-масса компонента, который появляется или исчезает в этом объеме за время m под действием источника или стока массы. Изменение массового содержания компонента за время М в одном и том же объеме.

Величина проникновения частиц в зону возрастающего давления зависит от их кинетической энергии. Людмила Фирмаль

Решение очереди использует ту же методологию, что и решение cf в§ 1 настоящей главы, в результате чего представление аналогично формуле (2.5 (2.24) Где yy и yo-компоненты плотности потока массы вдоль координатных осей. Величина ₂₂ определяется мощностью внутреннего источника вещества, измеренной в кг. (м3 * сек) (2.25 )) Изменение концентрации / — го вещества в объеме yy за время m становится m. So … ЕА = ух — ^ — Юм. dt (2.26) Подставляя формулы (2.24), (2.25) и (2.26) в уравнение массового равновесия (2.23), получаем уравнение + в кг (2.27) Массовый поток вещества обусловлен концентрацией диффузией и вынужденным движением mixture.

  • Используя закон Фика для диффузной составляющей массового потока, перепишите это уравнение в следующем виде: если мы дифференцируем это уравнение с = =сопзпозволяет1. (2.28) Аналогичная формула получается и после простого преобразования приводит дифференциальные уравнения массопереноса, подставляя их в Формулу (2.27) (2.29). Использование понятия субстантивных производных Р. Составьте дифференциальное уравнение массопереноса в окончательном виде. (2.30). При использовании этого уравнения для турбулентности необходимо подставить в него текущие значения концентрации и скорости.

Поэтому они способны двигаться в области возрастающего давления лишь на определенное расстояние, пока не растратят свою кинетическую энергию. Людмила Фирмаль

Плотность массового потока вещества может быть выражена градиентом усредненной по времени концентрации, но в этом случае по закону Фика необходимо заменить коэффициент молекулярной диффузии Oc на Oc + Oc(где Oc-coe (/x)>импульс турбулентного переноса вещества). в этом случае дифференциальное уравнение массопереноса для турбулентности имеет вид、 ₎ ^ _ [₍₍0 ₍₎₎₎₎.]/.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Лекция № 11 Процесс массопередачи

Массопередача – это сложный процесс, включающий перенос вещества (массы) в пределах одной фазы, перенос через поверхность раздела фаз и его перенос в пределах другой фазы. Как известно, при теплопередаче обменивающиеся теплотой среды в большинстве случаев разделены твердой стенкой, в то время как массопередача происходит обычно через границу раздела соприкасающихся фаз. Эта граница может быть либо подвижной (массопередача в системах газ-жидкость или пар-жидкость, жидкость-жидкость), либо неподвижной (массопередача с твердой фазой).

массоотдача – это перенос вещества из фазы к границе раздела фаз или в обратном направлении, т. е. в пределах только одной фазы.

Виды процессов массопередачи. В промышленности применяются в основном следующие процессы массопередачи:

1. Абсорбция — поглощение газа жидкостью, т. е. процесс разделения, характеризуемый переходом вещества из газовой фазы в жидкую.

2. Экстракция (в системе жидкость-жидкость) — извлечение вещества, растворенного в жидкости, другой жидкостью, практически несмешивающейся или частично смешивающейся с первой. При этом извлекаемый компонент исходного раствора переходит из одной жидкой фазы в другую.

8. Перегонка — разделение гомогенных жидких смесей путем взаимного обмена компонентами между жидкостью и паром, полученным испарением разделяемой жидкой смеси.

4. Адсорбция — поглощение компонента газа, пара или раствора твердым пористым поглотителем, т. е. процесс разделения, характеризуемый переходом вещества из газовой (паровой) или жидкой фазы в твердую.

5. Сушка — удаление влаги из твердых материалов, главным образом путем ее испарения.

6. Кристаллизация — выделение твердой фазы в виде кристаллов из растворов или расплавов.

7. Растворение и экстракция (в системе твердое тело — жидкость).

Процессы массопередачи можно разделить на две группы.

К одной группе относятся процессы (абсорбция, экстракция и др.), в которых участвуют минимально три вещества: одно находится только в одной фазе, другое — только во второй фазе, а третье — переходит из одной фазы в другую и представляет собой распределяемое между фазами вещество.

К другой группе относятся процессы (например, перегонка), в которых вещества, составляющие две фазы, обмениваясь компонентами, сами непосредственно участвуют в массопередаче и уже не могут рассматриваться как инертные носители распределяемого вещества.

Скорость массообменных процессов, как правило, лимитируется молекулярной диффузией. Поэтому процессы массопередачи иногда называют диффузионными процессами.

