Дифференциальное уравнение сау передаточная функция

Дифференциальные уравнения и передаточные функции звеньев и САУ.

При исследовании и расчете САУ исходят из математического описания, происходящих в них процессах. Для линейных САУ широко используется для этой цели операторный метод. Его сущность в том, что исследуемая система разделяется на звенья направленного действия. Совокупность этих звеньев совместно с линиями связи между ними, характеризующими их взаимодействие, образуют структурную схему САР. Они отражают математически динамические свойства системы. Разбиение системы на звенья существенно облегчает их расчет. Процессы, протекающие в САУ, описываются дифференциальными. уравнениями. Задача составления дифференциальных уравнений системы сводится к составлении системы отдельных звеньев. Любое звено автоматической системы предназначено для измерения, усиления или какого-либо другого преобразования сигнала. В связи с этим для любого элемента характерной являются связи между его входным и выходным сигналом. Именно эта связь и может быть представлена дифференциальными уравнением, которое математически выражает физические процессы в звене, т. е. процессы формирования выходного сигнала элемента, при подаче на его вход входного сигнала. Для облегчения исследования сложных систем дифференциальных уравнений, описывающие поведение системы заменяются алгебраическими, с помощью преобразований Лапласа. Если имеется некоторая функция f(t) независимой вещественной переменной t, то преобразование Лапласа, производимое над этой функцией и обращающее ее в функцию F(x), определяются след соотношением

где p-произвольная комплексная величина, имеющая вещественную и мнимую часть. При этом функция f(t) называется оригиналом, а F(p)-изображением функции. Сокращенно преобразования Лапласа обозначаются:

Для линейных звеньев связь между входным и выходным сигналом может быть описана линейным дифференциальным уравнением следующего вида:

Воспользовавшись преобразованием Лапласа, дифференциальным уравнением (1) может быть представлено в следующем виде:

Левая часть равенства в скобках — выходной операторный полином, правая – входной.

Передаточной функцией звена или системы автоматического управления называется отношение изображения по Лапласу выходной величины к изображению по Лапласу входной величины.

1) При р=0 выражение передаточной функции превращается в коэффициент усиления. W(p)=K.

2) Из выражения передаточной функции видно, что изображение выходной величины равно:

Этим выражением можно пользоваться при определении характера переходных процессов, возникающих в системе, при подаче на ее вход любого произвольно меняющегося входного воздействия. Анализ и синтез систем автоматического управления предполагает предварительное получение информации о виде передаточной функции. Для ряда типовых динамических звеньев передаточные функции являются одинаковыми, отличие может состоять в коэффициенте выражений передаточных функций.

Дата добавления: 2015-10-19 ; просмотров: 5908 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПРЕДСТАВЛЕНИЕ САУ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЕМ И ПЕРЕДАТОЧНОЙ ФУНКЦИЕЙ

ЛАБОРАТОРНАЯ РАБОТА № 1. МОДЕЛИРОВАНИЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Объект управления (ОУ) — система, в которой происходит подлежащий управлению процесс. Взаимодействие с ОУ происходит через входы (которые являются причинами появления процессов в ОУ) и выходы (которые являются процессами-следствиями).

Управление — процесс на входе объекта управления, обеспечивающий такое протекание процессов на выходе объекта управления, которое обеспечи-вают достижение заданной цели управления.

Регулирование — частный случай управления, цель которого заключается в поддержании на заданном уровне одного или нескольких выходов объекта управления.

Система автоматического регулирования (САР) – совокупность объекта управления и автоматического регулятора, взаимодействующих между собой в соответствии с алгоритмом управления.

Регулирующий орган (РО) — совокупность устройств, с помощью кото-рых осуществляется управление входами объекта управления. Например, на-гревательные элементы в системе управления температурой, клапаны с элек-троприводом в системе регулирования расхода жидкости и т.д.

