Дифференциальное уравнение теплопроводности при одномерном распространении тепла

Дифференциальное уравнение теплопроводности

При решении задач, связанных с нахождением температурного по­ля, необходимо иметь дифференциальное уравнение тепло­проводности.

Температурное поле – совокупность значений температур во всех точках рассматриваемого пространства для каждого момента времени .

Для упрощения вывода этого дифференциального уравнения сде­ланы следующие допущения:

– физические параметры постоянны;

– деформация рассматриваемого объема, связанная с изменением температуры, является очень малой величиной по сравнению с самим объемом;

– внутренние источники теплоты в теле распределены равномерно.

В основу вывода дифференциального уравнения теплопроводности положен закон сохранения энергии в формулировке:

количество теплоты dQ, введенное в элементарный объем извне за время теп­лопроводностью, а также от внутренних источников, равно изменению внутренней энергии или энтальпии вещества (в зависимости от рассмо­трения изохорного или изобарного процесса), содержащегося в элементарном объеме.

(*)

где dQ1 – количество теплоты, Дж, введенное в элементарный объем теплопроводностью за время ;

dQ2 – количество теплоты, Дж, которое за время выделилось в элементарном объем за счет внутренних источников;

dQ – изменение внутренней энергии или энтальпии вещества, содержащегося в элементарном объеме , за время dτ.

Для нахождения составляющих выделим в теле элементарный параллелепипед со сторонами dx, dy, dz. Параллелепипед расположен так, чтобы его грани были параллельны соответствующим координатным плоскостям.

Количество теплоты, которое подводится к граням элементарного объема за время в направлении осей Оx, Оy, Оz обозначим соответственно dQx, dQy, dQz.

Количество теплоты, которое будет отводиться через противоположные грани в тех же направлениях, обозначим соответственно dQx+dx, dQy+dy, dQz+dz.

Количество теплоты, подведенное к грани dydz=dF в направлении оси Ох за время , составляет ,

где qx – проекция плотности теплового потока на направление нормали к указанной грани.

Количество теплоты, отведенное через противоположную грань элементарного параллелепипеда в направлении оси Ох

.

Разница количеств теплоты, подведенного к элементарному параллелепипеду и отведенного от него за время в направлении оси Ох

Функция является непрерывной в рассматриваемом интервале dx и может быть разложена в ряд Тейлора

Если ограничиться двумя первыми членами ряда:

Аналогично можно найти количество теплоты, подводимое к элементарному объему в направлениях двух других координатных осей Oy и Oz.

Количество теплоты dQ, подводимое теплопроводностью к рассматриваемому объему, будет равно

Обозначим через , Вт/м 3 , ко­личество теплоты, выделяемое внутренними источниками в единице объема в единицу времени.

Тогда

Третья составляющая уравнения (*) найдется в зависимости от характера термодинамического процесса изменения системы.

В случае рассмотрения изохорного процесса вся теплота, под­веденная к элементарному объему, уйдет на изменения внутренней энер­гии вещества, заключенного в этом объеме, т.е.

где – изохорная теплоемкость единицы массы, Дж/(кг·К);

ρ – плотность вещества, кг/м 3 .

Подставляя полученные выражения в уравнение (*), получим

,

Проекции вектора плотности теплового потока на координатные оси Ох, Оу, Оz определяются законом Фурье:

; ; .

где λ – коэффициент теплопроводности (физический параметр вещества, характеризующий способность проводить теплоту), Вт/(м∙°С).

Подставляя полученные выражения проекций вектора плотности теплового потока в уравнение (*), опуская индекс при с, ипринимая теплофизические характеристики постоянными, получим

(***)

Выражение (***) называется дифферен­циальным уравнением теплопроводности. Оно устанавливает связь меж­ду временнЫм и пространственным изменением температуры в любой точке тела.

и

Тогда выражение (***) имеет вид:

Выражение (***) в цилиндрической системе координат:

где r – радиус-вектор;

φ – полярный угол;

Коэффициент пропорциональности а, м 2 /с, назы­вается коэффициентом температуропроводности и явля­ется физическим параметром вещества.

Он характеризует скорость изменения темпера­туры, т.е. являет­ся мерой теплоинерционных свойств тела. Поэтому при прочих равных условиях выравнивание температур во всех точках пространства будет происходить быстрее в том теле, которое обладает бόльшим коэффи­циентом температуропроводности.