Равновесие при массопередаче

Правило фаз. Знание равновесия в процессах массопередачи позволяет установить пределы, до которых могут протекать эти процессы. В основе равновесия лежит известное правило фаз:

Ф + С = К + 2, (1)

где Ф — число фаз; С — число степеней свободы, т. е. число независимых переменных, значения которых можно произвольно изменять без нарушения числа или вида (состава) фаз в системе; К — число компонентов системы.

Правило фаз указывает число параметров, которое можно менять произвольно (в известных пределах) при расчете равновесия в процессах масообмена.

Зависимости между независимыми переменными могут быть изображены в плоских координатах в виде так называемых фазовых диаграмм. В расчетах по массопередаче используют диаграммы зависимости давления от концентрации (при t = const), температуры от концентрации (при Р = const) и диаграммы зависимости между равновесными концентрациями фаз, приведенные ниже.

Фазовое равновесие. Линия равновесия. Рассмотрим в качестве примера процесс массопередачи, в котором аммиак, представляющий собой распределяемый компонент, поглощается из его смеси с воздухом чистой водой, т. е. ввиду отсутствия равновесия переходит из газовой фазы Фу, где его концентрация равна у, в жидкую фазу Фх, имеющую начальную концентрацию х = 0. С началом растворения аммиака в воде начнется переход части его молекул в обратном направлении со скоростью, пропорциональной концентрации аммиака в воде и на границе раздела фаз. С течением времени скорость перехода аммиака в воду будет снижаться, а скорость обратного перехода возрастать, причем такой двусторонний переход будет продолжаться до тех пор, пока скорости переноса в обоих направлениях не станут равны друг другу. При равенстве скоростей установится динамическое равновесие, при котором не будет происходить видимого перехода вещества из фазы в фазу.

При равновесии достигается определенная зависимость между предельными или равновесными концентрациями распределяемого вещества в фазах для данных температуры и давления, при которых осуществляется процесс массопередачи.

В условиях равновесия некоторому значению отвечает строго определенная равновесная концентрация в другой фазе, которую обозначим через . Соответственно концентрация у отвечает равновесная концентрация . В самом общем виде связь между концентрациями распределяемого вещества в фазах при равновесии выражается зависимостью:

или . (2)

Любая из этих зависимостей изображается графически линией равновесия, которая либо является кривой, как показано на рис. 1, либо в частном случае — прямой линией. На рис. 1, а показана равновесная кривая для системы с компонентами-носителями, выражающая зависимость равновесной концентрации, например в газовой фазе, от концентрации жидкой фазы при Р = const и t = const. На рис. 1, б приведен пример равновесной кривой для процесса ректификации, построенной при Р = const. Каждая точка кривой, как показано на рисунке, соответствует разным температурам (t1, t2 и т. д.).

Отношение концентраций фаз при равновесии называется коэффициентом распределения . Для разбавленных растворов линия равновесия близка к прямой, и т является практически величиной постоянной, равной тангенсу угла наклона линии равновесия.

Конкретный вид законов равновесного распределения различен для разных процессов массопередачи. Так, например, в процессе абсорбции при низких концентрациях распределяемого вещества в исходном растворе равновесие описывается законом Генри для идеальных растворов в процессах ректификации — законом Рауля и т. д.

Зная линию равновесия для конкретного процесса и рабочие, т. е. неравновесные, концентрации фаз в соответствующих точках, можно определить направление и движущую силу массопередачи в любой точке аппарата. На основе этих данных может быть рассчитана средняя движущая сила, а по ней — скорость процесса массопередачи.

Материальный баланс. Рабочая линия. Рабочие концентрации распределяемого вещества не равны равновесным, и в действующих аппаратах никогда не достигают равновесных значений.

Зависимость между рабочими концентрациями распределяемого вещества в фазах изображается линией, которая носит название рабочей линии процесса. Вид функции или уравнение рабочей линии в его общем виде, является одинаковым для всех массообменных процессов и получается из их материальных балансов.

Рассмотрим схему массообменного аппарата, работающего в режиме идеального вытеснения при противотоке фаз (рис. 2). Пусть в процессе массопередачи из фазы в фазу, например из газовой фазы в жидкую, переходит только один распределяемый компонент (скажем, аммиак).

Сверху в аппарат поступает Lн кг/с одной фазы (жидкой), содержащей вес. долей распределяемого компонента, а снизу из аппарата удаляется Lк кг/с той же фазы, содержащей вес. долей распределяемого компонента. Снизу в аппарат поступает кг/с другой фазы (газовой) концентрацией и сверху удаляется кг/с этой фазы, имеющей концентрацию вес. долей распределяемого компонента.

Тогда материальный баланс по всему веществу

, (3)

и материальный баланс по распределяемому компоненту

. (4)

Теперь напишем уравнения материального баланса для части аппарата от его нижнего конца до некоторого произвольного сечения, для которого расходы фаз составляют G и L кг/с, а их текущие концентрации равны и соответственно.

