Дифференциальное уравнение теплопроводности для случая одномерного температурного поля

Тема 9.Теплопроводность

9.1. Температурное поле. Уравнение теплопроводности

Будем рассматривать только однородные и изотропные тела, т.е. такие тела, которые обладают одинаковыми физическими свойствами по всем направлениям. При передачи теплоты в твердом теле, температура тела будет изменяться по всему объему тела и во времени. Совокупность значений температуры в данный момент времени для всех точек изучаемого пространства называется температурным полем:

где:t –температура тела;

x,y,z -координаты точки;

Такое температурное поле называется нестационарным ∂t/∂ i ¹ 0, т.е. соответствует неустановившемуся тепловому режиму теплопроводности

Если температура тела функция только координат и не изменяется с течением времени, то температурное поле называется стационарным:

t = f(x,y,z) , ∂t/∂ i = 0 (9.2)

Уравнение двухмерного температурного поля:

для нестационарного режима:

t = f(x,y,τ) ; ∂t/∂z = 0 (9.3)

для стационарного режима:

t = f(x,y) , ∂t/∂z = 0; ∂t/∂ i = 0 (9.4)

Уравнение одномерного температурного поля:

для нестационарного режима:

t = f(x,τ) ; ∂t/∂y = ∂t/∂z = 0; ∂t/∂ i ¹ 0 (9.5)

для стационарного режима:

t = f(x) ; ∂t/∂y = ∂t/∂z = 0; ∂t/∂ i = 0 (9.6)

Изотермической поверхностью называется поверхность тела с одинаковыми температурой.

Рассмотрим две изотермические поверхности (Рис.9.1) с температурами t и t + ∆t. Градиентом температуры называют предел отношения изменения температуры∆t к расстоянию между изотермами по нормали ∆n, когда стремится к нулю:

Температурный градиент-это вектор, направленной по нормали к изотермической поверхности в сторону возрастания температуры и численно равный производной температуры t по нормалиn:

Количество теплоты, проходящее через изотермическую поверхность F в единицу времени называется тепловым потоком – Q, [Вт=Дж/с].

Тепловой поток, проходящий через единицу площади называют плотностью теплового потока – q = Q / F, [Вт/м 2 ]

Для твердого тела уравнение теплопроводности подчиняется закону Фурье:

Тепловой поток, передаваемая теплопроводностью, пропорциональна градиенту температуры и площади сечения, перпендикулярного направлению теплового потока.

q = -λ ∙ ∂t/∂n ∙no = -λ∙gradt , (9.9)

где: q – вектор плотности теплового потока;

Численное значение вектора плотности теплового потока равна:

q = -λ∙ ∂t/∂n = -λ∙|gradt| , (9.10)

Коэффициент теплопроводности является физическим параметром вещества, характеризующим способность тела проводит теплоту, Она зависит от рода вещества, давления и температуры. Также на её величину влияет влажность вещества. Для большинства веществ коэффициент теплопроводности определяются опытным путем и для технических расчетов берут из справочной литературы.

Вывод уравнения теплопроводности для одномерного случая

ВВЕДЕНИЕ

Уравнение диффузии или уравнение теплопроводности представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.

Математически уравнение диффузии и уравнение теплопроводности не различаются, и применение того или иного названия ограничено только конкретным приложением, причем второе представляется более частным, так как можно говорить, что в этом случае речь идет о диффузии тепловой энергии.

В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоемкость и теплопроводность среды (также в общем случае неоднородной).

Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.

Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность

скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.

Уравнение параболического типа. Основные уравнения

Уравнения параболического типа наиболее часто встречаются при изучении процессов теплопроводности и диффузии. К этим уравнениям приводятся также задачи о движении вязкой жидкости, например, нефти.

Обсудим процесс распространения тепла в неравномерно нагретом твердом теле. Если тело нагрето неравномерно, то в нем происходит передача тепла из мест с более высокой температурой в места с более низкой температурой. Процесс может быть описан функцией u = u (x, y, z, t) дающей температуру u в каждой точке M (x, y, z) тела и в любой момент времени t .

Примем следующую модель процесса: происходит механический перенос тепла от более нагретых частей тела к менее нагретым; все тепло идет на изменение температуры тела; свойства тела от температуры не зависят. Идеализация явления состоит в том, что мы будем изучать процесс, не касаясь его молекулярной природы, а также иных проявлений. Опишем процесс математически для одномерного тела.

Вывод уравнения теплопроводности для одномерного случая

Рассмотрим однородный стержень длины l, теплоизолированный с боков (через поверхность не происходит теплообмена с окружающей средой) и достаточно тонкий, чтобы в любой момент времени температуру во всех точках поперечного сечения можно было считать одинаковой. Расположим ось Ox так, чтобы один конец стержня совпадал с точкой x = 0, а другой — с точкой x = l (рис. 1).

Чтобы найти функцию u=u(x, t), надо составить дифференциальное уравнение, которому она удовлетворяет.

