Дифференциальное уравнение теплопроводности описывает влияние на интенсивность

Дифференциальное уравнение теплопроводности

При решении задач, связанных с нахождением температурного по­ля, необходимо иметь дифференциальное уравнение тепло­проводности.

Температурное поле – совокупность значений температур во всех точках рассматриваемого пространства для каждого момента времени .

Для упрощения вывода этого дифференциального уравнения сде­ланы следующие допущения:

– физические параметры постоянны;

– деформация рассматриваемого объема, связанная с изменением температуры, является очень малой величиной по сравнению с самим объемом;

– внутренние источники теплоты в теле распределены равномерно.

В основу вывода дифференциального уравнения теплопроводности положен закон сохранения энергии в формулировке:

количество теплоты dQ, введенное в элементарный объем извне за время теп­лопроводностью, а также от внутренних источников, равно изменению внутренней энергии или энтальпии вещества (в зависимости от рассмо­трения изохорного или изобарного процесса), содержащегося в элементарном объеме.

(*)

где dQ1 – количество теплоты, Дж, введенное в элементарный объем теплопроводностью за время ;

dQ2 – количество теплоты, Дж, которое за время выделилось в элементарном объем за счет внутренних источников;

dQ – изменение внутренней энергии или энтальпии вещества, содержащегося в элементарном объеме , за время dτ.

Для нахождения составляющих выделим в теле элементарный параллелепипед со сторонами dx, dy, dz. Параллелепипед расположен так, чтобы его грани были параллельны соответствующим координатным плоскостям.

Количество теплоты, которое подводится к граням элементарного объема за время в направлении осей Оx, Оy, Оz обозначим соответственно dQx, dQy, dQz.

Количество теплоты, которое будет отводиться через противоположные грани в тех же направлениях, обозначим соответственно dQx+dx, dQy+dy, dQz+dz.

Количество теплоты, подведенное к грани dydz=dF в направлении оси Ох за время , составляет ,

где qx – проекция плотности теплового потока на направление нормали к указанной грани.

Количество теплоты, отведенное через противоположную грань элементарного параллелепипеда в направлении оси Ох

.

Разница количеств теплоты, подведенного к элементарному параллелепипеду и отведенного от него за время в направлении оси Ох

Функция является непрерывной в рассматриваемом интервале dx и может быть разложена в ряд Тейлора

Если ограничиться двумя первыми членами ряда:

Аналогично можно найти количество теплоты, подводимое к элементарному объему в направлениях двух других координатных осей Oy и Oz.

Количество теплоты dQ, подводимое теплопроводностью к рассматриваемому объему, будет равно

Обозначим через , Вт/м 3 , ко­личество теплоты, выделяемое внутренними источниками в единице объема в единицу времени.

Тогда

Третья составляющая уравнения (*) найдется в зависимости от характера термодинамического процесса изменения системы.

В случае рассмотрения изохорного процесса вся теплота, под­веденная к элементарному объему, уйдет на изменения внутренней энер­гии вещества, заключенного в этом объеме, т.е.

где – изохорная теплоемкость единицы массы, Дж/(кг·К);

ρ – плотность вещества, кг/м 3 .

Подставляя полученные выражения в уравнение (*), получим

,

Проекции вектора плотности теплового потока на координатные оси Ох, Оу, Оz определяются законом Фурье:

; ; .

где λ – коэффициент теплопроводности (физический параметр вещества, характеризующий способность проводить теплоту), Вт/(м∙°С).

Подставляя полученные выражения проекций вектора плотности теплового потока в уравнение (*), опуская индекс при с, ипринимая теплофизические характеристики постоянными, получим

(***)

Выражение (***) называется дифферен­циальным уравнением теплопроводности. Оно устанавливает связь меж­ду временнЫм и пространственным изменением температуры в любой точке тела.

и

Тогда выражение (***) имеет вид:

Выражение (***) в цилиндрической системе координат:

где r – радиус-вектор;

φ – полярный угол;

Коэффициент пропорциональности а, м 2 /с, назы­вается коэффициентом температуропроводности и явля­ется физическим параметром вещества.

Он характеризует скорость изменения темпера­туры, т.е. являет­ся мерой теплоинерционных свойств тела. Поэтому при прочих равных условиях выравнивание температур во всех точках пространства будет происходить быстрее в том теле, которое обладает бόльшим коэффи­циентом температуропроводности.

Коэффициент температуропроводно­сти зависит от природы вещества.