Материальный баланс по всему веществу

, (5)

и материальный баланс по распределяемому компоненту

. (6)

Решая это уравнение относительно , получим

. (7)

Уравнение (7) представляет собой уравнение рабочей линии, выражающее связь между рабочими концентрациями распределяемого компонента в фазах для произвольного сечения аппарата.

Расходы фаз постоянны по высоте аппарата, например в процессах ректификации, когда числа молей компонентов, которыми обмениваются фазы, равны. В других случаях, если концентрации фаз мало изменяются по высоте аппарата, то расходы фаз по его высоте можно с достаточной для практических целей точностью считать постоянными, т. е. принять L = const и G = const. При этом Lк = L, Gн = G и уравнение (7) приводится к виду

. (8)

Вводя обозначения и , находим

. (9)

Выражения (8) и (9) являются уравнениями рабочей линии, которыми обычно пользуются при расчетах массообменных процессов.

Таким образом, рабочая линия представляет собой прямую, которая наклонена к горизонту под углом, тангенс которого равен А, и отсекает на оси ординат отрезок, равный В. Рабочая линия для всего аппарата ограничена точками с координатами и (верхний конец аппарата, рис. 3) и и (нижний конец аппарата).

Скорость массопередачи

Скорость массопередачи связана с механизмом переноса распределяемого вещества в фазах между которыми происходит массообмен.

Перенос вещества внутри фазы может происходить только путем молекулярной диффузии либо путем конвекции и молекулярной диффузии одновременно. Посредством одной молекулярной диффузии вещество перемещается, строго говоря, лишь в неподвижной среде. В движущейся среде перенос вещества осуществляется как молекулярной диффузией, так и самой средой в направлении ее движения или отдельными ее частицами в разнообразных направлениях.

В турбулентном потоке перенос молекулярной диффузией преобладает только вблизи границы фазы. При турбулентном течении возникают нерегулярные пульсации скорости, под действием которых, наряду с общим движением потока, происходит перемещение частиц во всех направлениях, в том числе и в поперечном.

Конвективный перенос вещества, осуществляемый под действием турбулентных пульсаций, часто называют турбулентной диффузией.

Молекулярная диффузия. Молекулярной диффузией называется перенос распределяемого вещества, обусловленный беспорядочным тепловым движением молекул, атомов, ионов, коллоидных частиц. Молекулярная диффузия описывается первым законом Ф и к а, согласно которому масса вещества dМ, продиффундировавшего за время dt через элементарную поверхность dF (нормальную к направлению диффузии), пропорциональна градиенту концентрации этого вещества

или . (1)

Из выражения (1) следует, что удельный поток вещества, переносимого молекулярной диффузией через единицу поверхности (F = 1) в. единицу времени (t = 1), или скорость молекулярной диффузии, составляет

. (2)

По своей структуре закон Фика аналогичен закону Фурье, описывающему передачу тепла теплопроводностью, причем аналогом градиента температур является в данном случае градиент концентраций, представляющий собой изменение концентрации диффундирующего вещества на единицу длины нормали между двумя поверхностями постоянных, но различных концентраций.

Коэффициент пропорциональности D в выражении закона Фика называется коэффициентом молекулярной диффузии, или просто коэффициентом диффузии. Знак минус перед правой частью первого закона Фика указывает на то, что молекулярная диффузия всегда протекает в направлении уменьшения концентрации распределяемого компонента.

Согласно уравнению (1), коэффициент диффузии выражается как:

откуда (до сокращения одноименных величин) вытекает физический смысл D. Коэффициент диффузии, показывает, какая масса вещества диффундирует в единицу времени через единицу поверхности при градиенте концентрации, равном единице.

Коэффициент молекулярной диффузии представляет собой физическую константу, характеризующую способность данного вещества проникать вследствие диффузии в неподвижную среду. Величина D таким образом не зависит от гидродинамических условий, в которых протекает процесс.

Турбулентная диффузия. Масса вещества dMт, переносимого в пределах фазы вследствие турбулентной диффузии, может быть принята, по аналогии с молекулярной диффузией, пропорциональной поверхности dF, времени dt и градиенту концентрации и определяется по, уравнению

, (3)

где — коэффициент турбулентной диффузии.

Коэффициент турбулентной диффузии показывает какая масса вещества передается посредством турбулентной диффузии в единицу времени через единицу поверхности при градиенте концентрации, равном единице.

Коэффициент выражается в тех же единицах, что и коэффициент молекулярной диффузии D, т. е. в м2/с. Однако в отличие от D коэффициент турбулентной диффузии не является физической константой; он зависит от гидродинамических условий, определяемых в основном скоростью потока и масштабом турбулентности.