Коэффициент температуропроводно­сти зависит от природы вещества.

Например, жидкости и газы обладают большой тепловой инерционностью и, следовательно, малым коэффи­циентом температуропроводности.

Металлы обладают малой тепловой инерционностью, т.к. они имеют большой коэффициент температу­ропроводности.

Если система тел не содержит внутренних источ­ников теплоты (qυ=0), то

Если имеются внутренние источники теплоты, но температурное поле соответствует стационарному состоянию, т.е. , то

При рассмотрении изобарного процесса вся теплота, подведен­ная к объему, уйдет на изменение энтальпии вещества, заключенного в этом объеме:

(**)

Если рассматривать энтальпию единицы объема как , то

где сp – изобарная теплоемкость единицы массы, Дж/(кг·К).

В итоге (**) имеет вид:

|следующая лекция ==>
СПОСОБЫ ПЕРЕНОСА ТЕПЛОТЫ|Условия однозначности для процессов теплопроводности. Дифференциальное уравнение теплопроводности описывает явление теплопро­водности в самом общем виде

Дата добавления: 2016-02-09 ; просмотров: 4566 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Вывод уравнения теплопроводности для одномерного случая

ВВЕДЕНИЕ

Уравнение диффузии или уравнение теплопроводности представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.

Математически уравнение диффузии и уравнение теплопроводности не различаются, и применение того или иного названия ограничено только конкретным приложением, причем второе представляется более частным, так как можно говорить, что в этом случае речь идет о диффузии тепловой энергии.

В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоемкость и теплопроводность среды (также в общем случае неоднородной).

Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.

Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность

скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.

Уравнение параболического типа. Основные уравнения

Уравнения параболического типа наиболее часто встречаются при изучении процессов теплопроводности и диффузии. К этим уравнениям приводятся также задачи о движении вязкой жидкости, например, нефти.

Обсудим процесс распространения тепла в неравномерно нагретом твердом теле. Если тело нагрето неравномерно, то в нем происходит передача тепла из мест с более высокой температурой в места с более низкой температурой. Процесс может быть описан функцией u = u (x, y, z, t) дающей температуру u в каждой точке M (x, y, z) тела и в любой момент времени t .

Примем следующую модель процесса: происходит механический перенос тепла от более нагретых частей тела к менее нагретым; все тепло идет на изменение температуры тела; свойства тела от температуры не зависят. Идеализация явления состоит в том, что мы будем изучать процесс, не касаясь его молекулярной природы, а также иных проявлений. Опишем процесс математически для одномерного тела.

Вывод уравнения теплопроводности для одномерного случая

Рассмотрим однородный стержень длины l, теплоизолированный с боков (через поверхность не происходит теплообмена с окружающей средой) и достаточно тонкий, чтобы в любой момент времени температуру во всех точках поперечного сечения можно было считать одинаковой. Расположим ось Ox так, чтобы один конец стержня совпадал с точкой x = 0, а другой — с точкой x = l (рис. 1).

Чтобы найти функцию u=u(x, t), надо составить дифференциальное уравнение, которому она удовлетворяет.

При выводе дифференциального уравнения теплопроводности воспользуемся следующими физическими закономерностями, связанными с распространением тепла.

1. Количество тепла DQ, которое необходимо сообщить однородному телу, чтобы повысить его температуру на Du , равно

где c — удельная теплоемкость, m — масса тела.

Для стержня имеем

где ρ — плотность материала стержня; S — площадь его поперечного сечения.

2. Перенос тепла в теле подчиняется эмпирическому закону Фурье количество тепла ΔQ, протекающее за время Δt через площадку ΔS в направлении нормали к этой площадке, равно

где k — коэффициент внутренней теплопроводности (зависит от точки и не зависит от направления, если тело изотропно).

Для стержня имеем

, (2)

где коэффициент k будем считать постоянным в силу предположения о его однородности. Если стержень неоднороден, то k = k(x).

3. Если внутри тела есть источники тепла, то выделение тепла можно характеризовать плотностью тепловых источников, т.е. количеством выделяемого (или поглощаемого) тепла в единицу времени в единице объема.

Обозначим через F (x, t), плотность источников в точке x рассматриваемого стержня в момент t. Тогда в результате действия этих источников на участке (x, x +Δx) за промежуток Δt будет выделено количество тепла

(3)

И, наконец, воспользуемся законом сохранения энергии.

Итак, приступим к выводу уравнения. Выделим элементарный участок стержня, заключенный между сечениями x = x1 и x = x2 (x2 — x1 = Δx), и составим уравнение теплового баланса на отрезке [x1, x2]. Так как боковая поверхность стержня теплоизолирована, то элемент стержня может получать тепло только через поперечные сечения. Согласно (2) количество тепла, прошедшее через сечение x = x1, равно

через сечение x = x2:

Найдем приток тепла в элемент стержня:

(К разности частных производных применена теорема Лагранжа).

Кроме того, в результате действия внутренних источников тепла на этом участке в течение времени Δt выделится количество тепла согласно (3)

Все тепло за время Δt пойдет на изменение температуры выделенного элемента стержня на величину Δu .И поэтому сообщенное количество тепла ΔQ , с другой стороны, может быть найдено согласно формуле (1):

В силу закона сохранения энергии имеем равенство

Сокращая на общий множитель SΔxΔt , получим уравнение

Введя обозначения , придем к уравнению

(4)

Это и есть искомое дифференциальное уравнение распространения тепла в однородном стержне. Уравнение (4) называют уравнением теплопроводности, в котором постоянную a² температуропроводности. Коэффициент a² называют коэффициентом имеет размерность м² /с.

Уравнение (4) является линейным неоднородным уравнением параболического типа.

Вывод дифференциального уравнения распространения тепла внутри тела, отнесенного к пространственной системе координат, основан на тех же физических законах. Поэтому, ограничившись выводом уравнения для простейшего случая – одномерного, лишь приведем уравнение для трехмерного пространства.

Процесс распределения температуры u = u (x, y, z, t) в изотропном теле описывается уравнением

которое кратко записывается так:

(6)

где — оператор Лаплас

Уравнения теплопроводности и температурного поля

Количество тепла Q1 (в ккал), распространяющееся путем теплопроводности в направлении х, в течение единицы времени составит:

Минус в выражении (1.4) означает, что для получения положительной величины Q1 температура в направлении х должна уменьшаться, а не возрастать. Величина dt/dx, называемая градиентом температуры, выражается в град/м; λ — представляет коэффициент теплопроводности материала в ккал/м·ч·град.

При неустановившихся условиях количество тепла Q1, распространяющееся в направлении х, изменяется, что связано с поглощением или отдачей тепла частицами материальной среды при изменении их температуры с течением времени т (т. е. наличии величины dt/dx≠0.

Изменение потока тепла dQ1/dx пропорционально теплоемкости материала сγ (с — удельная теплоемкость в ккал/кг·град; γ — объемный вес материала в кг/мг); тогда

Знак минус в правой части уравнения означает, что повышение температуры материала связано с поглощением им тепла и соответствующим уменьшением теплового потока Q1.

Величина изменения потока тепла Q1 в направлении х может быть получена также дифференцированием уравнения (1.4), т. е.

При отсутствии внутренних источников или стоков тепла, изменение величины теплового потока связано только с поглощением тепла материалом, и выражения (1,5) и (1.6) должны быть равны. Из этого равенства выводится дифференциальное уравнение теплопроводности при одномерном распространении тепла в направлении х, а именно:

Это выражение известно как дифференциальное уравнение Фурье. Величина λ/cγ называется коэффициентом температуропроводности материала, имеет кинематическую размерность, в которую не входят измерители массы и энергии, и характеризует скорость перераспределения температуры, выражаемую обычно в м 2 /ч или см 2 /сут при нагреве или охлаждении материальной среды.

Материалы и конструкции с высоким коэффициентом температуропроводности быстро нагреваются или охлаждаются до температуры, соответствующей равновесному состоянию с окружающей средой.

В самом общем виде, при неустановившемся распространении тепла по всем трем осям координат, дифференциальное уравнение теплопроводности приобретает трехмерный вид:

Путемч интегрирования одномерного (1.7), двухмерного или трехмерного уравнения теплопроводности могут быть получены любые конкретные решения, раскрывающие закономерности распространения тепла в материальных средах, в частности, ограждающих конструкциях зданий.

Чтобы получить из множества возможных конкретное решение, соответствующее определенному рассматриваемому процессу распространения тепла, необходимо располагать дополнительными условиями, не содержащимися в исходном дифференциальном уравнении. Эти дополнительные условия, которые вместе с исходным уравнением однозначно определяют все особенности рассматриваемого процесса, называются условиями однозначности 1 .

Условия однозначности разделяются на временные (характеризующие рассматриваемый физический процесс во времени) и пространственные, относящиеся к поверхностям, ограничивающим изучаемый объект или конструкцию, и особенностям физического процесса, происходящего на этих граничных поверхностях.

Различают три вида граничных условий:

  • 1) граничное условие I рода, устанавливающее распределение температуры на поверхности и ее изменения во времени;
  • 2) граничное условие II рода, устанавливающее величину потока тепла, проходящего через поверхность, и его изменения во времени;
  • 3) граничное условие III рода, определяющее температуру окружающей среды и закон теплообмена между поверхностью и этой средой.

В строительной теплофизике обычно задаются граничные условия III рода, устанавливаемые значениями температуры среды t и коэффициентов теплообмена α 2 .

При рассмотрении теплопередачи в однородной среде и в установившихся условиях (когда dt/dτ=0), временные условия исключаются и значение имеют только пространственные.

В этих случаях, поскольку а≠0, уравнение (1.7а) приобретает вид:

Уравнение относится к температурному полю в установившихся условиях. Выражение (1.8) известно как уравнение Лапласа. Физический смысл этого уравнения состоит в том, что сумма изменений количеств тепла, поступающего к любой рассматриваемой точке конструкции, равна нулю. Следовательно, температуры ее неизменны и имеют установившиеся значения, отвечающие постоянным условиям воздействий внешней среды, окружающей конструкцию. При практических расчетах температурного поля проектируемых конструкций на основе уравнения (1.8) расчетные температуры внешней среды принимаются соответствующими возможности завершения процесса предельного охлаждения рассматриваемой конструкции. Этот процесс происходит постепенно и требует определенного времени: незначительного для легких конструкций и длительного — для массивных, поэтому расчетные значения температуры наружного воздуха в наиболее холодные зимние периоды зависят от степени массивности конструкции и связаны с возможностью более или менее длительной стабилизации теплового состояния во времени.

Для многих практических случаев достаточно исследования плоского температурного поля (в плане или разрезе конструкции). Для двумерных условий уравнение (1.8) имеет вид:

Исследование на основе уравнения (1.8а) температурных полей неоднородных в теплофизическом отношении облегченных конструкций (панелей с контурными ребрами, сопряжений крупных элементов ограждающих конструкций и т. д.) имеет весьма важное значение при проектировании индустриальных конструкций зданий, особенно в достаточно суровых климатических условиях, когда низкие температуры наружного воздуха длительны во времени и вызывают полное охлаждение, для которого характерно неизменное установившееся распределение предельно низких температур.

Порядок проведения подобных практических расчетов и применение для этих целей счетно-решающих устройств типа электроинтегратора, изложены далее в гл. IV.

Дифференциальное уравнение Фурье (1.7) в обобщающем смысле является уравнением нестационарного поля любого потенциала переноса (в данном случае — поля потенциала переноса тепла, т. е. температуры). С определенными ограничениями это уравнение может быть использовано и для изучения процессов влагообмена, происходящих в материальных системах при неизменной температуре.

Если рассматривать какую-либо материальную систему, например, ограждающую конструкцию, выполненную из влажного капиллярно-пористого материала и находящуюся в изотермической воздушной среде 3 , то за потенциал переноса влаги может быть принято влагосодержание материала (со, г/кг). Уравнение (1.7), записанное применительно к исследованию одномерного поля потенциала переноса влаги называют уравнением влагопроводности. Оно имеет вид:

где ω — влагосодержание материала (часто выражаемое через весовую влажность материала); аm — коэффициент нестационарной влагопроводности 4 , зависящий от природы материала и его влажностного состояния.

Уравнение влагопроводности, в частности, используется для обоснования простейших приближенных сравнительных расчетов длительности естественной сушки ограждающих конструкций из капиллярно-пористых материалов.

Примечания

1. Иногда условия однозначности называют краевыми условиями.

2. В теплотехнической литературе эти коэффициенты часто называют коэффициентами теплоотдачи, имея в виду особенности теплообмена материальных систем нагретых выше температуры окружающей среды.

3. То есть в среде с неизменной постоянной температурой.

4. Аналог коэффициента температуропроводности:


источники:

http://lektsii.org/16-28228.html

http://www.arhplan.ru/reference/thermophysics/uravneniya-teploprovodnosti-i-temperaturnogo-polya