Например, жидкости и газы обладают большой тепловой инерционностью и, следовательно, малым коэффи­циентом температуропроводности.

Металлы обладают малой тепловой инерционностью, т.к. они имеют большой коэффициент температу­ропроводности.

Если система тел не содержит внутренних источ­ников теплоты (qυ=0), то

Если имеются внутренние источники теплоты, но температурное поле соответствует стационарному состоянию, т.е. , то

При рассмотрении изобарного процесса вся теплота, подведен­ная к объему, уйдет на изменение энтальпии вещества, заключенного в этом объеме:

(**)

Если рассматривать энтальпию единицы объема как , то

где сp – изобарная теплоемкость единицы массы, Дж/(кг·К).

В итоге (**) имеет вид:

|следующая лекция ==>
СПОСОБЫ ПЕРЕНОСА ТЕПЛОТЫ|Условия однозначности для процессов теплопроводности. Дифференциальное уравнение теплопроводности описывает явление теплопро­водности в самом общем виде

Дата добавления: 2016-02-09 ; просмотров: 4572 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Учебное пособие: Дифференциальное уравнение теплопроводимости

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ТЕПЛОПРОВОДНОСТИ

Общие вопросы теории теплообмена

Неравномерное распределение температуры в металле, характерное для сварки и других видов местной тепловой обработки металла, неустойчиво. С течением времени температура в неравномерно нагретом теле выравнивается, причем более нагретые части отдают тепло непосредственно соприкасающимся с ними менее нагретым частям. Такой энергетический обмен между взаимодействующими телами или их отдельными частями с неодинаковой температурой называется теплообменом или теплопередачей. Количество энергии, переданной частицами более горячего тела частицам более холодного, называется количеством теплоты, или просто теплотой. При этом теплота переходит от точек с более высокой температурой к точкам с более низкой температурой, если процесс протекает в одном теле. При теплообмене между различными телами это положение также сохраняется, т. е. теплота переходит от более нагретых к более холодным телам. Таким образом, конечный результат теплообмена между ограниченными телами или частями одного и того же тела заключается в уравнивании их температур, после чего процесс прекращается.

Понятие «теплообмен» охватывает совокупность всех явлений, при которых имеет место перенос некоторого количества теплоты из одной части пространства в другую в твердых, жидких и газообразных телах. Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса разнородных явлений. Для удобства принято делить перенос теплоты на простейшие виды: теплопроводность, конвекцию, теплообмен излучением, или радиацией. Эти процессы глубоко различны по своей природе и характеризуются различными законами. Соответственно этому и строится математическая теория описания каждой формы теплообмена, со своими уравнениями, своими математическими методами, аналитическими или численными, или методами аналогий.

Теплопроводность характеризуется тем, что ее действие связано с наличием вещественной среды и что теплообмен может происходить только между такими частицами тела (молекулами и атомами), которые находятся в непосредственной близости друг от друга. Явление это можно представить себе так, что теплота переходит от одной частицы к другой, однако при этом сами частицы не перемещаются. В чистом виде процесс теплопроводности наблюдается в твердых телах.

Конвекция наблюдается тогда, когда материальные частицы какого-нибудь тела изменяют свое положение в пространстве и при этом переносят содержащуюся в них теплоту. Это явление имеет место в жидкостях и газах и всегда сопровождается теплопроводностью, т. е. передачей теплоты от одной частицы к соседней, если только во всей текущей массе нет полного равенства температур. Теплообмен между средой и стенкой называют теплоотдачей.

Теплообмен излучением характеризуется отсутствием контакта между телами, обменивающимися теплотой. Примером может служить излучение Солнцем теплоты на Землю через космическое пространство, в котором, как известно, плотность вещества ничтожна. Явление теплового излучения возникает у поверхности или внутри тела в результате сложных молекулярных и атомных возмущений. При этом некоторая часть внутренней энергии тела преобразуется в электромагнитные волны (или в другом представлении в фотоны — кванты энергии) и уже в такой форме передается через пространство.

Все эти различные формы переноса теплоты не обособлены и в чистом виде встречаются лишь на отдельных участках пути прохождения теплоты. В большинстве случаев один вид теплообмена сопутствует другому и разделить их между собой очень трудно.

Одним из законов, лежащих в основе аналитической теории теплопроводности, является гипотеза Фурье, связывающая перенос теплоты внутри тела с температурным состоянием в непосредственной близости от рассматриваемого места. Поэтому при изучении теории теплопроводности прежде всего необходимо установить основные понятия, такие, как температурное поле, градиент температуры, вектор теплового потока.