Конвективный перенос. Скорость конвективного, переноса вещества вместе с самой средой в направлении, совпадающем с направлением общего потока, равна

, (4)

где v — скорость потока жидкости, газа или пара; С — коэффициент пропорциональности.

Суммарный перенос вещества вследствие конвективного переноса и молекулярной диффузии, по аналогии с теплообменом, называют конвективным массообменом или конвективной диффузией.

Распределение концентрации при переносе путем конвективной диффузии определяется в самом общем виде дифференциальным уравнением конвективной диффузии.

Дифференциальное уравнение конвективной диффузии. Выделим в потоке данной фазы элементарный параллелепипед с ребрами dx, dy и dz, ориентированными относительно осей координат, как показано на рис. 1. Рассмотрим материальный баланс по распределяемому веществу для параллелепипеда в наиболее общем случае неустановившегося массообмена. Будем считать, что процесс переноса происходит в условиях установившегося движения потока фазы. Распределяемое вещество проходит сквозь грани параллелепипеда как путем конвективного переноса, так и молекулярной диффузии.

Обозначим концентрацию распределяемого вещества в плоскости левей грани параллелепипеда площадью dydz через с и проекции скорости на оси координат для данного элемента (точки) потока — через , и , соответственно.

Тогда масса вещества, поступающего только путем конвективной диффузии через площадь dydz, т. е. в направлении оси х, за время dt составит

. (5)

На противоположной грани параллелепипеда скорость в направлении оси х равна и концентрация распределяемого вещества составляет . Следовательно, за время dt через противоположную грань параллелепипеда выходит путем конвективной диффузии:

. (6)

Разность между массами вещества, прошедшего через противоположные грани параллелепипеда за время dt в направлении оси х, равна

, (7)

где dV = dx dy dz — объем элементарного параллелепипеда. Аналогично в направлении осей у и z:

и . (8)

Таким образом, содержание распределяемого вещества в объеме параллелепипеда изменится за время dt вследствие перемещения вещества только путем конвективной диффузии на величину

или в развернутом виде

. (9)

Согласно уравнению неразрывности потока для установившегося движения фазы

. (10)

Следовательно, предыдущее выражение dMк примет вид

. (11)

Масса распределяемого вещества, поступающего в параллелепипед только путем молекулярной диффузии через грань dy dz за время dt составляет

. (12)

Масса вещества, выходящего за то же время путем молекулярной диффузии через противоположную грань,

. (13)

Разность между массами продиффундировавшего через противоположные грани параллелепипеда вещества в направлении оси х за время dt равна

. (14)

Аналогично в направлении осей у и z:

и . (15)

Масса распределяемого вещества в объеме всего параллелепипеда за время dt изменится при переносе путем молекулярной диффузии на величину

. (16)

В результате изменение массы распределяемого вещества во времени в объеме параллелепипеда

. (17)

Изменение массы распределяемого вещества за счет конвективной и молекулярной диффузии в объеме параллелепипеда по закону сохранения массы должно равняться соответствующему изменению массы этого вещества во времени, т. е.

. (19)

Проводя соответствующие сокращения и перегруппировывая члены этого уравнения, получим

(20)

или в более краткой записи

. (20, а)

Уравнение (20) представляет собой дифференциальное уравнение конвективной диффузии. Оно выражает закон распределения концентрации данного компонента в движущейся стационарно среде при неустановившемся процессе массообмена.

Уравнение (20) по структуре аналогично дифференциальному уравнению конвективного теплообмена (уравнению Фурье-Кирхгофа). Отличие состоит в том, что в уравнение (20) вместо температурного градиента входит градиент концентрации, а вместо коэффициента температуропроводности а — коэффициент молекулярной диффузии D.

Для частного случая установившегося массообмена уравнение (20) принимает вид:

. (21)

При массообмене в неподвижной среде = = = 0, а конвективная составляющая в левой части уравнения (19) равна нулю, и уравнение обращается в дифференциальное уравнение молекулярной диффузии.

. (22)

Уравнение (22) носит название второго закона Фика. В дифференциальном уравнении конвективной диффузии, помимо концентрации, переменной является скорость потока. Поэтому данное уравнение надо рассматривать совместно с дифференциальными уравнениями гидродинамики: уравнениями Навье-Стокса и уравнением неразрывности потока. Однако эта система уравнений не имеет аналитического решения, и для получения расчетных зависимостей по массообмену приходится прибегать к преобразованию дифференциального уравнения конвективной диффузии методами теории подобия.