Управляемая величина (выходная величина — У) — показатель технологического процесса, которым необходимо управлять.

Управляющее воздействие (входная величина — Х) — физическая величина, посредством которой управляется показатель технологического процесса.

Задающее воздействие — определяет требуемый закон регулирования выходной величины.

Возмущающее воздействие f(t) — процесс на входе объекта управления,являющийся помехой управлению.

Воспринимающие органы (ВО или так называемые чувствительные эле-менты ЧЭ) — измеряют и преобразуют контролируемую или управляемую вели-чину объекта управления в сигнал, удобный для передачи и дальнейшей обра-ботки. К ним относятся датчики влажности, температуры (термопары, термосо-противления, термопреобразователи), освещенности и т.д.

Усилительные органы (УО или усилительные элементы УЭ) – устройства, не изменяющие физической природы сигнала, а производящие только усиление, т.е. увеличение его до требуемого значений. Сюда относятся магнитные пускатели, твердотельные и электромагнитные реле и т.д.

Преобразующие органы (ПО или элементы ПЭ) — преобразуют сигнал од-ной физической природы в сигналы другой физической природы для удобства дальнейшей передачи и обработки. Например, преобразователи неэлектрических величин в электрические.

Корректирующие органы (КО или элементы КЭ) — служат для коррекции САУ с целью улучшения их работы.

Исполнительный орган (ИО или элемент ИЭ) — вырабатывает и подает на регулирующий орган объекта управления управляющее воздействие.

Перечисленные выше термины поясняет рисунок 1, на котором изображе-на система автоматического управления (САУ), объектом управления которой является водонагреватель.

Нагретая вода
Вода
R
U
tводы
Р
Управляющее воздействие Х (напряжение питания)
Задающий орган (ограничивающее сопротивление)
Возмущающее воздействие (температура окружающего воздуха)
Регулирующий орган (нагревательный элемент)
Управляемая величина У (температура воды)
Tокр

Рисунок 1 — Водонагреватель как объект управления (Р — мощность нагревательного элемента)

Чаще всего объекты управления изображают графически в виде функ-циональных блоков (рис. 2).

ЗО
PОУ
ОУ
R
U
P
tводы
tводы
tводы

U — управляющее воздействие (напряжение питания),

Р – мощность нагревательного элемента,

tокр — возмущающее воздействие (температура окружающего воздуха),

tводы — управляемая величина (температура воды),

РОУ — регулирующий орган (нагревательный элемент),

ОУ — объект управления водонагреватель),

ЗО — задающий орган (ограничивающее сопротивление).

Рисунок 2 – Водонагреватель в виде функциональных блоков

ПРЕДСТАВЛЕНИЕ САУ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЕМ И ПЕРЕДАТОЧНОЙ ФУНКЦИЕЙ

САУ может быть смоделирована (представлена) дифференциальным уравнением. При составлении дифференциального уравнения объекта необходимо прежде всего выявить физический закон (или совокупность законов), определяющий его поведение. Таким законом может быть, например, закон сохранения энергии, закон равновесия электродвижущих сил и другие основные законы физики. Математическое выражение соответствующего физического закона и является исходным дифференциальным уравнением управляемого объекта.

Очень важной категорией в теории автоматического управления и регулирования является понятие передаточной функции. Передаточная функция является своего рода математической моделью САУ, т.к. полностью характеризует динамические свойства системы.

Под передаточной функцией элемента или системы понимают отношение операторного (лапласового) изображения соответствующей выходной величины к операторному изображению входной величины.

При этом также считают, что элемент или система находились при нулевых начальных условиях, т.е. элемент или система находились в установившемся состоянии, т.е. в состоянии покоя.

Следовательно, передаточная функция определяется в виде отношения (1):

(1)

Предположим, что линейная САУ описывается дифференциальным уравнением n-го порядка с постоянными коэффициентами и это уравнение имеет следующий вид:

(2)

где — выходная величина звена (системы);

— входная величина звена (в отклонениях от состояния равновесия);

, — постоянные коэффициенты, определяющие параметры звена.