Температурным полем называется совокупность значений температуры во всех точках рассматриваемого пространства (тела) в каждый фиксированный момент времени.

Температура является скалярной величиной, так как она характеризует тепловое состояние в любой точке тела, определяя степень его нагретости. Температуре нельзя приписать какое-либо направление и поэтому температурное поле является скалярным. Математическим выражением распределения температуры в теле является выражение, содержащее в качестве независимых переменных пространственные координаты и время:

в декартовой системе координат

Основной задачей аналитической теории теплопроводности является изучение пространственно-временного изменения температуры, т. е. нахождение зависимости (2.1). Уравнение (2.1) является записью наиболее общего вида температурного поля, когда температура в теле изменяется с течением времени и от одной точки к другой. Такое поле соответствует неустановившемуся тепловому режиму теплопроводности и называется нестационарным температурным полем. Если тепловой режим является установившимся, то температура в каждой точке тела с течением времени остается неизменной, меняясь лишь от точки к точке. Такое температурное поле называется стационарным и температура является функцией только координат, например в декартовых координатах

Температурное поле, соответствующее уравнению (2.2), является пространственным, или трехмерным, так как температура является функцией трех координат.

Если вдоль одной из координат температура остается постоянной, то математически это условие записывается (например, для координаты z) следующим образом: дТ/дz=0. В этом случае поле называется двумерным и записывается: для нестационарного режима Т=Т(х, у, t); для стационарного режима Т=Т(х, у).

Если температура остается постоянной вдоль двух координат (например, у и z), то дТ/ду = дТ/дz = 0 и поле называется одномерным. В этом случае можно записать: для нестационарного режима Т=Т(х, t); для стационарного Т=Т(х).

Переменные х, у, z, фигурирующие в уравнении (2.1), определяют положение любой точки рассматриваемого тела, являясь координатами этой точки в выбранной системе координат. Эти переменные могут принимать бесконечное множество числовых значений, как и переменная t, характеризующая время течения процесса теплопроводности. Совокупность всевозможных числовых значений переменных х, у, z, t, каждому из которых соответствует вполне определенное значение температуры Т=Т(х, у, z, t), называется областью определения функции Т(х, у, z, t). Функция Т(х, у, z, t) в своей области определения считается обычно непрерывной, дважды непрерывно дифференцируемой по пространственным координатам (х, у, z) и непрерывно дифференцируемой по времени t.

В теле, имеющем температуру Т(х, у, z, t), можно выделить поверхность, во всех точках которой в некоторый момент времени температура одинакова. Такая поверхность называется изотермической поверхностью или поверхностью уровня. Уравнение поверхности уровня имеет следующий вид:

Т(х, у, z, t)=C или Т=С, где C=const.

В отличие от стационарных в нестационарных полях форма и расположение изотермических поверхностей с течением времени изменяются. Изотермические поверхности характеризуются следующими основными свойствами:

а) две изотермические поверхности, имеющие различные температуры, никогда не пересекаются друг с другом, так как в одной и той же
точке тела одновременно не может быть двух различных температур;

б) изотермические поверхности не имеют границ внутри тела. Они
или кончаются на поверхности, или замыкаются на себя, располагаясь
внутри тела;

в) теплота не распространяется вдоль изотермической поверхности,
а направляется от одной изотермической поверхности к другой. Это следует из положения о том, что тепловая энергия распространяется от более нагретого участка к менее нагретому.

Таким образом, можно считать, что изотермические поверхности разделяют твердое тело на тонкие «слои» — изотермические оболочки, отделяющие часть тела с температурой, большей, чем T=С, от части тела с температурой, меньшей, чем Т=С. Пересечение изотермических поверхностей плоскостью дает на этой плоскости семейство изотерм (линии, соответствующие одинаковой температуре). Они обладают теми же свойствами, что и изотермические поверхности, т. е. не пересекаются, не обрываются внутри тела, оканчиваются на поверхности либо целиком располагаются внутри самого тела. На рис. 2.1 представлен участок двумерного температурного поля с изотермами Т, Т±∆Т, Т±2∆Т и т. д.