Ввиду сложности механизма процессов массоотдачи в фазах для практических целей принимают, что скорость массоотдачи пропорциональна движущей силе, равной разности концентраций в ядре и на границе фазы или (в случае обратного направления переноса) разности концентраций на границе и в ядре фазы. Соответственно, если распределяемое вещество переходит из фазы Фу в фазу Фх, то основное уравнение массоотдачи, определяющее количеством М вещества, переносимого в единицу времени в каждой из фаз (к границе фазы или в обратном направлении), выражается следующим образом:

(1)

, (1, а)

входящие в эти уравнения разности концентраций и представляют собой движущую силу процесса массоотдачи соответственно в фазах Фу и Фх, причем и — средние концентрации в основной массе (ядре) каждой из фаз, и — концентрации у границы соответствующей фазы.

Коэффициенты пропорциональности в уравнениях (1) и (1, а) называются коэффициентами массоотдачи. Коэффициенты массоотдачи (в фазе Фх и (в фазе Фу) показывают, какая масса вещества переходит от поверхности раздела фаз в ядро фазы: или в обратном направлении) через единицу поверхности в единицу времени при движущейся силе, равной единице.

Коэффициент массоотдачи является не физической константой, а кинетической характеристикой, зависящей от физических свойств фазы (плотности, вязкости и др.) и гидродинамических условий в ней (ламинарный или турбулентный режим течения), связанных в свою очередь с физическими свойствами фазы, а также с геометрическими факторами, определяемыми конструкцией и размерами массообменного аппарата, Таким образом, величина является функцией многих переменных, что значительно осложняет расчет или опытное определение коэффициентов массоотдачи. Значениями последних учитывается как молекулярный, так и конвективный перенос вещества в фазе.

По своему смыслу коэффициент массоотдачи является аналогом коэффициента теплоотдачи в процессах переноса тепла, а основное уравнение массоотдачи идентично по структуре основному уравнению теплоотдачи.

Коэффициент массоотдачи может быть выражен в различных единицах в зависимости от выбора единиц для массы распределяемого вещества и движущей силы. Если принять, что масса вещества выражена в килограммах, то в общей форме коэффициент массоотдачи выразится следующим образом:

При этом единица измерения р в каждом конкретном случае будет связана с единицами, принятыми для выражения движущей силы (табл. Х-1).

Подобие процессов переноса массы. Наиболее строгий и принципиально возможный путь для определения коэффициентов массоотдачи, заключается в интегрировании уравнения диффузии в движущейся среде (Х,19) совместно с уравнениями движения, т. е. с уравнениями Навье-Стокса и уравнением неразрывности потока при заданных начальных и граничных условиях.

Однако система указанных уравнений практически не имеет общего решения. Поэтому так же, как для гидродинамических и теплообменных процессов, не решая системы основных уравнений, можно методами теории подобия найти связь между переменными, характеризующими процесс переноса в потоке фазы, в виде обобщенного (критериального) уравнения массоотдачи.

Общая функциональная зависимость Nu’ от определяющих критериев и симплексов подобия для неустановившихся процессов массоотдачи может быть выражена как

. (13)

Для установившихся процессов массоотдачи условие равенства критериев Fo’ в сходственных точках подобных потоков отпадает н приведенные выше обобщенные зависимости принимают вид:

. (14)

Расчетная зависимость типа уравнения (13 и 14) называется обобщенным или критериальным уравнением массоотдачи.

Как отмечалось, процесс массопередачи включает процессы массоотдачи в пределах каждой из двух взаимодействующих фаз и, кроме того, процесс переноса распределяемого вещества через поверхность раздела фаз. Сложность расчета процесса связана с тем, что практически невозможно измерить концентрации фаз непосредственно у границы их раздела. Учитывая это, основное уравнение массопередачи, определяющее массу М вещества, переносимого из фазы в фазу в единицу времени (нагрузку аппарата), выражают следующим образом:

, (1)

, (2)

где у*, х* — равновесные концентрации в данной фазе, соответствующие концентрациям распределяемого вещества в основной массе (ядре) другой фазы; Ку, Кх— коэффициенты и массопередачи, выраженные соответственно через концентрации фаз Фу и Фх.

Коэффициент массопередачи (Kу или Кх) показывает, какая масса вещества переходит из фазы в фазу за единицу времени через единицу поверхности контакта фаз при движущей силе массопередачи, равной единице.

По физическому смыслу коэффициенты массопередачи отличаются от коэффициентов массоотдачи, но выражены в одинаковых с ними единицах измерения. Таким образом, коэффициенты массопередачи могут выражаться в м/с, кг/(м2 с); кг/(м2 с мол доли) и в с/м.