При записи дифференциального уравнения члены, содержащие выходную величину и её производные, записывают в левой части уравнения, а все остальные члены – в правой.

Запись уравнения в форме (2) неудобна, особенно когда возникает необходимость исследовать взаимодействие отдельных звеньев системы при их соединении в различные цепи. Кроме того, решения уравнений с порядком выше третьего значительно усложняется и требует применения вычислительной техники. Поэтому для упрощения решения уравнения (2) используют средства описания динамических свойств системы через преобразование Лапласа. Основанием для этого служит то обстоятельство, что такое преобразование существенно облегчает исследование сложных систем, поскольку дифференциальные уравнения заменяются алгебраическими.

Преобразование Лапласа — интегральное преобразование, связывающее функцию F(p)комплексного переменного (изображение) с функцией f(x) действительного переменного (оригинал).

Преобразованием Лапласа от функции f(x) (оргигинала) называется функция:

(3)

f(x) называют оригиналом преобразования Лапласа, а F(p) — изображением преобразования Лапласа. f(x) и F(p) однозначно определяются друг относительно друга, то есть если известен оригинал f(x), то всегда можно узнать F(p), и наоборот, если известно F(p), то всегда можете получить f(x).

Преобразование Лапласа для типовых математических операций, а также для функций, часто встречающихся в задачах автоматического регулирования можно найти в учебниках.

Пользуясь преобразованием Лапласа, представим дифференциальное уравнение (2) в операторном виде:

(3)

(4)

(5)

есть оператор дифференцирования.

Для системы, описываемой операторным уравнением (4) передаточная функция будет иметь следующий вид:

(6)

Следовательно, передаточная функция равна отношению двух полиномов:

(7)

(8)

Как видно из уравнения (6), передаточная функция является дробно-рациональной функцией от независимого переменного p. Числитель передаточной функции является левой частью уравнения элемента или системы, а знаменатель — правой частью.

(9)

называется характеристическим уравнением звена или характеристическим полиномом звена.

В системах автоматического управления степень полинома знаменателя в выражении (6) всегда выше или равна степени полинома числителя, т.е. .

Из приведенных соотношений также видно, что передаточную функцию легко получить из дифференциального уравнения простой формальной заменой производных оператором р в соответствующей, а изображение выходной величины определяется передаточной функцией и изображением входной величины:

(10)

Запись соотношений между выходом и входом звена в виде последнего уравнения (10) имеет большое практическое значение и дает значительное преимущество при исследовании САР, т.к. оно позволяет графически изобразить звено следующим образом

Рис. 3 – Графическое изображение звена

В замкнутых САР имеется сложное взаимодействие блоков: выход одного блока может служить входом другого блока и т.д. Использование понятия передаточной функции звеньев позволяет без особого труда находить связь между любыми координатами всей системы на основании знания передаточных функций соответствующих звеньев, составляющих эту систему. Не представляет трудности при этом и составление общего графического изображения ее в виде структурной системы.

Рассмотрим также в общем виде очень важное понятие коэффициента передачи (коэффициента усиления) К в установившемся режиме для звена с произвольной передаточной функцией W(р).

Если на вход звена подать постоянный входной сигнал Хвх.у, то выходной сигнал Хвых.(t) при t → ∞,будет стремится к некоторому установившемуся значению

. (11)

Тогда по определению

(12)

Или считая, что в установившемся режиме все производные становятся равными нулю, получим выражение для передаточной функции (2.9.)

(13)

Следовательно, при р = 0 передаточная функция вырождается в обычный коэффициент усиления элемента или системы.

Представим математическое описание и передаточную функцию для R-L цепи, представленной на рис.4

Рис. 4 – Схема R-L цепи

Для R-L цепи можно представить следующее дифференциальное уравнение

(14)

(15)

Решив уравнение (15) относительно тока i и подставив в уравнение (14), получим

(16)

(17)

– постоянная времени RL-цепи.