Задание температурного поля соотношением Т=Т(х, у, z, t) не всегда дает достаточно ясное представление о поведении этого поля, а задание изотермических поверхностей (поверхностей уровня) с отметкой на них соответствующих значений температуры Т=С равносильно заданию самого поля Т=Т(х, у, z, t), при этом взаимное расположение поверхностей уровня даст наглядное представление о соответствующем поле температур. Указанный способ изображения поля особенно удобен, когда речь идет о двумерном поле.

Равенство вида Т(х, у, t) = C (всюду время t фиксировано) определяет на плоскости (х, у) некоторую кривую у = φ(х, с, t). Такие кривые называются линиями уровня (изотермами) плоского (двумерного) температурного поля Т=Т(х, у, t) (рис. 2.2).

На практике приходится иметь дело с температурными полями, обладающими специальными свойствами симметрии, облегчающими изучение таких полей.

§ 2.3 Температурный градиент

Рассмотрим две бесконечно близкие изотермические поверхности
с температурами Т и Т+∆Т(∆Т>0) и какую-либо точку М, лежащую
на одной из них (рис. 2.3).

Перемещаясь из точки М вдоль любых направлений, можно обнаружить, что интенсивность изменения температуры по различным направлениям неодинакова. Если перемещаться вдоль какого либо направления l, пересекающего изотермические поверхности, то наблюдается изменение температуры. Используя понятие производной скалярного поля по заданному направлению, можно описать его локальные свойства, т. е. изменение температуры Т при переходе от точки М к близкой точке М’ по направлению l. Скорость изменения температуры Т в точке М в направлении l характеризуется производной функции Т

Наибольшая разность температуры на единицу длины вектора перемещения [Т(М»)—Т(М)]/∆l наблюдается в направлении нормали n к изотермической поверхности (рис. 2.3). В соответствии с (2.3) максимальная скорость изменения температуры при этом равна пределу отношения изменения температуры ∆T к расстоянию между изотермическими поверхностями по нормали ∆n, когда ∆n стремится к нулю:

дТ/дп= lim [T(M»)—T(M)]/∆n= lim ∆T/∆n. (2.4)

Итак, в любой точке М изотермической поверхности можно построить некоторый вектор, направленный по нормали к этой поверхности в сторону увеличения температуры. Абсолютная величина этого вектора равна изменению температуры на единицу длины перемещения в рассматриваемом направлении — скорости возрастания температуры в этом направлении (т. е. производной от температурной функции Т по направлению нормали n). Такой вектор называют градиентом температуры в точке М или градиентом температурного поля и записывают в виде символа grad T:

в декартовых координатах (х, у, z)

grad T = ∂T/∂x i + ∂T/∂y j + ∂T/∂z k (2.5)

Для обозначения вектора (2.5) в теории поля иногда применяют символ gradT = T

Согласно сказанному выше, можно записать

длина вектора grad Т равна скорости возрастания Т в этом направлении. Здесь и всюду далее n — единичный вектор нормали.

Температурный градиент показывает, насколько интенсивно (резко) меняется температура внутри тела.

Производная от функции Т по направлению нормали n и вектор gradT связаны соотношением

дТ/дп = п grad Т. (2.7)

Вектор нормали n к поверхности T=const в точке М может иметь два противоположных направления, одно из которых можно считать внешним по отношению к данной поверхности, а другое внутренним.

Если нормаль n направить в сторону больших температур, то дТ/дп>0 и, как следует из (2.7), градиент температуры будет направлен в ту же сторону (угол между векторами n и grad T равен нулю). Если нормаль направить в сторону убывающей температуры, то производные дТ/дп Feα (1401°), а также температуре плавления (1528°), при нагреве поглощается, а при охлаждении выделяется теплота, и теплосодержание изменяется скачкообразно.

Теплоемкость твердого тела (истинная или при данной температуре) с ватт/г°С представляет предел отношения количества теплоты ∆S, сообщенного телу, к соответствующему изменению температуры ∆Т при бесконечном уменьшении этого изменения с=dS/dT.

Для расчетов иногда удобно принимать среднюю теплоемкость в данном промежутке температур, представляющую отношение количества теплоты S2—S1, сообщенного телу, к соответствующей разности температур T2—T1. Так, например, средняя теплоемкость железа в промежутке от 0 до 1500° составляет 256/1500=0.73 ватт/г С°.

Так как в сварочных процессах масса свариваемого металла изменяется несущественно удобно в расчетах использовать удельную объемную теплоемкость, численно равную произведению массовой теплоемкости на плотность.