Концентрации фаз изменяются при их движении вдоль поверхности раздела, соответственно изменяется движущая сила массопередачи. Поэтому в уравнение массопередачи вводят величину средней движущей силы ( или ). Тогда уравнения (1) и (2) принимают вид:

, (3)

. (4)

С помощью уравнений (3) и (4) обычно находят поверхность контакта фаз F и по ней рассчитывают основные размеры аппарата. Для определения F необходимо предварительно рассчитать коэффициент массопередачи Kу или Кх и среднюю движущую силу. Величина М либо задается при расчете, либо определяется из материального баланса.

Зависимость между коэффициентами массопередачи и массоотдачи. Чтобы установить связь между коэффициентом массопередачи и коэффициентами массоотдачи, обычно принимают, что да границе раздела фаз см. рис. 5) достигается равновесие. Это предположение равносильно допущению о том, что сопротивлением переносу через границу раздела фаз можно пренебречь. Отсюда вытекает, как следствие, положение об аддитивности фазовых сопротивлений, которое является одной из предпосылок для расчета коэффициента массопередачи. Допустим, что распределяемое вещество переходит из фазы Фу в фазу Фх, и движущая сила массопередачи выражается в концентрациях фазы Фу. При установившемся процессе массопередачи количество вещества, переходящее из фазы в фазу, определим по уравнению (1).

Для упрощения рассмотрим случай, когда равновесная зависимость % между концентрациями в фазах линейна, т. е. линия равновесия описывается уравнением у* = m x, где т – тангенс угла наклона линии равновесия. После ряда преобразований получаем

(9)

При выражении коэффициента массопередачи в концентрациях фазы Фх аналогичные рассуждения приводят к зависимости

, (10)

Левые части уравнений (9) и (10) представляют собой общее сопротивление переносу вещества из фазы в фазу, т. е. сопротивление массопередаче, а их правые части — сумму сопротивлений массоотдаче в фазах. Поэтому зависимости (9) и (10) являются уравнениями аддитивности фазовых сопротивлений.

При т = const уравнение (10) можно получить, разделив уравнение (9) на т. Отсюда следует, что величины Kу и Kх связаны зависимостью Kу = Kх/m.

Уравнения аддитивности (9) и (10) выведены для линейной равновесной зависимости, но они остаются в силе и для кривой линии равновесия.

Конвективный массообмен

Предположим, что надо определить скорость испарения воды с поверхности озера, когда над его поверхностью дует сухой воздух.

Испарение представляет собой процесс парообразования с поверхности, протекающий при любых температурах и, как правило, одновременно с процессом теплообмена. Поверхность испарения, может уменьшаться (например, при испарении капель), что может оказывать влияние на скорость массообмена.

При испарении жидкости с поверхности необходимо различать испарение со свободной поверхности жидкости (испарение с поверхности водоемов, испарение топлив при хранении и транспортировке и др.) и испарение тонких пленок и капель жидкости (например, топлив) с нагретой поверхности.

При испарении поток паров уносит с поверхности теплоту, необ­ходимую для его образования. В этом случае может иметь место ох­лаждение поверхности (адиабатическое испарение) и достижение по­верхностью некоторой равновесной температуры Тр. Эта температура будет соответствовать равенству тепловых потоков: подводимого к поверхности от окружающей среды с температурой и уносимого с потоком паров.

Так как парциальное давление паров воды в воздухе невелико, то для расчета массового потока с поверхности воды в воздух при температуре Т можно воспользоваться уравнением

. (3.46)

Принимая в расчет удельное влагосодержание у испаряющейся поверхности и в окружающем воздухе и также используя полученные выражения для , получим

. (3.47)

Но поскольку массообмен определяется конвективным про­цессом, то удобно определять поток массы пропорционально разности между массовыми концентрациями на поверхности и в окружающей среде :

, (3.48)

где А – площадь поверхности испарения, – коэффициент массобмена.

Если принять коэффициенты температуропроводности среды а и диффузии компонента в этой среде D равными, то безразмерные критерии Pr и Sc будут равны и, следовательно равны критерии Нуссельта процессов переноса теплоты и вещества . Значит коэффициент теплообмена равен

(3.49)

где — коэффициент теплоотдачи, — коэффициент теплопроводности.

Если , то

. (3.50)

Уравнение (3.48) представляет собой все то же выражение (3.39), записанное для удобства аналогично закону Ньютона для конвективной теплопередачи. Соотношение (3.48) поясняет физический смысл коэффициента массоотдачи и математически выражает экспериментально установленный факт, называемый иногда законом Щукарева – количество вещества, перенесенное в единицу времени через единицу площади поверхности, пропорционально разности концентраций у поверхности раздела фаз и в ядре потока.