Представим уравнение (16) в операторном виде

(18)

(19)

Отсюда передаточная функция данного звена будет иметь вид

(20)

Графически это звено изобразится как показано на рис. 5.

Рис.5 – Графическое изображение звена

ЗАДАНИЕ 1

Определить передаточную функцию САУ и коэффицент передачи

2. Математическое описание систем автоматического управления

Публикую первую часть второй главы лекций по теории автоматического управления.
В данной статье рассматриваются:

2.1. Получение уравнений динамики системы. Статическая характеристика. Уравнение динамики САУ (САР) в отклонениях
2.2. Линеаризация уравнений динамики САУ (САР)
2.3. Классический способ решения уравнений динамики

Лекции по курсу «Управление Техническими Системами», читает Козлов Олег Степанович на кафедре «Ядерные реакторы и энергетические установки», факультета «Энергомашиностроения» МГТУ им. Н.Э. Баумана. За что ему огромная благодарность.

Данные лекции только готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется.

2.1. Получение уравнений динамики системы. Статическая характеристика. Уравнение динамики САУ (САР) в отклонениях

При составлении уравнений, описывающих нестационарные процессы в САУ (САР) и которые в дальнейшем будем называть уравнениями динамики, система “разбивается” на отдельные элементы (звенья), для каждого из которых не существует проблем в записи соответствующего уравнения динамики.

На рис. 2.1.1 представлено схематичное представление САУ (звена) в переменных «вход-выход», где x(t) (или u(t)) — входное воздействие, а y(t) — выходное воздействие, соответственно. Нередко входное воздействие будет называться управляющим, а выходное воздействие — регулируемой величиной (переменной).

При составлении уравнений динамики используются фундаментальные законы сохранения из разделов “Механики”, “Физики”, “Химии” и др.

Например, при описании перемещения узла какого-то механизма силового привода используются законы сохранения: момента, энергии, импульса и др… В теплофизических (теплогидравлических) системах используются фундаментальные законы сохранения: массы (уравнение неразрывности), импульса (уравнение движения), энергии (уравнение энергии) и др

Уравнения сохранения в общем случае содержат постоянные и нестационарные члены, причем при отбрасывании нестационарных членов получают так называемые уравнения статики, которые соответствуют уравнениям равновесного состояния САУ (звена). Вычитанием из полных уравнений сохранения стационарных уравнений получают нестационарные уравнения САУ в отклонениях (от стационара).

где: — стационарные значения входного и выходного воздействий;
— отклонения от станционара, соотвесвенно.

В качестве примера рассмотрим «технологию» получения уравнений динамики для механического демпфера, схематическое изображение которого представлено на рис. 2.1.2.

Согласно 2-му закону Ньютона, ускорение тела пропорционально сумме сил, действующих на тело:

где, m — масса тела, Fj — все силы воздействующие на тело (поршень демпфера)

Подставляя в уравнение (2.1.1) все силы согласно рис. 2.2, имеем:

где — сила тяжести; — сила сопротивления пружины, — сила вязконо трения (пропорциональна скорости поршеня)

Размерности сил и коэффициентов, входящих в уравнение (2.1.2):

Предполагая, что при t ≤ 0 поршень демпфера находился в равновесии, то есть

перейдем к отклонениям от стационарного состояния:
Пусть при t>0 . Тогда, подставляя эти соотношения в уравнение (2.1.2), получаем:

если , то уравнение принимает вид:

Соотношение (2.1.4) – уравнение звена (демпфера) в равновесном (стационарном) состоянии, а соотношение (2.1.5) – статическая характеристика звена – демпфера (см. рисунок 2.1.3).