Дифференциальное уравнение теплопроводности

Связь между величинами, участвующими в передаче теплоты теплопроводностью, устанавливается так называемым дифференциальным уравнением теплопроводности, на основе которого строится математическая теория теплопроводности. В основу вывода дифференциального уравнения теплопроводности положен закон сохранения энергии, сочетаемый с законом Фурье.

Выделим в теле некоторую часть объема V, ограниченную замкнутой поверхностью S, через которую происходит тепловое взаимодействие выделенной части с окружающей ее средой — остальной частью тела. Имеет место следующее утверждение: количество теплоты Q, полученное выделенным объемом за время dt вследствие теплопроводности, а также от внутренних источников теплоты, равно изменению внутренней энергии вещества, содержащегося в выделенном объеме:

где Q — изменение внутренней энергии вещества, содержащегося в выделенном объеме V за время dt, Дж; Q1 — количество теплоты, введенное в выделенный объем путем теплопроводности за время dt, Дж; Q2 — количество теплоты, которое выделилось в объеме V за время dt вследствие внутренних источников теплоты, Дж.

Это утверждение вместе с законом Фурье положено в основу вывода
дифференциального уравнения теплопроводности — основного уравнения аналитической теории теплопроводности.

Пусть V — выделенный объем произвольной формы части тела, ограниченный замкнутой поверхностью S (не обязательно изотермической); n — единичный вектор внешней нормали к точкам поверхности S (рис. 2.5); Т(х, у, z, t) — температура тела в точке (х, у, z) в момент времени t. Вычислим общее количество теплоты Q, полученное выделенным объемом за малый промежуток времени dt, имея в виду, что Q=Q1+Q2. Для вычисления Q1 воспользуемся законом Фурье в скалярной форме. Количество теплоты, подведенное в выделенный объем через элементарную площадку dσ за время dt, равно

dQ1 =λ∂T/∂n·dσ·dt = λ·n·gradT dσ· dt =- qndσ·dt (2.14)

где q =— λ grad T—вектор плотности теплового потока.

Количество теплоты, протекающее за время dt через площадь поверхности S, выразится интегралом

(2.15)

где qn — проекция вектора q на нормаль п.

Поверхностный интеграл (2.15) можно преобразовать в объемный по формуле Остроградского — Гаусса, связывающей двойной интеграл по поверхности S с тройным интегралом по объему V, ограниченному этой поверхностью:

(2.16)

(2.17)

Выделение или поглощение теплоты внутри объема V удобно хаpактеризовать с помощью плотности (мощности) тепловых источников. Под плотностью тепловых источников понимают такую функцию F(x, у, z, t), когда в элементарном объеме dV за промежуток времени dt выделяется количество теплоты, равное

dQ2= F(x, у, z, t)dVdt= F(M, t)dVdt. (2.18)

Тогда за промежуток времени dt в теле объемом V выделится количество теплоты

(2.19)

Здесь F(M, t)>0; если F(M, t) 0. Тогда, интегрируя обе части неравенства по некоторой области V, содержащей точку М, получим противоречие с условием (2.23).

Так как q=—λgradT, то равенство (2.24) можно записать следующим образом:

cp(dT/dt)=div(λgvadT)+F(M, t). (2.25)

Получено уравнение, которому должна удовлетворять функция Т(х, у, z, t), представляющая собой температуру некоторого тела. Это уравнение называется дифференциальным уравнением теплопроводности или уравнением Фурье.

Для изотропного гомогенного тела параметры с, ρ, λ постоянные; далее, так кaк div(grad T)= ∆T, где ∆ — оператор Лапласа, то окончательно запишем

где а= λ/(ср) — коэффициент пропорциональности, называемый температуропроводностью, м2/ч.

Тогда, в декартовых координатах уравнение (2.26) имеет вид

dT/dt=a(∂2 T/ ∂x2 + ∂2T/∂y2 +∂2T/∂z2)+[1/(cp)]F(x, у, z, t). (2.27)

В отличие от λ, которая характеризует теплопроводящую способность тела, а характеризует теплоинерционные свойства тела и является мерой скорости выравнивания температурного поля в рассматриваемой среде. Действительно, по определению, а=λ/(ср), где сρ — объемная изобарная теплоемкость. Отсюда температуропроводность а прямо пропорциональна теплопроводности λ и обратно пропорциональна аккумуляционной способности сρ вещества. Особенно наглядным становится физический смысл а в уравнении теплопроводности, когда отсутствует внутреннее тепловыделение и ∂T/∂t=a∆T(M, t). Зная вблизи точки М(х, у, z) зависимость температуры от координат, можно предсказать, как быстро будет нарастать (или спадать) температура в этой точке при переходе к следующему моменту времени. При этом, чем больше а (т. е. чем меньше сρ), тем пропорционально быстрее меняется во времени температура. Таким образом, а характеризует способность вещества изменять с большей или меньшей скоростью свою температуру во времени.