Также помимо испарения над открытым источником, на практике нередко наблюдается испарение в замкнутый объем. В этом случае плотность массо­вого потока j, удельное влагосодержание d и парциальное давление паров будут меняться в процессе испарения. Дадим приближен­ный вывод уравнения плотности массового потока паров при испаре­нии воды с поверхности А в ограниченный объем V при постоянной температуре поверхности. Удельное влагосодержание паров в возду­хе в момент времени равно

, (3.51)

где — начальное удельное влагосодержание паров в воздухе.

Свободный объем есть разность полного объема и объема жидкости и принимается постоянным, =const. Под­ставляя значение в уравнение

, (3.52)

(3.53)

Обозначим , тогда

(3.54)

где Н — высота резервуара; — высота начального столба жидкости (до начала испарения).

Если учитывать увеличение свободного объема за счет испарения жидкости

, (3.55)

где — плотность жидкости, то уравнение массового потока m принимает вид

(3.56)

Рис. 3.49. Концентрационный пограничный слой

На рис. 3.49. показана схема физической задачи испарения воды из озера. Эта задача подобна задаче о переносе тепла от: горизонтальной плоской пластины, на поверхности которой развивается тепловой пограничный слой. Аналогичным образом образуется концентрационный пограничный слой, внутри кото­рого концентрация изменяется в направлении, перпендикулярном горизонтальной поверхности озера. Пограничный слой представляет собой область течения вязкой жидкости или газа, образующаяся у поверхности обтекаемого твёрдого тела или на границе раздела двух потоков жидкости с различными скоростями, температурами или химическим составом. Толщина ПС мала по сравнению с продольными размерами. ПС может характеризоваться резким изменением в направлении, поперечном скорости течения различных физических характеристик (скорости течения, температуры, концентрации компонентов). На формирование течения в ПС основное влияние оказывают вязкость, теплопроводность и диффузионная способность жидкости или газа. Тонкий слой, лежащий между твердой границей (стенкой) и внешним потенциальным потоком, обтекающим твердую границу, называется пристеночным пограничным.

Пограничный слой характеризуется тем, что толщина его увеличивается вдоль течения, и движение жидкости в нем не является продольно-однородным.

Течение в пограничном слое слоистое (ламинарное) вблизи точки его зарождения (около передней кромки тела), но постепенно завихряется (становится турбулентным) ниже по течению. Одной из важных проблем является определение положения точки перехода от ламинарного течения к турбулентному. Турбулентный пограничный слой намного толще ламинарного, и их толщины зависят от числа Рейнольдса Re, определяемого как произведение величины на расстояние от передней кромки x. Толщина пограничного слоя δ определяется следующими соотношениями:

(3.57)

(3.58)

Для определения характера пограничного слоя служит коэффициент Cf. Тело определенной конфигурации имеет свой коэффициент. Так, например, для плоской пластины коэффициент сопротивления ламинарного пограничного слоя равен:

(3.59)

для турбулентного слоя

(3.60)

где Re – число Рейнольдса, выражающее отношение инерционных сил к силам трения и определяющее отношение двух составляющих — профильное сопротивление (сопротивление формы) и сопротивление трения.

Снаружи пограничного слоя концентрация водяного пара остается постоянной и равной своему значению в окружающей среде.

Пример задачи об испарении воды из озера далее иллюстрирует подобие между процессами конвективного теплообмена и массообмена. Действительно, если вывести уравнения сохранения для процессов конвективного переноса тепла и массы, то эти уравнения окажутся подобными, причем массовая концентрация Са аналогична температуре Т,а коэффициент диффузии D коэффициенту температуропроводности .

Эта аналогия предполагает, что простым методом расчета коэффициента массообмена является использование соответ­ствующего безразмерного соотношения для конвективного теплообмена с подстановкой соответствующих безразмерных комплек­сов, описывающих процесс массообмена. Безразмерным комплексом, описывающим теплообмен, в который входит коэффициент теплоотдачи, является число Нуссельта

. (3.61)

Аналогичный безразмерный комплекс, описывающий массооб­мен, называется числом Шервуда и определяется следующим образом:

. (3.62)

В теории теплообмена безразмерным комплексом, который ха­рактеризует отношение переноса количества движения к тепло­проводности, является число Прандтля

. (3.63)

В теории массообмена коэффициент диффузии заменяет коэф­фициент температуропроводности и новый безразмерный ком­плекс называется числом Шмидта:

. (3.64)

Число Шмидта характеризует отношение переноса количества движения к массовой диффузии.

Число Нуссельта является функцией чисел Рейнольдса и Прандтля:

С учетом подобия между процессами конвективного тепло- и массообмена можно ожидать, что число Шервуда будет анало­гичной функцией чисел Рейнольдса и Шмидта:

Например, при турбулентном течении в трубе безразмерное со­отношение для теплоотдачи (5.12) имеет вид

(3.65)

Используя это соотношение, можно приближенно описать поток массы от жидкости, которая полностью смачивает внутреннюю поверхность трубы, к турбулентному потоку газа, протекающему вдоль трубы, с помощью уравнения

(3.66)

В этом случае жидкость переходит в газовую фазу в результате испарения и уравнение (3.66) можно использовать для расчета скорости испарения жидкости.

