Дифференциальное уравнение свободных затухающих колебаний пружинного маятника

Свободные колебания пружинного маятника. Общие сведения

Цель работы. Ознакомиться с основными характеристиками незатухающих и затухающих свободных механических колебаний.

Задача. Определить период собственных колебаний пружинного маятника; проверить линейность зависимости квадрата периода от массы; определить жесткость пружины; определить период затухающих колебаний и логарифмический декремент затухания пружинного маятника.

Приборы и принадлежности. Штатив со шкалой, пружина, набор грузов различной массы, сосуд с водой, секундомер.

1. Свободные колебания пружинного маятника. Общие сведения

Колебаниями называются процессы, в которых периодически изменяется одна или несколько физических величин, описывающих эти процессы. Колебания могут быть описаны различными периодическими функциями времени. Простейшими колебаниями являются гармонические колебания – такие колебания, при которых колеблющаяся величина (например, смещение груза на пружине) изменяется со временем по закону косинуса или синуса. Колебания, возникающие после действия на систему внешней кратковременной силы, называются свободными.

Рассмотрим одну из простейших колебательных систем – пружинный маятник, представляющий собой груз массой m, подвешенный на абсолютно упругой пружине с коэффициентом жесткости k
(рис. 1). Пусть l0 – длина пружины без подвешенного к ней груза. При подвешивании груза под действием силы тяжести пружина растянется на x1 так, что маятник будет находиться в положении равновесия вследствие равенства модулей силы тяжести mg и упругой силы Fупр: mg = kx1, стремящейся вернуть груз в положение равновесия (полагается, что деформации пружины идеально упругие и подчиняются закону Гука).

Если груз вывести из положения равновесия, отклонив на величину x, то сила упругости возрастает: Fупр = – kx2= – k(x1 + x). Дойдя до положения равновесия, груз будет обладать отличной от нуля скоростью и пройдет положение равновесия по инерции. По мере дальнейшего движения будет увеличиваться отклонение от положения равновесия, что приведет к возрастанию силы упругости, и процесс повторится в обратном направлении. Таким образом, колебательное движение системы обусловлено двумя причинами: 1) стремлением тела вернуться в положении равновесия и 2) инерцией, не позволяющей телу мгновенно остановиться в положении равновесия. В отсутствии сил трения колебания продолжались бы сколь угодно долго. Наличие силы трения приводит к тому, что часть энергии колебаний переходит во внутреннюю энергию и колебания постепенно затухают. Такие колебания называются затухающими.

Незатухающие свободные колебания

Сначала рассмотрим колебания пружинного маятника, на который не действуют силы трения – незатухающие свободные колебания. Согласно второму закону Ньютона c учетом знаков проекций на ось X

(1)

Из условия равновесия смещение, вызываемое силой тяжести: . Подставляя в уравнение (1), получим: . Разделив правую и левую часть этого уравнения на m и принимая, что a = d2x/dt2, получим дифференциальное уравнение

. (2)

Это уравнение называется дифференциальным уравнением гармонических колебаний пружинного маятника. Из этого уравнения следует, что после прекращения внешнего воздействия, приводящего к первоначальному отклонению системы от положения равновесия, движение груза обусловлено только действием упругой силы (сила тяжести вызывает постоянное смещение).

Общее решение однородного дифференциального уравнения второго порядка (2) имеет вид

. (3)

Данное уравнение называется уравнением гармонических колебаний. Наибольшее отклонение груза от положения равновесия А0 называется амплитудой колебаний. Величина , стоящая в аргументе косинуса, называется фазой колебания. Постоянная φ0 представляет собой значение фазы в начальный момент времени (t = 0) и называется начальной фазой колебаний. Величина

(4)

есть круговая или циклическая частота собственных колебаний, связанная с периодом колебаний Т соотношением . Период колебаний определяется

. (5)

Рассмотрим свободные колебания пружинного маятника при наличии силы трения (затухающие колебания). В простейшем и вместе с тем наиболее часто встречающемся случае сила трения пропорциональна скорости υ движения:

где r – постоянная, называемая коэффициентом сопротивления. Знак минус показывает, что сила трения и скорость имеют противоположные направления. Уравнение второго закона Ньютона в проекции на ось Х при наличии упругой силы и силы трения

Данное дифференциальное уравнение с учетом υ = dx/dt можно записать

, (8)

где коэффициент затухания; – циклическая частота свободных незатухающих колебаний данной колебательной системы, т. е. при отсутствии потерь энергии (β = 0). Уравнение (8) называют дифференциальным уравнением затухающих колебаний.

Чтобы получить зависимость смещения x от времени t, необходимо решить дифференциальное уравнение (8). В случае малых затуханий () решение уравнения можно записать следующим образом:

, (9)

где А0 и φ0 – начальная амплитуда и начальная фаза колебаний;
– циклическая частота затухающих колебаний при ω >> ω ≈ ω0.

Движение груза в этом случае можно рассматривать как гармоническое колебание с частотой ω и переменной амплитудой, меняющейся по закону:

. (10)

На графике функции (9), рис. 2, пунктирными линиями показано изменение амплитуды (10) затухающих колебаний.

Рис. 2. Зависимость смещения х груза от времени t при наличии силы трения

Для количественной характеристики степени затухания колебаний вводят величину, равную отношению амплитуд, отличающихся на период, и называемую декрементом затухания:

. (11)

Часто используют натуральный логарифм этой величины. Такой параметр называется логарифмическим декрементом затухания:

. (12)

Если за время t амплитуда уменьшается в n раз, то из уравнения (10) следует, что

. (13)

Отсюда для логарифмического декремента получаем выражение

. (14)

Если за время t амплитуда уменьшается в е раз (е = 2,71 – основание натурального логарифма), то система успеет совершить число колебаний

. (15)

Следовательно, логарифмический декремент затухания – величина, обратная числу колебаний, совершаемых за то время, за которое амплитуда уменьшается в е раз. Чем больше θ, тем быстрее происходит затухание колебаний.

2. Методика эксперимента и экспериментальная установка

Рис. 3. Схема установки

Установка состоит из штатива 1 с измерительной шкалой 2. К штативу на пружине 3 подвешиваются грузы 4 различной массы. При изучении затухающих колебаний в задании 2 для усиления затухания используется кольцо 5, которое помещается в прозрачный сосуд 6 с водой.

В задании 1 (выполняется без сосуда с водой и кольца) в первом приближении затуханием колебаний можно пренебречь и считать гармоническими. Как следует из формулы (5) для гармонических колебаний зависимость T 2 = f (m) – линейная, из которой можно определить коэффициент жесткости пружины k по формуле

, (16)

где – угловой коэффициент наклона прямой T 2 от m.

Задание 1. Определение зависимости периода собственных колебаний пружинного маятника от массы груза.

1. Определить период колебаний пружинного маятника при различных значениях массы груза m. Для этого с помощью секундомера для каждого значения m трижды измерить время t полных n колебаний (n ≥10) и по среднему значению времени вычислить период . Результаты занести в табл. 1.

2. По результатам измерений построить график зависимости квадрата периода T2 от массы m. Из углового коэффициента графика определить жесткость пружины k по формуле (16).

Результаты измерений для определения периода собственных колебаний

, с

, с

Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания

Рассмотрим свободные затухающие коле­бания— колебания, амплитуда которых из-за потерь энергии реальной колебатель­ной системой с течением времени умень­шается. Простейшим механизмом умень­шения энергии колебаний является ее пре­вращение в теплоту вследствие трения в механических колебательных системах,

а также омических потерь и излучения электромагнитной энергии в электриче­ских колебательных системах.

Закон затухающих колебаний опреде­ляется свойствами колебательных систем. Обычно рассматривают линейные систе­мы— идеализированные реальные систе­мы, в которых параметры, определяющие физические свойства системы, в ходе про­цесса не изменяются. Линейными система­ми являются, например, пружинный маят­ник при малых растяжениях пружины (когда справедлив закон Гука), колеба­тельный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения. Различ­ные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что по­зволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моде­лирование, в том числе и на ЭВМ.

Дифференциальное уравнение свобод­ных затухающих колебанийлинейной системы задается в виде

где s — колеблющаяся величина, описы­вающая тот или иной физический про­цесс, d=const — коэффициент затухания,w0 — циклическая частота свободных не­затухающих колебаний той же колебатель­ной системы, т. е. при d=0 (при отсутствии потерь энергии) называется собственной частотойколебательной системы.

Решение уравнения (146.1) рассмот­рим в виде

где u=u(t). После нахождения первой и второй производных выражения (146.2) и подстановки их в (146.1) получим

Решение уравнения (146.3) зависит от знака коэффициента перед искомой вели­чиной. Рассмотрим случай, когда этот ко­эффициент положителен:

w 2 =w 2 0-d 2 (146.4)

(если (w 2 -d 2 )>0, то такое обозначение мы вправе сделать). Тогда получим урав­нение типа (142.1)

решением которого является функция и=А0cos(wt+j)

Таким образом, решение уравнения (146.1) в случае малых затуханий (d 2 2 0)

— амплитуда затухающих колебаний

a0— начальная амплитуда. Зависимость (146.5) показана на рис.208 сплошной линией, а зависимость (146.6) — штри­ховыми линиями. Промежуток времени t=1/d, в течение которого амплитуда за­тухающих колебаний уменьшается в е раз, называется временем релаксации.

Затухание нарушает периодичность колебаний, поэтому затухающие колеба­ния не являются периодическими и, строго говоря, к ним неприменимо понятие перио­да или частоты. Однако если затухание мало, то можно условно пользоваться по­нятием периода как промежутка времени между двумя последующими максимума­ми (или минимумами) колеблющейся фи­зической величины (рис. 208). Тогда пери­од затухающих колебаний с учетом формулы

Если A(t) и A(t+T)— амплитуды двух последовательных колебаний, соответству­ющих моментам времени, отличающимся на период, то отношение

называется декрементом затухания, а его

— логарифмическим декрементом затуха­ния;Ne — число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания — постоянная для данной колебательной системы величина.

Для характеристики колебательной системы пользуются понятием добротно­стиQ, которая при малых значениях лога­рифмического декремента равна

(так как затухание невелико (d 2 2 0), то Т принято равным Т0).

Из формулы (146.8) следует, что до­бротность пропорциональна числу колеба­ний Ne, совершаемых системой за время релаксации.

Применим выводы, полученные для свободных затухающих колебаний линей­ных систем, для колебаний различной фи­зической природы — механических (в ка­честве примера рассмотрим пружинный маятник) и электромагнитных (в качестве примера рассмотрим электрический коле­бательный контур).

1. Свободные затухающие колебания пружинного маятника.Для пружинного маятника (см. § 142) массой т, совершаю­щего малые колебания под действием уп­ругой силы F=-kx, сила трения про­порциональна скорости, т. е.

где r — коэффициент сопротивления;знак минус указывает на противоположные на­правления силы трения и скорости.

При данных условиях закон движения маятника будет иметь вид

Используя формулу w0=Ök/m (см. (142.2)) и принимая, что коэффици­ент затухания

получим идентичное уравнению (146.1) дифференциальное уравнение затухающих колебаний, маятника:

Из выражений (146.1) и (146.5) вытекает, что маятник колеблется по закону

х=A0е — d t cos(wt+j) с частотой w=Ö(w 2 0-r2/4m 2 ) (см. (146.4)).

Добротность пружинного маятника,

согласно (146.8) и (146.10), Q=1/rÖkm.

Затухающие колебания

ЗАТУХАЮЩИЕ КОЛЕБАНИЯ — колебания с постоянно убывающей со временем амплитудой.

Свободные колебания реальных систем всегда затухают. Затухание обусловлено в основном трением (механические системы) и сопротивлением ( в электромагнитных колебательных контурах).

Колебательная система называется линейной, если её свойства не меняются при колебаниях, то есть такие параметры, как сила тяжести, упругость пружины, сопротивление, емкость, индуктивность не зависят ни от смещения, ни от скорости, ни от ускорения колеблющейся величины. В дальнейшем мы будем рассматривать только линейные системы.

Уравнения затухающих колебаний

Получим дифференциальное уравнение свободных затухающих колебаний на примере реального пружинного маятника, совершающего колебания в среде с сопротивлением (простейший случай — трение о воздух). Пусть масса маятника m, коэффициент упругости пружины k, сила сопротивления, действующая на маятник, F = — bv, v — скорость маятника, b — коэффициент сопротивления среды, в которой находится маятник. Так как мы рассматриваем только линейные системы, b = const, k = const. x — смещение маятника от положения равновесия.

Второй закон


1643 — 1727

в нашем случае запишется так:

Это уравнение и есть дифференциальное уравнение свободных затухающих колебаний пружинного маятника. Его, однако, принято записывать в следующем, так называемом каноническом виде:

— коэффициент затухания, — собственная частота свободных (незатухающих) колебаний пружинного маятника, то, что раньше мы обозначали просто w .

Уравнение затухающих колебаний в таком (каноническом) виде описывает затухающие колебания всех линейных систем; конкретная колебательная система отличается только выражениями для b и j0 .


источники:

http://allrefrs.ru/1-25816.html

http://koi.tspu.edu.ru/waves/ch2_1.htm