Уравнение (2.26) представляет собой дифференциальное уравнение в частных производных, в котором независимыми переменными являются время и три пространственные координаты, а зависимой переменной— функция Т (температура). Это уравнение первой степени (линейное), поскольку зависимая переменная Т входит в него только в первой степени. Но вместе с тем оно является уравнением второго порядка, так как дифференциальный оператор Т содержит производные второго порядка от Т по пространственным переменным. Функция F считается заданной функцией, в общем случае функцией координат и времени.

Может, в частности, оказаться, что температура рассматриваемого тела в любой его точке не изменяется во времени, т. е. является функцией только координат (установившееся состояние). Тогда ∂T/∂t=0 и уравнение (2.26) принимает вид

где плотность тепловых источников F (М) уже не зависит от времени.

Уравнение (2.27) называется уравнением Пуассона.

Если внутри тела отсутствуют тепловые источники и температурное поле стационарно, то имеем уравнение (в декартовых координатах)

∆Т(М)=∂2T/ ∂x2 + ∂2T/∂y2 +∂2T/∂z2 =0 , (2.28)

Дифференциальные уравнения теплопроводности и конвективного теплообмена

18 Дифференциальные уравнения

теплопроводности и конвективного

18.1 Дифференциальное уравнение теплопроводности

В соответствии с первым законом термодинамики теплота, передаваемая твёрдому телу из окружающей среды, при отсутствии работы деформации полностью трансформируется во внутреннюю энергию тела.

Уравнение теплового баланса для элемента с величиной рёбер (рисунок 18.1) в однородном твёрдом теле имеет вид:

, (18.1)

где — элементарная теплота, передаваемая через грани выделенного элемента в направлении осей x, y,z ; dU — изменение внутренней энергии элемента.

В направлении оси x через грань dydz за время dt поступает в соответствии с законом Фурье теплота

За то же время через противоположную грань, расположенную на расстоянии dx от первой и имеющую температуру , из элемента передается теплота

Результирующая теплота, подведенная теплопроводностью к элементу в направлении оси х, равна

(18.2)

Аналогично определяется результирующая теплота в направлении осей y и z :

(18.3)

Изменение внутренней энергии элемента составляет

(18.4)

C учетом (18.2-18.4) уравнение (18.1) имеет вид:

(18.5)

После сокращений в уравнении (18.5) получается:

(18.6)

Выражение (18.6) называют дифференциальным уравнением теплопроводности. Его записывают и в таком виде:

, (18.7)

где коэффициент температуропроводности, характеризующий темп изменения температуры;

— оператор Лапласа.

Уравнение (18.7) описывает в самом общем виде процесс теплопроводности и устанавливает связь между временными и пространственными изменениями температуры тела. Для его решения применительно к определенной задаче необходимо математическое описание конкретных условий, называемых условиями однозначности, которые включают:

временные или начальные условия, определяющие распределение температуры в теле в начальный момент;

геометрические условия, характеризующие форму и размеры тела;

физические условия, задаваемые теплофизическими параметрами вещества, составляющего рабочее тело;

граничные условия, определяющие характер взаимодействия тела с окружающей средой на границе соприкосновения.

Начальные условия имеют смысл при нестационарной теплопроводности и обычно задаются законом распределения температур по всему объему тела для момента времени t = 0.

Граничные условия могут быть заданы несколькими способами.

Если для любого момента времени известно распределение температур на границе тела, то это называют граничными условиями первого рода.

При граничных условиях второго рода задаётся поверхностная плотность теплового потока (а, следовательно, и температурный градиент) в каждой точке поверхности тела для любого момента времени. Температура на поверхности тела при этом неизвестна.

Граничные условия третьего рода предполагают, что известна температура окружающей среды и закономерность взаимосвязи между этой температурой и температурой тела. В условиях конвективного теплообмена связующим является уравнение Ньютона-Рихмана.

Решение дифференциального уравнения теплопроводности совместно с условиями однозначности позволяет получить температурное поле исследуемого тела для любого частного случая в любой момент времени. Такое аналитическое решение позволяет в ряде случаев избавиться от проведения сложных и дорогостоящих экспериментальных работ.