Вычитая из уравнения (2.1.3) уравнение (2.1.4), получаем уравнение динамики демпфера в отклонениях:

тогда, разделив на k, имеем:

Уравнение (2.1.6) — это уравнение динамики в канонической форме, т.е. коэффициент при Δy(t) равен 1.0!

«Легко» видеть, что коэффициенты перед членами, содержащими производные, имеют смысл (и размерность!) постоянных времени. В самом деле:

Таким образом, получаем, что:
— коэффициент перед первой производной имеет размерность [c] т.е. смысл некоторой постоянной времени;
— коэффициент перед второй производной: [];
— коэффициент в правой части (): [].
Тогда уравнение (2.1.6) можно записать в операторной форме:

, что эквивалентно

где: — оператор диффренцирования;
-линейный дифференциальный оператор;
— линейный дифференциальный оператор, вырожденный в константу, равную .

Анализ уравнения (2.1.6.а) показывает, что такое уравнение имеет размерные переменные, а также размерными являются все коэффициенты уравнения. Это не всегда удобно. Кроме того, если реальная САР (САУ) состоит из многих звеньев, выходными воздействиями которых являются различные физические переменные (скорость, температура, нейтронный поток, тепловой поток и т.д.), то значения коэффициентов могут различаться на большое число порядков, что ставит серьезные математические проблемы при численном решении уравнений динамики на компьютере (поскольку числа в компьютере всегда представляются с какой-то точностью). Одним из наилучших способов избежать численных трудностей является принцип нормализации, т.е. переход к безразмерным отклонениям, которые получены нормированием отклонения на стационарное значение соответствующей переменной.

Введем новые нормированные (безразмерные) переменные:

Подставляя эти соотношения в уравнение (2.1.2), имеем:

Поддчеркнутые члены выражения в сумме дают 0 (см. 2.1.4) Перенося в левую часть члены, содержащие , и, разделив на , получаем:

где: — коэффициент усиления, причем безразмерный.

Проверим размерность коэффициента

Использованный выше «технический» прием позволяет перейти к безразмерным переменным, а также привести вид коэффициентов в уравнении динамики к легко интерпретируемому виду, т.е. к постоянным времени (в соответствующей степени) или к безразмерным коэффициентам усиления.

На рис. 2.1.4 представлены статические характеристики для механического демпфера:

Процедура нормировки отклонений позволяет привести уравнения динамики к виду:

где дифференциальные операторы.

Если дифференциальные операторы линейные, а статическая характеристика САУ (звена) – тоже линейна, то выражение (2.1.8) соответствует линейному обыкновенному дифференциальному уравнению (ОДУ).

А если – нелинейные дифференциальные операторы, или , то уравнение динамики — нелинейное. Под нелинейными действиями понимаются все математические действия, кроме сложения (+) и вычитания (-).

Пример создания модели демпфера можно посмотереть здесь: «Технология получения уравнений динамики ТАУ»

2.2. Линеаризация уравнений динамики САУ (САР)

Практически все реальные системы автоматического управления (САУ) являются нелинейными, причем нелинейность САУ может определяться различными причинами:

  1. Нелинейностью статической характеристики.
  2. Нелинейностью динамических членов в уравнениях динамики.
  3. Наличием в САУ принципиально нелинейных звеньев.

Если в замкнутой САУ (САР) нет принципиально нелинейных звеньев, то в большинстве случаев уравнения динамики звеньев, входящих в систему, могут быть линеаризованы. Линеаризация основана на том, что в процессе регулирования (т.е. САУ с обратной связью) все регулируемые величины мало отклоняются от их программных значений (иначе система регулирования или управления не выполняла бы своей задачи).