В качестве второго примера рассмотрим снова задачу об испарении воды с поверхности озера. Для этого случая конвек­тивный теплообмен описывается соотношением

, (3.67)

которое представляет собой соотношение для расчета теплоотдачи от плоской пластины в предположении ламинарного режима обтекания. Соответствующее соотношение для ра­счета ламинарного массообмена будет иметь вид

(3.68)

Если в задаче о массообмене перенос осуществляется свободной конвекцией, выражение для коэффициента массообмена можно вывести на основе аналогичной задачи о теплообмене в условиях свободной конвекции. Известно, что теплообмен при свободной конвекции описывается соотношением

Число Грасгофа для массообмена определяется следующим образом:

(3.69)

где определяется в виде

(3.70)

Можно ожидать, что для массообмена при свободной конвекции будет справедливо соотношение в виде

Аналогию Рейнольдса, которая связывает плотность теплового потока и касательное напряжение на поверхности, можно распространить на случай массообмена. Выражение имеет вид

, (3.71)

Аналогия Рейнольдса для турбулентного массообмена записывается так:

, (3.72)

В целом процесс стационарного испарения капли характеризуют две величины коэффициент испарения и временем испарения капли .

Скорость испарения капли прямо пропорциональна радиусу кап­ли, коэффициенту диффузии паров и перепаду концентраций.

Так как в процессе испарения капли про­исходит уменьшение ее радиуса, скорость испарения является пере­менной величиной (уменьшается в процессе испарения). Поэтому при строгом подходе испарение капли надо рассматривать как нестацио­нарное. Поэтому для произвольного момента времени с помощью текущего радиуса капли R можно найти скорость испарения капли:

. (3.73)

Однако скорость испарения капли представляет собой скорость убывания ее массы во времени

, (3.74)

Приравнивая два последних уравнения и интегрируя при условии, что испарение капли происходит при постоянной температуре поверхности, получим

, (3.75)

где — константа испарения, которая не изменяется в процессе испарения (после ряда допущений), ; — начальный радиус капли (поверхности).

. (3.76)

Время испарения капли находится при R=0

. (3.77)

При температуре равновесного испарения константа испарения найдется как:

, (3.78)

где — равновесная температура, — температура воздуха.

Также говоря о испарении, нужно отметить относительную влажность , %:

(3.79)

где — давление насыщенных паров при температуре воздуха ; — давление насыщенных паров при температуре поверхности ; — скрытая теплота парообразования воды при температуре .

Пример. Рассчитать скорость испарения воды с поверхности озера имеющего размеры приблизительно 500 500 м. Скорость ветра 5 м/с. Температура воздуха и воды в озере равна 25 . Давление насыщения водяного пара при 25°С равно =3098 Н/м 2 . Коэффициент диффузии равен .Рассчитать скорость испарения воды для случаев, когда окружающий воздух имеет относительную влажность а) 10%.

Эта задача определяется процессом массообмена при вынуж­денной конвекции от плоской пластины, Прежде чем подобрать соответствую­щее безразмерное соотношение для числа Шервуда, следует определить, бу­дет ли течение ламинарным или турбулентным. Число Рейнольдса в конце озера равно

Следовательно, течение воздуха полностью турбулентное и, таким образом, соотношение имеет вид

которое используется для расчета турбулентного теплообмена на плоской пластине, Следовательно, соответствующее соотношение для расчета массо­обмена имеет вид

Число Шервуда равно

Коэффициент конвективного массообмена равен

Далее необходимо определить концентрацию паров воды у поверхности озера и в окружающем воздухе, У поверхности воды воздух насыщенный и его от­носительная влажность равна 100%. Соотношение между парциальным дав­лением водяного пара, относительной влажностью и температурой насыще­ния имеет вид

Парциальное давление пара у поверхности озера равно = = 3098 Н/м 2 . Концентрация водяного пара у поверхности озера в предложении, что водяной пар представляет собой идеальный газ, равна

При относительной влажности окружающего воздуха 10% концентрация водяного пара в воздухе равна

Скорость испарения воды равна

Дата добавления: 2015-04-18 ; просмотров: 23 ; Нарушение авторских прав


источники:

http://pandia.ru/text/80/170/18177.php

http://lektsii.com/2-7878.html

Читайте также:
  1. Диффузионный массообмен
  2. Очистка конвертированного газа от диоксида углерода. Требования, предъявляемые к хемосорбенту и массообменной аппаратуре.