18.2 Распределение температур в однослойной

плоской стенке

Пусть теплота передается через плоскую стенку (рисунок 15.2а) толщиной d. Размеры стенки в направлении осей о-z и o-y не ограничены. Тепловой поток постоянный и не зависит от времени. Температура горячей поверхности стенки равна , температура холодной поверхности — .

Для этого случая одномерной задачи уравнение теплопроводности (18.7) имеет вид:

(18.8)

При принятых граничных условиях первого рода () последовательное интегрирование формулы (18.8) даёт:

(18.9)

Выражение (18.9) показывает линейную зависимость температуры по толщине стенки.

Для определения констант интегрирования используются граничные условия:

После подстановки констант в формулу (18.9) выражение для определения температуры в любом сечении стенки предстанет в таком виде:

, (18.10)

где x — отстояние сечения от начала координат

18.3 Теплопроводность при нестационарном режиме

Нестационарные процессы теплопроводности встречаются при нагревании и охлаждении металлических заготовок в литейном и кузнечном производствах, при обжиге кирпича, при запуске дизельных дизельных или карбюраторных двигателей, при прогреве холодных зданий, при замерзании рек и водохранилищ и т. д.

Как отмечалось в п 15.1 , нестационарная теплопроводность характеризуется уравнением

Указанная зависимость может быть определена из решения дифференциального уравнения теплопроводности (18.6) при граничных условиях третьего рода методами теории подобия.

Для одномерной нестационарной задачи изменение температуры по оси х и во времени определяется выражением, полученным из уравнения теплопроводности (18.7), которое для этого случая имеет вид:

Обработка этого выражения методами теории подобия выявляет число Фурье:

(18.11)

Обработка уравнения (18.11) , характеризующего граничные условия третьего рода, выявляет число подобия Био:

где l — характерный линейный размер геометрической системы, λ – теплопроводность стенки.

Число Био отличается от числа Нуссельта тем, что оно содержит теплопроводность материала тела, а не теплопроводность движущейся около тела жидкой или газообразной среды. Это число определяет соотношение теплоты, переданной конвективным способом, и теплоты, переданной внутри тела теплопроводностью.

Искомая функция в виде безразмерной температуры определяется в общем случае выражением

. (18.12)

В качестве примера ниже рассматривается процесс охлаждения равномерно прогретой пластины с начальной температурой t , которая омывается с обеих сторон жидкостью или газом с температурой при коэффициенте теплоотдачи a. Размеры пластины в направлении осей y и z считаются неограниченными, а физические характеристики материала пластины — теплопроводность l, теплоёмкость с и плотность r — постоянными.

Решение задачи представляется в виде:

(18.13)

где — температуры на поверхности и в центральном сечении пластины.

Отсутствие в формулах (18.13) линейного симплекса объясняется тем, что в средней плоcкости и на поверхности пластины температуры постоянны и изменяются только в направлении оси x.

Теплота, передаваемая пластиной в окружающую среду за время t, равно изменению внутренней энергии пластины за период охлаждения.

Начальная внутренняя энергия пластины, отсчитанная от внутренней энергии при температуре среды как от нуля, равна

(18.14)

Отношение теплоты, переданной за период t, к начальной внутренней энергии пластины определяется также безразмерными числами Био и Фурье:

(18.15)

Конкретные решения уравнений (18.13,18.15) обычно представлены в виде графиков или в табличной форме (cм. таблицу 18.1). При решении конкретной задачи вначале подсчитывают числовые значения определяющих критериев, а затем, пользуясь таблицей, находят искомые значения.

Решения, аналогичные вышеизложенному, имеются для других геометрических систем — цилиндрических тел, шаров и др.

Таблица 18.1 — Расчётные зависимости для пластины

18.4 Дифференциальные уравнения конвективного

Дифференциальные уравнения конвективного теплообмена учитывают особенности гидродинамики потока и влияние различных факторов на теплообмен между потоком и поверхностью твердого тела.

Гидродинамика потока описывается уравнением движения вязкой жидкости (уравнением Навье-Стокса) и уравнением неразрывности (сплошности) потока.