Например, если рассмотреть управление мощностью энергетического ядерного реактора, то главная задача САР — поддержание мощности на заданном (номинальном) уровне мощности. Существующие возмущения (внутренние и внешние) “отрабатываются” САР и поэтому параметры ядерного реактора незначительно отличаются от стационарных. На рис. 2.2.1 представлена временная зависимость мощности ядерного реактора, где нормированные отклонения мощности ΔN /N0 Рис. 2.2.1 – Пример изменения мощности реактора

Рассмотрим некоторое звено (или САР в целом), описание динамики которого можно представить в переменных “вход-выход”:

Предположим, что динамика данного звена описывается обыкновенным дифференциальным уравнением n-го порядка:

Перенесем в левую часть уравнения и запишем уравнение в виде%

где -– функция регулируемой переменной и ее производных, а также управляющего (входного) воздействия и его производных, причем F – обычно нелинейная функция.

Будем считать, что при t ≤ 0 САУ (звено) находилось в равновесии (в стационарном состоянии). Тогда уравнение (2.2.2) вырождается в уравнение статической характеристики:

Разложим левую часть уравнения (2.2.2) в ряд Тейлора в малой окрестности точки равновесного состояния .

Напомним, что разложение в ряд Тейлора трактуется следующим образом: если , то «простое» разложение функции в ряд Тейлора в окрестности точки будет выглядеть так:

C учетом вышеприведенного разложение принимает вид:

Предполагая, что отклонения выходных и входных воздействий незначительны, (т.е.:), оставим в разложении только члены первого порядка малости (линейные). Поскольку , получаем:

Подставляя соотношение (2.2.4) в уравнение (2.2.2), и перенося множители при у и u в разные части получаем уравнения:

Коэффициенты — постоянные коэффициенты, поэтому уравнения 2.2.5 — линейное дифференциальное с постоянными коэффициентами.

В дальнейшем нами будет часто использоваться операторная форма записи уравнений динамики:

где – оператор дифференцирования;
— линейный дифференциальный оператор степени n;
— линейный дифференциальный оператор степени m, причем обычно порядок оператора выше порядка оператора :

Уравнения (2.2.5) и (2.2.6) — уравнения динамики системы (звена) в отклонениях.

Если исходное уравнение (2.2.1) — дифференциальное уравнение в физических переменных (температура, скорость, поток и т.д.), то размерность коэффициентов может быть произвольной (любой).

Переход к нормализованным отклонениям позволяет “упорядочить” размерность коэффициентов. В самом деле, разделив уравнение (2.2.5) на начальные условия (значения в нулевой момент времени) и выполнив некоторые преобразования, получаем:

Приведение уравнения динамики САУ (звена) к нормализованному виду позволяет “унифицировать” размерность коэффициентов уравнений: ==>

Если вынести в правой части (2.2.7) коэффициент за общую скобку и разделить все уравнение на , то уравнение принимает вид:

или в операторном виде:

Линеаризация уравнений динамики и нормализация переменных позволяют привести уравнения динамики САУ (звена) к виду, наиболее удобному для использования классических методов анализа, т.е. к нулевым начальным условиям.

Пример

Выполнить линеаризацию уравнения динамики некоторой «абстрактной» САР в окрестности состояния (x0, y0), если полное уравнение динамики имеет вид:

Нелинейность полного уравнения динамики проявляется в следующем:

• во-первых, в нелинейности статической характеристики:

• во-вторых, слагаемое в левой части — чисто нелинейное, так как действие умножения является нелинейным.

Выполним процесс линеаризации исходного уравнения, динамики без разложения я ряд Тейлора, основываясь на том, что в окрестности состояния (x0, y0) нормированные отклонения управляющего воздействия и регулируемой величины намного меньше 1.

Преобразования выполним в следующей последовательности:

  1. Перейдем к безразмерным переменным (нормализованным);
  2. Выполним линеаризацию, отбросив нелинейные члены 2-го и выше порядков малости.

Перейдем к новым безразмерным переменным:

Заметим, что:
.

Подставляя значения x(t) и y(t) в исходное уравнение:

Удаляем полученного уравнения уравнения стационара: , а так же пренебрегая слагаемыми второго прядка малости: , получаем следующее уравнение:

Вводим новые обозначения:

Получаем уравнения в «почти» классическом виде:

Если в правой части вынести за общую скобку и разделить все уравнение на , то уравнение (линеаризованное) принимает вид:

Процедура нормализации позволяет более просто линеаризовать уравнение динамики, так как не требуется выполнять разложение в ряд Тейлора (хотя это и не сложно).

2.3. Классический способ решения уравнений динамики

Классический метод решения уравнений динамики САУ (САР) применим только для линейных или линеаризованных систем.

Рассмотрим некоторую САУ (звено), динамика которой описывается линейным дифференциальным уравнением вида:

Переходя к полной символике, имеем:

Выражение (2.3.2) — обыкновенное дифференциальное уравнение (ОДУ), точнее неоднородное ОДУ, так как правая часть ≠ 0.

Известно входное воздействие x(t), коэффициенты уравнения и начальные условия (т.е. значения переменных и производных при t = 0).

Требуется найти y(t) при известных начальных условиях.

где: — решение однородного дифференциального уравнения y_<част.>(t) $inline$ — частное решение. $inline$

Будем называть решение однородного дифференциального уравнения , собственным решением, так как его решение не зависит от входного воздействия, а полностью определяется собственными динамическими свойствами САУ (звена).

Вторую составляющую решения (2.3.3) будем называть , вынужденным, так как эта часть решения определяется внешним воздействием , поэтому САУ (САР или звено) “вынуждена отрабатывать” это воздействие:

Напомним этапы решения:

1) Если имеется уравнение вида , то сначала решаем однородное дифференциальное уравнение:

2) Записываем характеристическое уравнение:

3) Решая уравнение (2.3.5), которое является типичным степенным уравнением, каким-либо способом (в том числе и с помощью стандартных подпрограмм на компьютере) находим корни характеристического уравнения
4) Тогда собственное решение записывается в виде:

если среди нет повторяющихся корней (кратность корней равна 1).

Если уравнение (2.3.5) имеет два совпадающих корня, то собственное решение имеет вид:

Если уравнение (2.3.5) имеет k совпадающих корней (кратность корней равна k), то собственное решение имеет вид:

5) Вынужденную часть решения можно найти различными способами, но наиболее распространены следующие способы:
а) По виду правой части.
б) Методом вариации постоянных.
в) Другие методы…

Если вид правой части дифференциального уравнения – относительно несложная функция времени, то предпочтительным является способ а): подбор решения. .

6) Суммируя полученные составляющие (собственную и вынужденную), имеем:

7) Используя начальные условия (t = 0), находим значения постоянных интегрирования . Обычно получается система алгебраических уравнений. Решая систему, находим значения постоянных интегрирования

Пример

Найти аналитическое выражение переходного процесса на выходе звена, если

Решение. Запишем однородное ОДУ:
Характеристическое уравнение имеет вид: ; Решая, имеем: тогда:

где — неизвестные (пока) постоянные интегрирования.

По виду временной функции в правой части запишем как:

Подставляя в исходное уравнение, имеем:

Суммируя , имеем:

Используя 1-е начальное условие (при t = 0), получаем: , а из 2-го начального условия имеем:

Решая систему уравнений относительно и , имеем:
Тогда окончательно:

Что бы проверить результ, выполним моделирование процесса в SimInTech, для этого преобразуем исходное уравнение к виду:

Создадим модель SimInTech, содержащую исходное динамическое уравнение и полученное аналитическое решение, и выведем результаты на один график (см. рис. 2.3.1).


Рис. 2.3.1 – структурная схема для проверки решения

На рис. 2.3.2 приведено решение по вышеприведенному соотношению и численное решение задачи в среде SimInTech (решения совпадают и линии графиков «наложены» друг на друга).


источники:

http://poisk-ru.ru/s32525t17.html

http://habr.com/ru/post/506984/