При выводе дифференциального уравнения теплопроводности воспользуемся следующими физическими закономерностями, связанными с распространением тепла.

1. Количество тепла DQ, которое необходимо сообщить однородному телу, чтобы повысить его температуру на Du , равно

где c — удельная теплоемкость, m — масса тела.

Для стержня имеем

где ρ — плотность материала стержня; S — площадь его поперечного сечения.

2. Перенос тепла в теле подчиняется эмпирическому закону Фурье количество тепла ΔQ, протекающее за время Δt через площадку ΔS в направлении нормали к этой площадке, равно

где k — коэффициент внутренней теплопроводности (зависит от точки и не зависит от направления, если тело изотропно).

Для стержня имеем

, (2)

где коэффициент k будем считать постоянным в силу предположения о его однородности. Если стержень неоднороден, то k = k(x).

3. Если внутри тела есть источники тепла, то выделение тепла можно характеризовать плотностью тепловых источников, т.е. количеством выделяемого (или поглощаемого) тепла в единицу времени в единице объема.

Обозначим через F (x, t), плотность источников в точке x рассматриваемого стержня в момент t. Тогда в результате действия этих источников на участке (x, x +Δx) за промежуток Δt будет выделено количество тепла

(3)

И, наконец, воспользуемся законом сохранения энергии.

Итак, приступим к выводу уравнения. Выделим элементарный участок стержня, заключенный между сечениями x = x1 и x = x2 (x2 — x1 = Δx), и составим уравнение теплового баланса на отрезке [x1, x2]. Так как боковая поверхность стержня теплоизолирована, то элемент стержня может получать тепло только через поперечные сечения. Согласно (2) количество тепла, прошедшее через сечение x = x1, равно

через сечение x = x2:

Найдем приток тепла в элемент стержня:

(К разности частных производных применена теорема Лагранжа).

Кроме того, в результате действия внутренних источников тепла на этом участке в течение времени Δt выделится количество тепла согласно (3)

Все тепло за время Δt пойдет на изменение температуры выделенного элемента стержня на величину Δu .И поэтому сообщенное количество тепла ΔQ , с другой стороны, может быть найдено согласно формуле (1):

В силу закона сохранения энергии имеем равенство

Сокращая на общий множитель SΔxΔt , получим уравнение

Введя обозначения , придем к уравнению

(4)

Это и есть искомое дифференциальное уравнение распространения тепла в однородном стержне. Уравнение (4) называют уравнением теплопроводности, в котором постоянную a² температуропроводности. Коэффициент a² называют коэффициентом имеет размерность м² /с.

Уравнение (4) является линейным неоднородным уравнением параболического типа.

Вывод дифференциального уравнения распространения тепла внутри тела, отнесенного к пространственной системе координат, основан на тех же физических законах. Поэтому, ограничившись выводом уравнения для простейшего случая – одномерного, лишь приведем уравнение для трехмерного пространства.

Процесс распределения температуры u = u (x, y, z, t) в изотропном теле описывается уравнением

которое кратко записывается так:

(6)

где — оператор Лаплас

Уравнения теплопроводности и температурного поля

Количество тепла Q1 (в ккал), распространяющееся путем теплопроводности в направлении х, в течение единицы времени составит:

Минус в выражении (1.4) означает, что для получения положительной величины Q1 температура в направлении х должна уменьшаться, а не возрастать. Величина dt/dx, называемая градиентом температуры, выражается в град/м; λ — представляет коэффициент теплопроводности материала в ккал/м·ч·град.

При неустановившихся условиях количество тепла Q1, распространяющееся в направлении х, изменяется, что связано с поглощением или отдачей тепла частицами материальной среды при изменении их температуры с течением времени т (т. е. наличии величины dt/dx≠0.

Изменение потока тепла dQ1/dx пропорционально теплоемкости материала сγ (с — удельная теплоемкость в ккал/кг·град; γ — объемный вес материала в кг/мг); тогда

Знак минус в правой части уравнения означает, что повышение температуры материала связано с поглощением им тепла и соответствующим уменьшением теплового потока Q1.

Величина изменения потока тепла Q1 в направлении х может быть получена также дифференцированием уравнения (1.4), т. е.

При отсутствии внутренних источников или стоков тепла, изменение величины теплового потока связано только с поглощением тепла материалом, и выражения (1,5) и (1.6) должны быть равны. Из этого равенства выводится дифференциальное уравнение теплопроводности при одномерном распространении тепла в направлении х, а именно:

Это выражение известно как дифференциальное уравнение Фурье. Величина λ/cγ называется коэффициентом температуропроводности материала, имеет кинематическую размерность, в которую не входят измерители массы и энергии, и характеризует скорость перераспределения температуры, выражаемую обычно в м 2 /ч или см 2 /сут при нагреве или охлаждении материальной среды.

Материалы и конструкции с высоким коэффициентом температуропроводности быстро нагреваются или охлаждаются до температуры, соответствующей равновесному состоянию с окружающей средой.

В самом общем виде, при неустановившемся распространении тепла по всем трем осям координат, дифференциальное уравнение теплопроводности приобретает трехмерный вид:

Путемч интегрирования одномерного (1.7), двухмерного или трехмерного уравнения теплопроводности могут быть получены любые конкретные решения, раскрывающие закономерности распространения тепла в материальных средах, в частности, ограждающих конструкциях зданий.

Чтобы получить из множества возможных конкретное решение, соответствующее определенному рассматриваемому процессу распространения тепла, необходимо располагать дополнительными условиями, не содержащимися в исходном дифференциальном уравнении. Эти дополнительные условия, которые вместе с исходным уравнением однозначно определяют все особенности рассматриваемого процесса, называются условиями однозначности 1 .

Условия однозначности разделяются на временные (характеризующие рассматриваемый физический процесс во времени) и пространственные, относящиеся к поверхностям, ограничивающим изучаемый объект или конструкцию, и особенностям физического процесса, происходящего на этих граничных поверхностях.

Различают три вида граничных условий:

  • 1) граничное условие I рода, устанавливающее распределение температуры на поверхности и ее изменения во времени;
  • 2) граничное условие II рода, устанавливающее величину потока тепла, проходящего через поверхность, и его изменения во времени;
  • 3) граничное условие III рода, определяющее температуру окружающей среды и закон теплообмена между поверхностью и этой средой.

В строительной теплофизике обычно задаются граничные условия III рода, устанавливаемые значениями температуры среды t и коэффициентов теплообмена α 2 .

При рассмотрении теплопередачи в однородной среде и в установившихся условиях (когда dt/dτ=0), временные условия исключаются и значение имеют только пространственные.

В этих случаях, поскольку а≠0, уравнение (1.7а) приобретает вид:

Уравнение относится к температурному полю в установившихся условиях. Выражение (1.8) известно как уравнение Лапласа. Физический смысл этого уравнения состоит в том, что сумма изменений количеств тепла, поступающего к любой рассматриваемой точке конструкции, равна нулю. Следовательно, температуры ее неизменны и имеют установившиеся значения, отвечающие постоянным условиям воздействий внешней среды, окружающей конструкцию. При практических расчетах температурного поля проектируемых конструкций на основе уравнения (1.8) расчетные температуры внешней среды принимаются соответствующими возможности завершения процесса предельного охлаждения рассматриваемой конструкции. Этот процесс происходит постепенно и требует определенного времени: незначительного для легких конструкций и длительного — для массивных, поэтому расчетные значения температуры наружного воздуха в наиболее холодные зимние периоды зависят от степени массивности конструкции и связаны с возможностью более или менее длительной стабилизации теплового состояния во времени.

Для многих практических случаев достаточно исследования плоского температурного поля (в плане или разрезе конструкции). Для двумерных условий уравнение (1.8) имеет вид:

Исследование на основе уравнения (1.8а) температурных полей неоднородных в теплофизическом отношении облегченных конструкций (панелей с контурными ребрами, сопряжений крупных элементов ограждающих конструкций и т. д.) имеет весьма важное значение при проектировании индустриальных конструкций зданий, особенно в достаточно суровых климатических условиях, когда низкие температуры наружного воздуха длительны во времени и вызывают полное охлаждение, для которого характерно неизменное установившееся распределение предельно низких температур.

Порядок проведения подобных практических расчетов и применение для этих целей счетно-решающих устройств типа электроинтегратора, изложены далее в гл. IV.

Дифференциальное уравнение Фурье (1.7) в обобщающем смысле является уравнением нестационарного поля любого потенциала переноса (в данном случае — поля потенциала переноса тепла, т. е. температуры). С определенными ограничениями это уравнение может быть использовано и для изучения процессов влагообмена, происходящих в материальных системах при неизменной температуре.

Если рассматривать какую-либо материальную систему, например, ограждающую конструкцию, выполненную из влажного капиллярно-пористого материала и находящуюся в изотермической воздушной среде 3 , то за потенциал переноса влаги может быть принято влагосодержание материала (со, г/кг). Уравнение (1.7), записанное применительно к исследованию одномерного поля потенциала переноса влаги называют уравнением влагопроводности. Оно имеет вид:

где ω — влагосодержание материала (часто выражаемое через весовую влажность материала); аm — коэффициент нестационарной влагопроводности 4 , зависящий от природы материала и его влажностного состояния.

Уравнение влагопроводности, в частности, используется для обоснования простейших приближенных сравнительных расчетов длительности естественной сушки ограждающих конструкций из капиллярно-пористых материалов.

Примечания

1. Иногда условия однозначности называют краевыми условиями.

2. В теплотехнической литературе эти коэффициенты часто называют коэффициентами теплоотдачи, имея в виду особенности теплообмена материальных систем нагретых выше температуры окружающей среды.

3. То есть в среде с неизменной постоянной температурой.

4. Аналог коэффициента температуропроводности:


источники:

http://lektsii.org/16-28228.html

http://www.arhplan.ru/reference/thermophysics/uravneniya-teploprovodnosti-i-temperaturnogo-polya