Уравнение движения учитывает влияние сил инерции (левая часть

уравнения), сил вязкостного трения (третье слагаемое в правой части), сил статического давления (второе слагаемое в правой части) и гравитационных сил (первое слагаемое в правой части). Оно определяет поле скоростей во времени, а также в пространстве, и в проекции на ось х имеет следующий вид:

где выделенное скобками в левой части выражение представляет собой полную или субстанциальную (в пространственных и временных координатах) производную от скорости . С учетом этого

(18.16а)

Аналогично записываются уравнения в проекции на оси y и z:

(18.16б)

(18.16в)

В формулах (18.16): r — плотность вязкой жидкости, — проекции скорости на соответствующие оси x, y и z , p — давление, m — коэффициент динамической вязкости.

Уравнение сплошности выводится на основе закона сохранения массы и говорит о том, что в любом сечении неразрывного потока жидкости или газа массовый расход имеет одно и то же значение:

(18.17)

В основу вывода дифференциального уравнения энергии для движущегося потока сжимаемой вязкой жидкости положен закон сохранения энергии. Это уравнение определяет изменение температуры жидкости во времени и в пространстве. В отличие от дифференциального уравнения теплопроводности в уравнении энергии учитывается то обстоятельство, что в движущемся потоке температура изменяется не только за счет нагревания или охлаждения, но и в связи с изменением положения этой жидкости в пространстве. Этим объясняется появление в правой части формулы (18.19) субстанциальной производной от скорости:

(18.19)

Дифференциальное уравнение, описывающее процесс теплообмена на границе жидкости и стенки (16.3) , уже было применено ранее в п. 16.2.

18.5 Условия гидродинамического подобия

Для двух подобных систем, в которых протекают подобные процессы, записываются уравнения движения

(18.20)

Для подобных процессов

Если выразить переменные второй системы через переменные первой системы и множители подобного преобразования, то получится

(18.21)

Тождественность уравнений (18.20) и (18.21) возможно при следующем условии:

Из равенства получается индикатор подобия и число гомохронности

Из условия получается индикатор подобия , которому соответствует число Фруда

Следующее равенство даёт индикатор подобия и число Эйлера

Из условия следует индикатор подобия и число Рейнольдса

где — кинематическая вязкость.

Из полученных чисел подобия определяющим в гидродинамических задачах является число Эйлера

(18.22)

Для стационарных гидродинамических процессов, когда фактор времени не имеет значения, выражение (18.22) упростится

(18.23)

При естественной конвекции скорость потока определить чрезвычайно сложно, поэтому часто число Фруда преобразуют в более удобное число Грасгофа, которое равно произведению числа Фруда на квадрат числа Рейнольдса и отношение плотностей свободно движущейся среды:

, (18.24)

где b — температурный коэффициент объемного расширения жидкости.

Замена отношения плотностей произведением температурного объемного коэффициента на разность температур объясняется тем, что причиной естественной конвекции является разность плотностей жидкости, которая образуется из-за изменения температуры.

Анализ уравнения сплошности (18.17) показывает, что новых чисел подобия, кроме тех, что получены из уравнений энергии, движения и теплообмена, это выражение не дает.

18.6 Тепловое подобие

Ранее, в главе 16, было показано, что из дифференциального уравнения, описывающего процесс теплообмена на границе между жидкостью и стенкой, получается число Нуссельта

Уравнения, описывающие процесс энергообмена в потоке жидкости, для двух подобных систем

Множители подобных преобразований равны

Переменные второй системы выражаются через переменные первой системы и множители подобного преобразования:

Условия подобия определяются равенством

Из первого равенства следует индикатор подобия и уже знакомое (см. п.18.3) число Фурье

Из второго равенства получается индикатор подобия и число Пекле

При делении числа Пекле на число Рейнольдса получается новый безразмерный комплекс — число Прандтля:

Условия теплового подобия процессов в общем виде выглядит так:

(18.25)

Для стационарных процессов числа подобия, имеющие в своем составе время, не являются определяющими, и уравнение (6.23) в этом случае упрощается

(18.26)

При свободной конвекции, когда вынужденное движение отсутствует, число Рейнольдса, характеризующее этот режим, отсутствует

(18.27)

Конкретный вид критериальных зависимостей для различных случаев конвективного теплообмена дан ранее в главе 17 .


источники:

http://www.bestreferat.ru/referat-111889.html

http://pandia.ru/text/78/217/53785.php

Название: Дифференциальное уравнение теплопроводимости
Раздел: Промышленность, производство
Тип: учебное пособие Добавлен 00:27:14 02 февраля 2009 Похожие работы
Просмотров: 3441 Комментариев: 22 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать