Дифференциальное уравнение цепи с катушкой индуктивности

Дифференциальное уравнение цепи с катушкой индуктивности

При всех изменениях в электрической цепи: включении, выключении, коротком замыкании, колебаниях величины какого-либо параметра и т.п. – в ней возникают переходные процессы, которые не могут протекать мгновенно, так как невозможно мгновенное изменение энергии, запасенной в электромагнитном поле цепи. Таким образом, переходный процесс обусловлен несоответствием величины запасенной энергии в магнитном поле катушки и электрическом поле конденсатора ее значению для нового состояния цепи.

При переходных процессах могут возникать большие перенапряжения, сверхтоки, электромагнитные колебания, которые могут нарушить работу устройства вплоть до выхода его из строя. С другой стороны, переходные процессы находят полезное практическое применение, например, в различного рода электронных генераторах. Все это обусловливает необходимость изучения методов анализа нестационарных режимов работы цепи.

Основные методы анализа переходных процессов в линейных цепях:

  1. Классический метод, заключающийся в непосредственном интегрировании дифференциальных уравнений, описывающих электромагнитное состояние цепи.
  2. Операторный метод, заключающийся в решении системы алгебраических уравнений относительно изображений искомых переменных с последующим переходом от найденных изображений к оригиналам.
  3. Частотный метод, основанный на преобразовании Фурье и находящий широкое применение при решении задач синтеза.
  4. Метод расчета с помощью интеграла Дюамеля, используемый при сложной форме кривой возмущающего воздействия.
  5. Метод переменных состояния, представляющий собой упорядоченный способ определения электромагнитного состояния цепи на основе решения системы дифференциальных уравнений первого прядка, записанных в нормальной форме (форме Коши).

Классический метод расчета

Классический метод расчета переходных процессов заключается в непосредственном интегрировании дифференциальных уравнений, описывающих изменения токов и напряжений на участках цепи в переходном процессе.

В общем случае при использовании классического метода расчета составляются уравнения электромагнитного состояния цепи по законам Ома и Кирхгофа для мгновенных значений напряжений и токов, связанных между собой на отдельных элементах цепи соотношениями, приведенными в табл. 1.

Таблица 1. Связь мгновенных значений напряжений и токов на элементах электрической цепи

;

при наличии магнитной связи с катушкой, обтекаемой током ,

;

Для последовательной цепи, содержащей линейные резистор R, катушку индуктивности L и конденсатор С, при ее подключении к источнику с напряжением u (см. рис. 1) можно записать

Резистор (идеальное активное сопротивление)
Катушка индуктивности (идеальная индуктивность)
Конденсатор (идеальная емкость)
.(1)

Подставив в (1) значение тока через конденсатор

,

получим линейное дифференциальное уравнение второго порядка относительно

.

В общем случае уравнение, описывающее переходный процесс в цепи с n независимыми накопителями энергии, имеет вид:

,(2)

где х – искомая функция времени (напряжение, ток, потокосцепление и т.п.); — известное возмущающее воздействие (напряжение и (или) ток источника электрической энергии); — к-й постоянный коэффициент, определяемый параметрами цепи.

Порядок данного уравнения равен числу независимых накопителей энергии в цепи, под которыми понимаются катушки индуктивности и конденсаторы в упрощенной схеме, получаемой из исходной путем объединения индуктивностей и соответственно емкостей элементов, соединения между которыми являются последовательными или параллельными.

В общем случае порядок дифференциального уравнения определяется соотношением

,(3)

где и — соответственно число катушек индуктивности и конденсаторов после указанного упрощения исходной схемы; — число узлов, в которых сходятся только ветви, содержащие катушки индуктивности (в соответствии с первым законом Кирхгофа ток через любую катушку индуктивности в этом случае определяется токами через остальные катушки); — число контуров схемы, ветви которых содержат только конденсаторы (в соответствии со вторым законом Кирхгофа напряжение на любом из конденсаторов в этом случае определяется напряжениями на других).

Наличие индуктивных связей на порядок дифференциального уравнения не влияет.

Как известно из математики, общее решение уравнения (2) представляет собой сумму частного решения исходного неоднородного уравнения и общего решения однородного уравнения, получаемого из исходного путем приравнивания его левой части к нулю. Поскольку с математической стороны не накладывается каких-либо ограничений на выбор частного решения (2), применительно к электротехнике в качестве последнего удобно принять решение , соответствующее искомой переменной х в установившемся послекоммутационном режиме (теоретически для ).

Частное решение уравнения (2) определяется видом функции , стоящей в его правой части, и поэтому называется принужденной составляющей. Для цепей с заданными постоянными или периодическими напряжениями (токами) источников принужденная составляющая определяется путем расчета стационарного режима работы схемы после коммутации любым из рассмотренных ранее методов расчета линейных электрических цепей.

Вторая составляющая общего решения х уравнения (2) – решение (2) с нулевой правой частью – соответствует режиму, когда внешние (принуждающие) силы (источники энергии) на цепь непосредственно не воздействуют. Влияние источников проявляется здесь через энергию, запасенную в полях катушек индуктивности и конденсаторов. Данный режим работы схемы называется свободным, а переменная свободной составляющей.

В соответствии с вышесказанным, общее решение уравнения (2) имеет вид

(4)

Соотношение (4) показывает, что при классическом методе расчета послекоммутационный процесс рассматривается как наложение друг на друга двух режимов – принужденного, наступающего как бы сразу после коммутации, и свободного, имеющего место только в течение переходного процесса.

Необходимо подчеркнуть, что, поскольку принцип наложения справедлив только для линейных систем, метод решения, основанный на указанном разложении искомой переменной х, справедлив только для линейных цепей.

Начальные условия. Законы коммутации

В соответствии с определением свободной составляющей в ее выражении имеют место постоянные интегрирования , число которых равно порядку дифференциального уравнения. Постоянные интегрирования находятся из начальных условий, которые принято делить на независимые и зависимые. К независимым начальным условиям относятся потокосцепление (ток) для катушки индуктивности и заряд (напряжение) на конденсаторе в момент времени (момент коммутации). Независимые начальные условия определяются на основании законов коммутации (см. табл. 2).

Таблица 2. Законы коммутации

Первый закон коммутации (закон сохранения потокосцепления)

Магнитный поток, сцепленный с катушками индуктивности контура, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .

Второй закон коммутации (закон сохранения заряда)

Электрический заряд на конденсаторах, присоединенных к любому узлу, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .

Доказать законы коммутации можно от противного: если допустить обратное, то получаются бесконечно большие значения и , что приводит к нарушению законов Кирхгофа.

На практике, за исключением особых случаев (некорректные коммутации), допустимо использование указанных законов в другой формулировке, а именно:

первый закон коммутации – в ветви с катушкой индуктивности ток в момент

коммутации сохраняет свое докоммутационное значение и в дальнейшем начинает изменяться с него: .

второй закон коммутации – напряжение на конденсаторе в момент

коммутации сохраняет свое докоммутационное значение и в дальнейшем начинает изменяться с него: .

Необходимо подчеркнуть, что более общей формулировкой законов коммутации является положение о невозможности скачкообразного изменения в момент коммутации для схем с катушкой индуктивности – потокосцеплений, а для схем с конденсаторами – зарядов на них. В качестве иллюстрации сказанному могут служить схемы на рис. 2, переходные процессы в которых относятся к так называемым некорректным коммутациям (название произошло от пренебрежения в подобных схемах малыми параметрами, корректный учет которых может привести к существенному усложнению задачи).

Действительно, при переводе в схеме на рис. 2,а ключа из положения 1 в положение 2 трактование второго закона коммутации как невозможность скачкообразного изменения напряжения на конденсаторе приводит к невыполнению второго закона Кирхгофа . Аналогично при размыкании ключа в схеме на рис. 2,б трактование первого закона коммутации как невозможность скачкообразного изменения тока через катушку индуктивности приводит к невыполнению первого закона Кирхгофа . Для данных схем, исходя из сохранения заряда и соответственно потокосцепления, можно записать:

Зависимыми начальными условиями называются значения остальных токов и напряжений, а также производных от искомой функции в момент коммутации, определяемые по независимым начальным условиям при помощи уравнений, составляемых по законам Кирхгофа для . Необходимое число начальных условий равно числу постоянных интегрирования. Поскольку уравнение вида (2) рационально записывать для переменной, начальное значение которой относится к независимым начальным условиям, задача нахождения начальных условий обычно сводится к нахождению значений этой переменной и ее производных до (n-1) порядка включительно при .

Пример. Определить токи и производные и в момент коммутации в схеме на рис. 3, если до коммутации конденсатор был не заряжен.

В соответствии с законами коммутации

и .

На основании второго закона Кирхгофа для момента коммутации имеет место

,

и .

Для известных значений и из уравнения

определяется .

Значение производной от напряжения на конденсаторе в момент коммутации (см. табл. 1)

.

Корни характеристического уравнения. Постоянная времени

Выражение свободной составляющей общего решения х дифференциального уравнения (2) определяется видом корней характеристического уравнения (см. табл. 3).

Таблица 3. Выражения свободных составляющих общего решения

Вид корней характеристического уравнения

Выражение свободной составляющей

Корни вещественные и различные

Корни вещественные и

Пары комплексно-сопряженных корней

Необходимо помнить, что, поскольку в линейной цепи с течением времени свободная составляющая затухает, вещественные части корней характеристического уравнения не могут быть положительными.

При вещественных корнях монотонно затухает, и имеет место апериодический переходный процесс. Наличие пары комплексно сопряженных корней обусловливает появление затухающих синусоидальных колебаний (колебательный переходный процесс).

Поскольку физически колебательный процесс связан с периодическим обменом энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, комплексно-сопряженные корни могут иметь место только для цепей, содержащих оба типа накопителей. Быстроту затухания колебаний принято характеризовать отношением

,

которое называется декрементом колебания, или натуральным логарифмом этого отношения

,

называемым логарифмическим декрементом колебания, где .

Важной характеристикой при исследовании переходных процессов является постоянная времени t , определяемая для цепей первого порядка, как:

,

где р – корень характеристического уравнения.

Постоянную времени можно интерпретировать как временной интервал, в течение которого свободная составляющая уменьшится в е раз по сравнению со своим начальным значением. Теоретически переходный процесс длится бесконечно долго. Однако на практике считается, что он заканчивается при

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.

Переходные процессы в электрических цепях

Содержание:

Переходные процессы в электрических цепях:

Переходный процесс в электрической цепи — это электромагнитный процесс, возникающий в электрической цепи при переходе от одного установившегося (принужденного) режима к другому. Установившимся (принужденным) называется режим работы электрической цепи, при котором напряжение и токи цепи в течение длительного времени остаются неизменными.

Такой режим в электрической цепи устанавливается при длительном действии источников постоянной или переменной ЭДС при неизменных параметрах этой цепи R, L и С.

Переходный процесс вызывается коммутацией в цепи. Коммутацией называется процесс замыкания или размыкания рубильников или выключателей. Переходный процесс может быть вызван изменением параметров электрической цепи R, L или С.

Переходный процесс базируется на двух законах коммутации:

  1. ток в индуктивности не может изменяться скачком;
  2. напряжение на емкости не может изменяться скачком.

Действительно, если ток в индуктивности L изменяется скачком, т. е. мгновенно, то ЭДС самоиндукции eL становится бесконечно большой (при

В реальных цепях ЭДС самоиндукции может иметь только конечные значения.

Если в цепи с емкостью С напряжение на ее обкладках изменяется скачком, т. е. мгновенно, то появляется бесконечно большой зарядный (или разрядный) ток (при = 0):

Ток в электрических цепях может иметь только конечные значения.

Переходный процесс является быстропротекающим процессом, длительность которого обычно составляет десятые, сотые и даже миллионные доли секунды и сравнительно редко — секунды и даже десятки секунд.

Таким образом, один установившийся режим цепи отделяется от другого некоторым промежутком времени, в течение которого происходит постепенный переход от прежнего состояния цепи к новому.

Переходный процесс в линейных цепях можно рассматривать как результат наложения двух процессов:

  1. нового установившегося режима, который наступает после коммутации;
  2. свободного процесса, обеспечивающего переход цепи от прежнего установившегося режима к новому установившемуся режиму.

Таким образом, ток i цепи в течение переходного процесса можно представить суммой двух токов: нового установившегося и свободного , возникающего после коммутации:

Аналогично напряжение в течение переходного процесса равно

В результате переходного процесса происходят изменения тока, напряжения, фазы, частоты и т.д.

Изучение переходных процессов очень важно, так как оно позволяет выявить возможные превышения напряжения на отдельных участках цепи, которые могут оказаться опасными для изоляции установки, позволяет выявить возможные броски токов, величина которых в десятки раз превышает установившийся. Изучение переходных процессов позволяет выявить ситуации, возникающие в электрических цепях при коротком замыкании, резком включении и выключении рубильников, и прочие режимы работы цепи.

Переходный процесс в электрической цепи

Переходный процесс в электрической цепи — это процесс, возникающий в электрической цепи при различных воздействиях, приводящих их из стационарного состояния в новое стационарное состояние, когда при действии различного рода коммутационной аппаратуры, например, ключей, переключателей для включения или отключения источника или приёмника энергии, при обрывах в цепи, при коротких замыканиях отдельных участков цепи и т. д.

Подключение катушки индуктивности к источнику с постоянным напряжением

Если катушку индуктивности (RL) подключить к источнику с постоянным напряжением U (замыкание ключа К), то ток i в не-разветвленной цепи (рис. 20.1а) будет увеличиваться от нуля (в начале переходного процесса) до установившегося значения

Установившийся, т.е. постоянный, ток I не индуктирует в катушке ЭДС самоиндукции, поэтому индуктивное сопротивление в установившемся режиме при условии (20.3) отсутствует.

Этот увеличивающийся ток i индуктирует в индуктивности L катушки ЭДС самоиндукции (см. (9.11))

Следовательно, для любого момента времени переходного процесса по второму закону Кирхгофа можно записать

Разделив уравнение (20.4) на R, получают

В уравнении (20.5) — установившийся в конце переходного процесса ток ().

Отношение — имеет размерность времени обозначается буквой (тау) и называется постоянной времени -цепи, т. е.

Тогда уравнение (20.5) можно записать в виде

Если это уравнение проинтегрировать, предварительно разделив переменные (ток и время), а затем спотенцировать, то получим выражение

где е — основание натурального логарифма (е=2,71); I — установившийся ток (); () — свободный ток (), так как , т.е.

Таким образом, уравнение, которое позволяет определить вели-шу тока в цепи с индуктивностью L в любой момент переходно-процесса RL-цепи при подключении реальной катушки индук-1Вности к источнику с постоянным напряжением U, записывается в виде

Воспользовавшись Приложением 9, по выражению (20.10) можно определить, что за время t= ток в цепи увеличивается до 0,63I, а за время t= 4,6 — до 0,99I, т. е. до 99 % установившегося тока I.

Теоретически переходный процесс происходит бесконечно долго. Практически переходный процесс в рассматриваемой цепи считается законченным, когда ток i увеличивается до 99 % установившегося тока I.

Как видим, чем больше xL, тем больше времени t длится перечный процесс.

Таким образом, постоянная времени xL определяет скорость греховного процесса или его длительность.

ЭДС самоиндукции в рассматриваемой цепи, вызванная свободным током , определяется выражением

Таким образом, ЭДС самоиндукции в -цепи, подключенной к источнику с постоянным напряжением U, будет уменьшаться. Так, за время t=, ЭДС самоиндукции согласно (20.11) уменьшатся до 0,37U, а за время t = 4,6 — до 0,01 U, т.е. до 1 % постоянного напряжения U.

Увеличение тока и уменьшение ЭДС самоиндукции катушки при подключении катушки к источнику с постоянным напряжением U показаны на графике рис. 20.1б.

Отключение и замыкание RL-цепи

Если цепь с катушкой, в которой проходит установившийся ток I (рис. 20.1а), разомкнуть, то ток i в такой цепи с большой скоростью уменьшается до нуля и в катушке индуктируется большая ЭДС самоиндукции eL

Эта ЭДС полностью приложена к клеммам ключа, так как при размыкании сопротивление ключа становится бесконечно большим. Эта ЭДС вызывает значительное увеличение электрического поля между контактами ключа, а следовательно, и напряженности поля. Большая напряженность электрического поля может вызвать искровой и даже дуговой разряд между размыкающимися контактами ключа, в результате чего обгорают контакты ключа.

Поэтому рубильники в RL-цепях шунтируются специальными устройствами, которые обеспечивают гашение дугового разряда. Для гашения дугового разряда необходимо одновременно с отключением катушки индуктивности от источника замкнуть ее на разрядное сопротивление R0 (рис. 20.2а).

Уменьшение тока при отключении катушки от источника (рис. 20.1а) происходит по закону

Наглядно это уменьшение можно наблюдать на рис. 20.1б, если кривую изменения eL считать кривой уменьшения тока в соответствующем масштабе.

Постоянная времени при отключении катушки от источника с постоянным напряжением U определяется как и при включении катушки на это напряжение, т.е.

Если катушку с установившимся током I, зашунтированную сопротивлением Ro (рис. 20.2а), отключить от источника (разомкнуть ключ К), то в замкнутом контуре ABCD в начальный момент коммутации пройдет ток , т.е. установившийся ток. Этот ток I может оказаться недопустимо большим резистора с сопротивлением Ro.

Для определения активного сопротивления катушки и полного ее сопротивления включают амперметр А и вольтметр V (рис. 20.26), т.е. вместо резистора с сопротивлением Ro в контур CD (рис. 20.26) включен вольтметр V. Этот вольтметр может не быть рассчитан на установившийся ток I, проходящий через него и размыкании ключа, в результате чего может сгореть. Чтобы «сжечь» вольтметр (рис. 20.26), сначала необходимо отключить вольтметр, а затем разомкнуть ключ К.

Как видно, за счет переходных процессов в цепях с индуктивностью возникают большие токи и напряжения. С этим необходимо считаться и учитывать при проектировании и эксплуатации цепей с индуктивностью.

Зарядка, разрядка и саморазрядка конденсатора

Если конденсатор с сопротивлением (утечки) R и емкостью С подключить к источнику с постоянным напряжением U (замыканием ключа К), то в цепи (рис. 20.3а) появится ток зарядки конденсатора (см. (11.16)):

где — напряжение на конденсаторе в любой момент времени переходного процесса.

По второму закону Кирхгофа для цепи зарядки конденсатора (рис. 20.3а) можно записать уравнение

где произведение RC имеет размерность времени, обозначается буквой и называется постоянной времени переходного процесса в RC-цепи, т. е.

Уравнение (20.13) можно записать в виде

Если в уравнении (20.15) разделить переменные, проинтегрировать, а затем спотенцировать, то получится выражение

где U — установившееся напряжение RC-цепи; -свободная составляющая напряжения на конденсаторе; т.е.

Следовательно, напряжение на заряжающемся конденсаторе в любой момент времени t переходного процесса определяется выражением

По (20.17), пользуясь Приложением 9, можно определить, что за время t= конденсатор зарядится до напряжения = 0,63 U, а за время t=4,6 — до напряжения =0,99U.

Теоретически зарядка конденсатора длится бесконечно долю а практически конденсатор считается заряженным, когда напряжение на нем достигает 99 % напряжения источника U.

Таким образом, и в RC-цепи, чем больше постоянная времени , тем больше времени t тратится на зарядку конденсатор, т. е. и в данном случае постоянная времени характеризует дли тельность зарядки и разрядки конденсатора.

Ток i при зарядке конденсатора (см. (20.13)) уменьшается по за кону
(20. IS)

где — максимальный ток, который имеет место в начальный момент t=0 зарядки конденсатора (момент коммутации).

За время t= ток в цепи заряжающегося конденсатора уменьшится до 0,37 I, а за время t= 4,6 — до 0,01 I, при котором переходный процесс можно считать законченным.

Графики изменения напряжения на конденсаторе и тока в цепи арядки конденсатора изображены на рис. 20.36.

Если конденсатор емкостью С, заряженный предварительно до напряжения U, разряжать через резистор с сопротивлением R рис. 20.4а), то напряжение на конденсаторе и ток в цепи разрядки будут уменьшаться по закону

где U — напряжение на конденсаторе до начала разрядки (при t= 0), а — максимальный ток в начальный момент разрядки R (при t=0), = RC — постоянная времени в цепи разрядки конденсатора.

За время t= напряжение и ток уменьшатся до 37 % своих максимальных значений. Изменение напряжения и тока на разряжающемся конденсаторе показаны на рис. 20.46 (в разных масштабах).

Если конденсатор емкостью С, заряженный до напряжения U, отсоединить от источника, то он будет разряжаться через свой диэлектрик. Напряжение на нем будет уменьшаться по закону . Процесс разрядки конденсатора через свой диэлектрик называется саморазрядом.

Постоянная времени саморазряда зависит от физических свойств диэлектрика

где р — удельное сопротивление диэлектрика; — электрическая постоянная; — диэлектрическая проницаемость диэлектрика (относительная).

Для определения напряжения, тока, ЭДС в любой момент переходного процесса -цепи и -цепи можно воспользоваться таблицей показательных функций (Приложение 9).

Пример 20.1

Катушка электромагнита с параметрами =11 Ом и = 0,11 мГн подключена к сети постоянного тока с напряжением =110 В. Определить время t, за которое ток в катушке i увеличится от нуля до 8 А. Определить, какого значение достигнет ЭДС самоиндукции eL за время t.

Решение

Установившийся ток

Постоянная времени для катушки

Подставляем значение величин в (20.10):

, откуда .

По Приложению 9 определяется = 1,6, откуда

ЭДС самоиндукции за время с уменьшается со 110 В до значения

Пример 20.2

К зажимам катушки индуктивности с параметрами = 100 Ом, = 10 Гн подключен вольтметр V (рис. 20.26) электродинамической системы. Сопротивление вольтметра 5000 Ом. Напряжение на клеммах источника U= 200 В.

Определить напряжение на зажимах вольтметра и ток в обмотках прибора (обмотки соединены последовательно) при t=0, если размыкание рубильника К произойдет мгновенно и дуги не возникнет.

Решение

До размыкания рубильника через катушку проходил ток

В момент размыкания рубильника (t = 0) весь этот ток проходит обмоткам вольтметра. При этом на вольтметре напряжение cтанет равным

Такого напряжения (10 кВ) и такого тока (2 А) обмотка вольтметра (обычно подвижная обмотка электродинамического прибора рассчитана на ток порядка десятков, максимум, сотен миллиампер) не выдержит и сгорит.

При размыкании рубильника с конечной скоростью между расходящимися контактами рубильника К (рис. 20.26) возникнет электрическая дуга. Это приведет к тому, что увеличение напряжения на вольтметре и тока через обмотки вольтметра будет меньше, чем в рассмотренном выше случае (мгновенное размыкание рубильника). Однако меры предосторожности для сохранения вольтметра и рубильника, описанные выше, нужно соблюдать.

Пример 20.3

Конденсатор емкостью С= 2 мкФ через сопротивление R= 500 кОм подключается к источнику с постоянным напряжением U= 220 В.

Определить напряжение на конденсаторе и ток в цепи заряда конденсатора i через 2 с от начала заряда конденсатора t= 2 с), а также время t’, за которое этот конденсатор зарядится р напряжения Uc= 150 В.

Решение

Постоянная времени заряда конденсатора

Напряжение на конденсаторе через 2 с от начала заряда

Ток в цепи заряда конденсатора через 2 с от начала заряда

так как

Время t’ заряда конденсатора до напряжения 150 В определяется по формуле (20.17):

Откуда

Из таблицы показательных функций (Приложение 9) находят t’= 1,14 с.

Пример 20.4

Параметры цепи, изображенной на рис. 20.5, следующие:

Определить значение токов в ветвях через время t= 2 с после замыкания ключа К.

Решение

Для ветви (1) с индуктивностью определяются:

установившийся ток

и постоянная времени

Тогда ток через 2 с будет равен

Для ветви (2) с емкостью определяются:

максимальный установившийся ток по окончании переходного процесса

и постоянная времени .

Тогда ток зарядки через 2 с будет равен

Для ветви (3) с активным сопротивлением определяется ток ветви

Постоянная времени = 0, так как отсутствуют L и С.

Через 2 с значение тока будет таким же, т. е.

Переходные процессы в электрических цепях. Классический метод расчета

Возникновение переходных процессов:

В предыдущих главах рассматривались установившиеся процессы в линейных электрических цепях, т. е. такие процессы, при которых напряжения и токи либо неизменны во времени (цепи постоянного тока), либо представляют собой периодические функции времени (цепи переменного тока).

Наступлению установившегося процесса, отличного от первоначального режима работы цепи, предшествует, как правило, переходный процесс, при котором напряжения и токи изменяются непериодически.

Переход от одного режима работы цепи к другому может быть вызван изменением параметров или схемы цепи, называемым в общем случае в электротехнике коммутацией.

Можно теоретически считать, что коммутация цепи производится мгновенно, т. е. на включение, выключение или переключение цепи время не расходуется. Тем не менее переход от исходного режима работы цепи к последующему установившемуся процессу происходит не мгновенно, а в течение некоторого времени. Объясняется это тем, что каждому состоянию цепи соответствует определенный запас энергии электрических и магнитных полей. Переход к новому режиму связан с нарастанием или убыванием энергии этих полей. Энергия запасаемая в магнитном поле индуктивности L, и энергия запасаемая в электрическом поле емкости С, не могут изменяться мгновенно: энергия может изменяться непрерывно, без скачков, так как в противном случае мощность, равная производной энергии по времени, достигала бы бесконечных значении, что физически невозможно. Именно поэтому, например, в случае размыкания ветви с индуктивной катушкой в месте размыкания неизбежно возникает искра, в сопротивлении которой расходуется энергия, накопленная в магнитном поле индуктивной катушки. Аналогично если замкнуть накоротко выводы конденсатора, который был предварительно заряжен, то запасенная в нем электрическая энергия рассеется в сопротивлении соединяющего провода и между контактами.

Если исключить случаи размыкания индуктивности и замыкания накоротко емкости и рассматривать цепи, в которых энергия, накапливаемая в магнитном или электрическом поле, может рассеиваться в виде теплоты в сопротивлениях, то, считая, что коммутация происходит мгновенно, можно искрообразование не учитывать.

Для завершения переходного и наступления установившегося процессов теоретически требуется бесконечно большое время. Практически, однако, время переходного процесса определяется малым интервалом, по истечении которого токи и напряжения настолько приближаются к установившимся значениям, что разница оказывается практически неощутимой. Чем интенсивнее происходит рассеяние энергии в сопротивлениях, тем быстрее протекает переходный процесс.

Если бы электрическая цепь состояла только из сопротивлений и не содержала индуктивностей и емкостей, то переход от одного установившегося состояния к другому совершался бы мгновенно, без затраты времени. В реальных электротехнических устройствах тепловые потери, обусловленные током, магнитные и электрические поля сопутствуют друг другу. Применяя специальные схемы и подбирая соответствующие параметры цепи, можно в зависимости от необходимости ускорить или замедлить переходный процесс.

В одних случаях переходные процессы в электрических цепях нежелательны и опасны (например, при коротких замыканиях в энергетических системах). В других случаях переходный процесс представляет собой естественный, нормальный режим работы цепи, как это, например, имеет место в радиопередающих и радиоприемных устройствах, системах автоматического регулирования и других цепях.

Существуют различные методы расчета переходных процессов в линейных электрических цепях. Настоящая глава посвящена классическому методу решения дифференциальных уравнений, описывающих переходные процессы.

Законы коммутации и начальные условия

Высказанные выше положения о том, что запас энергии магнитного или электрического поля может изменяться только плавно, без скачков, выражают принцип непрерывности во времени потокосцепления индуктивности и электрического заряда емкости и называются законами коммутации.

Невозможность скачкообразного изменения потокосцепления следует из того, что в противном случае на индуктивности появилось бы бесконечно большое напряжение что лишено физического смысла. Ввиду равенства принцип непрерывности потокосцепления означает, что при неизменном L ток i не может изменяться скачком. Итак, в начальный момент после коммутации ток в индуктивности остается таким же, каким он был непосредственно перед коммутацией, а затем плавно изменяется.

Аналогично невозможность скачкообразного изменения электрического заряда q следует из того, что в противном случае через емкость проходил бы бесконечно большой ток, что также лишено физического смысла. Ввиду равенства принцип непрерывности электрического заряда означает, что при неизменном С напряжение не может изменяться скачком. Итак, в начальный момент после коммутации напряжение на емкости остается таким же, каким оно было непосредственно перед коммутацией, а затем плавно изменяется.

При этом следует отметить, что в цепях с идеализированными сосредоточенными параметрами скачкообразно могут изменяться: 1) токи в сопротивлениях и емкостях и 2) напряжения на сопротивлениях и индуктивностях.

Значения тока в индуктивности и напряжения на емкости в момент коммутации называются независимыми начальными условиями.

Обычно принимают, что коммутация происходит в момент времени t= 0; тогда ток в индуктивности и напряжение на емкости в момент времени непосредственно перед коммутацией обозначаются через а в начальный момент переходного процесса после коммутации — через

На основании законов коммутации:

Эти равенства выражают начальные условия цепи, в которых происходит коммутация.

При нулевых начальных условиях, т. е. косцаиндуктивность в начальный момент после коммутации равносильна разрыву цепи, а емкость равносильна короткому замыканию.

В случае ненулевых начальных условий, т. е. когда индуктивность в первый момент равносильна источнику тока , а емкость равносильна источнику э. д. с. (0).

Независимые начальные условия характеризуют энергию магнитного и электрического полей, запасенную к моменту коммутации, и для расчета переходного процесса обязательно требуется знание этих начальных условий, причем совершенно безразлично, каким образом эти условия в цепи были созданы.

При расчете переходных процессов в разветвленных электрических цепях наряду с независимыми начальными условиями используются так называемые зависимые начальные условия, а именно: значения токов, напряжений и их производных в начальный момент времени (t = 0).
До сих пор нами исключались из рассмотрения случаи коммутации, при которых неизбежно между контактами возникает искра или дуга. Один из таких случаев показан на рис. 14-1, а. До коммутации ток проходит через индуктивность и контакт, шунтирующий индуктивность ток в равен нулю. В момент t = 0 контакт размыкается и индуктивности и оказываются включенными последовательно; ток в них принудительно становится одинаковым. Поскольку в момент коммутации ток в не изменяется, а ток в равен нулю, в силу первого закона Кирхгофа ток должен замкнуться через дугу, образовавшуюся между контактами. Кроме того, если под подразумевать реальную индуктивную катушку, то ток может частично

замкнуться и через межвитковую емкость. После быстрого погасания дуги токи в уравниваются. Эта начальная стадия переходного процесса протекает столь быстро, что ею практически можно пренебречь, считая, что токи в уравниваются мгновенно. Именно в этом смысле можно условно говорить о скачкообразном изменении токов в индуктивностях, которое предшествует исследуемому переходному процессу в цепи. При этом для расчета переходного процесса используется принцип непрерывности суммарного потокосцепления при коммутации, т. е. . Скачкообразное изменение токов и соответствующих им потоков в Lx и L2 в момент коммутации не сопряжено в данном случае с наведением бесконечно большой суммарной э. д. с. самоиндукции, поскольку суммарное лотокосцепление не претерпевает скачкообразного изменения. При новых значениях токов в магнитная энергия, запасенная в катушках, будет меньше энергии, запасенной в первой катушке до коммутации. Часть энергии превратится в тепло в искре, а также излучится.

Найденный таким образом ток может рассматриваться как независимое начальное условие для расчета переходного процесса во всей цепи на рис. 14-1, а после разрыва дуги.

При коммутациях в цепях с емкостями при отсутствии сопротивлений также возможны весьма быстрые перераспределения зарядов, условно рассматриваемые как мгновенные. В этом случае применим принцип непрерывности суммарного заряда. Полученные при этом значения зарядов и напряжений на отдельных емкостях используются в расчете последующего переходного процесса как независимые начальные условия.

Например, в случае схемы на рис. 14-1, б принцип непрерывности суммарного заряда до и после коммутации выражается равенством

При сделанном допущении в остальной электрической цепи, соединенной с емкостями, не возникает бесконечно большого тока, так как суммарный заряд не изменяется скачкообразно при t=0.

В процессе рассматриваемой коммутации энергия электрического поля уменьшится, так как часть ее превратится в тепло в очень малом сопротивлении проводника при очень большом токе, а также сможет выделиться в искре и излучиться.

Установившийся и свободный режимы

В общем случае анализ переходного процесса в линейной цепи с сосредоточенными параметрами r, L, С и М сводится к решению обыкновенных линейных неоднородных дифференциальных уравнений, выражаюших законы Кирхгофа. Эти уравнения представляют собой линейную комбинацию напряжений, токов, их первых производных и интегралов по времени.

Например, если какая-нибудь э. д. с. е (t) включается в цепь, состоящую из последовательно соединенных r, L и С, то интегродифференциальное уравнение имеет вид:

Это уравнение после дифференцирования приводится к неоднородному дифференциальному уравнению второго

Как известно, общий интеграл такого^ уравнения равен сумме частного решения неоднородного уравнения и общего решения однородного уравнения.

Частное решение выражает установившийся режим, задаваемый источником.

Расчеты установившихся токов рассмотрены в предыдущих главах.

Общее решение физически определяет поведение цепи при отсутствии внешних источников электрической энергии и заданных начальных условиях. Функции, определяемые общим решением, называются свободными составляющими (токов, напряжений и пр.).

В случае, рассмотренном выше, однородное уравнение имеет вид:

и соответствующее ему характеристическое уравнение

Если корни характеристического уравнения обозначить через , то общее решение запишется в виде:

где — постоянные интегрирования, которые определяются из начальных условий .

Полный переходный ток в цепи равен сумме установившегося и свободного токов:

Аналогично напряжение, заряд, магнитный поток и другие функции на любом участке цепи в переходном режиме состоят из установившейся и свободной составляющих.

На основании законов коммутации можно найти начальные независимые условия После этого можно написать согласно (14-7):

откуда

Итак, начальные значения свободных функций и (0) определяются изменениями в момент коммутации соответствующих установившихся функций.

В частном случае при нулевых начальных условиях:

В зависимости от порядка дифференциальных уравнений, описывающих исследуемые переходные процессы, различают цепи первого, второго и более высокого порядков.

В цепях первого порядка накопление энергии происходит только в одном элементе, L или С в форме магнитной энергии, или электрической энергии . Одноконтурная цепь, содержащая элементы, в которых накапливается энергия обоих видов — магнитная « электрическая, представляет собой цепь второго порядка . Разветвленные цепи могут быть более высокого порядка.

Переходный процесс в цепи r, L

Положим, что в момент t = 0 цепь, состоящая из сопротивления r и индуктивности L, включенных последовательно, присоединяется к источнику э. д. с. е (t) (рис. 14-2).

Дифференциальное уравнение для времени записывается в виде


Характеристическое уравнение имеет види соответственно корень уравнения

Отсюда свободный ток


Переходный ток в цепи определится суммой установившегося и свободного токов:

Установившийся ток может быть найден, если задана э. д. с. е (t).

Рассмотрим три случая:

1) включение в цепь г, L постоянной э. д. с. £;

2) короткое замыкание цепи г, L

3) включение в цепь г, L синусоидальной э. д. с.

1. Включение в цепь г, L постоянной э. д. с.

При включении в цепь г, L постоянной э. д. с. Е установившийся ток равен Е’/г. Поэтому согласно (14-9)

Постоянная интегрирования А находится по начальному условию

Согласно уравнению (14-10) при t — 0


откуда Следовательно,

здесь — предельное значение, к которому стремится ток i (t) по мере неограниченного возрастания t, называемое установившимся током.

В начальный момент t = 0 э. д. с. самоиндукции = и полностью компенсируется э. д. с. источника, так как ток i (0) равен нулю.

С течением времени э. д. с. самоиндукции убывает, а ток в цепи возрастает, асимптотически приближаясь к установившемуся значению.

На рис. 14-3 показаны кривые установившегося, свободного и переходного токов; на том же рисунке изображена кривая напряжения на индуктивности

Из курса математического анализа известно, что если, то подкасательная равна . В данном случае при любом значении t

Величина носит название постоянной времени. Постоянная времени измеряется в секундах:


Выражение (14-11) показывает, что постоянная времени графически определяется длиной подкасательной к кривой или при любом значении t.

Нарастание тока происходит тем быстрее, чем меньше постоянная времени и соответственно чем быстрее убывает э. д. с. самоиндукции. Для различных моментов времени ток в цепи, выраженный в процентах конечного (установившегося) значения составляет:


Следовательно, постоянная времени цепи г, L равна промежутку времени, в течение которого свободная составляющая тока убывает в е = 2,718 раза и соответственно ток в этой цепи, включенной на постоянное напряжение, достигает 63,2% своего установившегося значения.

Как видно из рис. 14-3 и приведенной выше таблицы», переходный процесс теоретически длится бесконечно долго. Практически же можно считать, что он заканчивается спустя

2. Короткое замыкание цепи r, L.

Положим, что цепь r, L, присоединенная к источнику постоянного или переменного напряжения, замыкается при t = 0 накоротко (рис. 14-4, а). В образовавшемся при этом контуре r, L благодаря наличию магнитного поля индуктивной катушки ток исчезает не мгновенно: э. д. с. самоиндукции, обусловленная убыванием магнитного потока, стремится поддержать ток в контуре за счет энергии исчезающего магнитного поля.

По мере того как энергия магнитного поля постепенно рассеивается, превращаясь в сопротивлении г в тепло, ток в контуре приближается к нулю.

Процесс, происходящий в короткозамкнутом контуре г, L, является свободным; установившийся ток в данном случае равен нулю.

Положив в (14-9) получим:


Постоянная интегрирования А находится из начального условия

здесь i (0—) — значение тока в индуктивности в момент, непосредственно предшествовавший короткому замыканию; оно может быть положительным или отрицательным.

На рис. 14-4, б изображены кривые спада тока в короткозамкнутом контуре и кривая напряжения на индуктивности

в предположении, что i (0) > 0.

Постоянная времени контура может быть найдена графически как подкасательная к кривой i (t) (например-, в момент t = 0).

Переходный процесс в короткозамкнутом контуре заканчивается теоретически при . За это время в сопротивлении г выделяется в виде тепла энергия


т. е. вся энергия, запасенная в магнитном поле катушки до коммутации.

Так же как и в предыдущем случае, переходный процесс в короткозамкнутом контуре можно практически считать законченным спустя

3. Включение в цепь r, L синусоидальной э. д. с.

При включении в цепь r, L синусоидальной э. д. с. установившийся ток будет:

где

На основании (14-9)

где

Постоянная интегрирования определяется по начальному условию

Следовательно, откуда А =Поэтому искомый ток будет:

На рис. 14-5, а изображены кривые Начальные ординаты одинаковы и противоположны по знаку; поэтому ток в начальный момент равен нулю. Свободный ток убывает по показательному закону. По истечении времени свободный ток уменьшается в е=2,718 раза по сравнению с начальным значением (0). Постоянная времени прямо пропорциональна добротности
контура Q и обратно пропорциональна частоте
Если в момент коммутации (t = 0) ток проходит через нуль, т. е. выполняется условие или = , то свободный ток не возникает и в цепи сразу наступает установившийся режим без переходного процесса.

Если же коммутация происходит при то начальный свободный ток максимален (рис. 14-5, б),

а именно и ток переходного режима дости-

гает экстремального значения (положительного или отрицательного) в конце первого полупёриода. Однако даже в предельном случае, когда r= 0 и, следовательно, ток не может превышать амплитуды установившегося режима более чем вдвое.

При достаточно большой постоянной времени первым слагаемым в правой части дифференциального уравнения
можно пренебречь по сравнению со вторым слагаемым, приняв приближенно, откудаи соответственно

Следовательно, цепь с последовательно соединенными сопротивлением и индуктивностью при большой постоянной времени можно рассматривать как интегрирующее звено.

В свою очередь при достаточно малой постоянной времени, пренебрегая вторым слагаемым уравнения, приближенно получаем:


откуда
.
т. e. цепь с последовательно соединенными сопротивлением и индуктивностью при малой постоянной времени представляет собой дифференцирующее звено.

В обоих случаях функция е(t) может быть произвольной.

Интегрирующие и дифференцирующие звенья входят в качестве элементов в системы автоматического управления и регулирования.

Переходный процесс в цепи r, С

Положим, что в момент t = О цепь, состоящая из сопротивления г и емкости С, включенных последовательно, присоединяется к источнику э. д. с. е (t) (рис. 14-6).

На основании второго закона Кирхгофа уравнение для времени t 0 имеет вид:


где — напряжение на емкости.
С учетом того, что
получим:


здесь искомой величиной является напряжение на емкости.

Характеристическое уравнениеи соответственно корень уравненияСледовательносвободная слагающая напряжения на емкости

где — постоянная времени контура r, С (измеряется в секундах:

Переходное напряжение на емкости равно сумме принужденного и свободного напряжений:

В свою очередь ток в контуре

Рассмотрим три случая:

1) включение в цепь г, С постоянной э. д. с.

2) короткое замыкание цепи r, С

3) включение в цепь r, С синусоидальной э. д. с.

Включение в цепь r, С постоянной э. д. с.

Включим постоянную э. д. с. Е в цепь с сопротивлением г и предварительно заряженной емкостью С (полярности заряженной емкости указаны на рис. 14-6 знаками + и —); начальное напряжение на емкости

(0) обозначим для простоты через U.

Установившееся напряжение на емкости равно э. д. с. источника. Поэтому согласно (14-12)

Постоянная интегрирования А, входящая в (14-14), находится по начальному условию:

При t = 0 имеем откуда Следовательно,

Согласно (14-13) ток в контуре

Если Е > U, то с течением времени напряжение на емкости возрастает, стремясь к установившемуся значению Е, а ток убывает, стремясь в пределе к нулю; на рис. 14-7, а изображены кривые нарастания и спада i. Чем больше постоянная времени, тем медленнее происходят нарастание и спад i.

Если Е 0), убывающей (с 0) или убывающей (с 1 В случае, когда э. д. с. изменяется в виде импульса, имеющего кусочно-аналитическую форму, представляется часто целесообразным применять интеграл Дюамеля

токи же — из уравнений Кирхгофа после коммутации:

Подстановка в эти уравнения найденных значений и

дает:

Начальное значение производной тока в индуктивности определяется также из уравнения Кирхгофа:

откуда при t = О


Пример (4-2. Определить ток i в иепи на рис. 14-17, если известно, что е = E = 100 В,

Подстановка заданных значений в приведенное выше характеристическое уравнение дает:


корни характеристического уравнения комплексные:

В начальный момент следовательно, 0 = 0,952 + М, откуда М= — 0,952.

Производная тока по времени

В начальный момент

Следовательно, в начальный момент напряжение на ветви (и параллельной ей ветви равно Начальное значение

производной) определяется из уравнений откуда

Следовательно, подставляя значение в выражение для производной при t= 0, получаем:


откуда

Итак,

Переходные процессы в цепях с распределенными параметрами

Переходные процессы в цепях с распределенными параметрами (в линиях, обмотках электрических машин и т. п.) возникают при коммутациях, передаче непериодических сигналов или под влиянием внешнего электромагнитного поля (например, при грозовых разрядах). Для исследования переходных процессов в однородных цепях с распределенными параметрами пользуются дифференциальными уравнениями (11-2) в частных производных:

где r, L, g и С — параметры цепи на единицу длины; х — координата рассматриваемой точки, отсчитываемая от начала цепи.

В общем виде решение этих дифференциальных уравнений достаточно сложно. Решение упрощается, если пренебречь потерями В этом случае
е. считать, что r и g равны нулю.

Дифференцируя (14-28) по х:

и используя (14-29), получаем:

Дифференциальное уравнение (14-30) известно в математической физике под названием уравнения ко—лебаний струны. Его решение дано Даламбером и имеет вид:

где

Первая слагающая представляет собой одиночную прямую волну напряжения, которая без изменения перемещается в сторону возрастающих х, т. е. от начала к концу цепи. Для всех значений х, при которых const, эта слагающая имеет одно и-то же значение, т. е. волна движется со скоростью

Вторая слагающая представляет собой одиночную о б -ратную волну напряжения, которая без изменения перемещается в противоположном направлении.

Для нахождения тока произведем замену переменных, обозначив На основании (14-29) и (14-31)

Но

Интегрирование последнего уравнения дает

Выражения (14-31) и (14-32) записываются сокращенно:


здесь — прямая и обратная волны тока; — волновое сопротивление.

Следовательно, напряжение и ток прямой и соответственно обратной волн связаны законом
Аналогичный результат был получен для установившихся прямой и обратной волн при рассмотрении синусоидального режима в однородной линии. Физически установившиеся волны представляют собой бесконечные суммы прямых и обратных одиночных волн, отраженных от обоих концов линии.

Итак, при отсутствии потерь в однородной цепи с распределенными параметрами напряжение и ток могут быть представлены как сумма и разность двух волн, движущихся с одинаковой скоростью в противоположных напряжениях, без изменения их формы. При этом в любой точке однородной цепи отношение, напряжения и тока для прямой и обратной волн равно волновому сопротивлению гв.

Если на пути распространения волны встречается неоднородность, например воздушная линия переходит в кабельную или волна достигает конца линии (разомкнутого или замкнутого через сопротивление или на короткое), происходит отражение волны. В зависимости от характера неоднородности отражение может быть частичным или полным. В первом случае наряду с отраженной волной возникает преломленная волна, распространяющаяся за место нарушения однородности; во втором случае преломленная волна отсутствует.

Обозначим — напряжение и ток в месте отражения;

— напряжение и ток падающей (прямой) волны;

Постоянная интегрирования может быть отнесена к функциям


— напряжение и ток отраженной (обратной) волны;

— напряжение и ток преломленной (прямой) волны;

— волновые сопротивления для прямой и обратной волн и преломленной волны

В месте неоднородности выполняется условие равенства
напряжений и токов:

Следовательно,

Подстановка в (14-36) значений дает:

В результате совместного решения уравнений (14-35) — (14-37) находятся отраженная и преломленная волны:

где — коэффициент отражения.

Соответственно ток отраженной волны

а ток преломленной волны


Последнее выражение показывает, что ток в конце линии после отражения можно найти как ток в эквивалентной цепи, в которую включается напряжение, равное двойному напряжению падающей волны, и которая состоит из волнового сопротивления первой линии и последовательно соединенного с ним сопротивления нагрузки (в которое входит вторая линия своим волновым сопротивлением

Опишем процесс включения однородной линии без потерь. После присоединения линии к источнику э. д. с. по линии начнет распространяться зарядная волна, создающая напряжение и ток. Если в конце линии присоединена нагрузка, равная волновому сопротивлению линии,

то падающая волна, достигнув ее, не отразится и в линии сразу наступит установившийся режим. Если же нагрузка с линией не согласована, то падающая зарядная волна, достигнув конца линии, претерпит отражение. Распространяясь в обратную сторону, отраженная волна сложится с падающей, причем напряжения волн суммируются, а токи вычитаются (алгебраически). Достигнув начала линии, обратная волна снова отразится от источника э. д. с., как от короткозамкнутого конца; появится новая прямая волна напряжения и тока, которая также отразится от конца, и т. д. Процесс будет продолжаться до наступления установившегося режима. Теоретически в идеальной линии без потерь при чисто реактивной нагрузке процесс колебаний будет продолжаться бесконечно долго. В реальной линии при наличии потерь волны напряжения и тока будут постепенно затухать в направлении распространения.

Напряжение и ток в линии в произвольный момент времени определятся как алгебраические суммы и соответственно разности напряжений и токов прямых и обратных волн.

Пользуясь формулами и схемой замещения, описанной выше, можно найти напряжение и ток, возникающие в месте присоединения сосредоточенной нагрузки или перехода одной линии в другую (см. пример 14-3).

Следует отметить что индуктивность, включенная последовательно в линию, или емкость, включенная параллельно проводам линии, сглаживает фронт преломленных волн; активное сопротивление, включенное в линию параллельно, уменьшает преломленную волну.

Пример 14-3. К концу линии, имеющей волновое сопротивление присоединена индуктивная катушка r, L. Определить ток в катушке и напряжение на ней под воздействием прямоугольной волны U

соответствует моменту падения волны на катушках

Рекомендую подробно изучить предметы:
  1. Электротехника
  2. Основы теории цепей
Ещё лекции с примерами решения и объяснением:
  • Переходные процессы в линейных цепях
  • Переходные процессы в нелинейных цепях
  • Переходные процессы в электрических цепях с сосредоточенными параметрами
  • Переходные процессы в колебательных контурах
  • Цепи с взаимной индукцией
  • Трехфазные цепи
  • Периодические несинусоидальные напряжения и токи в линейных цепях
  • Нелинейные цепи переменного тока

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Дифференцирующая цепь RC

Постоянная времени цепи RC

Электрическая цепь RC

Рассмотрим ток в электрической цепи, состоящей из конденсатора ёмкостью C и резистора сопротивлением R, соединённых параллельно.
Значение тока заряда или разряда конденсатора определится выражением I = C(dU/dt), а значение тока в резисторе, согласно закону Ома, составит U/R, где U — напряжение заряда конденсатора.

Из рисунка видно, что электрический ток I в элементах C и R цепи будет иметь одинаковое значение и противоположное направление, согласно закону Кирхгофа. Следовательно, его можно выразить следующим образом:

Решаем дифференциальное уравнение C(dU/dt)= -U/R

Интегрируем:

Из таблицы интегралов здесь используем преобразование

Получаем общий интеграл уравнения: ln|U| = — t/RC + Const.
Выразим из него напряжение U потенцированием: U = e -t/RC * e Const .
Решение примет вид:

Здесь Const — константа, величина, определяемая начальными условиями.

Следовательно, напряжение U заряда или разряда конденсатора будет меняться во времени по экспоненциальному закону e -t/RC .

Экспонента — функция exp(x) = e x
e – Математическая константа, приблизительно равная 2.718281828.

Постоянная времени τ

Если конденсатор емкостью C последовательно с резистором сопротивлением R подключить к источнику постоянного напряжения U, в цепи пойдёт ток, который за любое время t зарядит конденсатор до значения UC и определится выражением:

Тогда напряжение UC на выводах конденсатора будет увеличиваться от нуля до значения U по экспоненте:

При t = RC, напряжение на конденсаторе составит UC = U(1 — e -1 ) = U(1 — 1/e) .
Время, численно равное произведению RC, называется постоянной времени цепи RC и обозначается греческой буквой τ.

Постоянная времени τ = RC

За время τ конденсатор зарядится до (1 — 1/e)*100% ≈ 63,2% значения U.
За время 3τ напряжение составит (1 — 1/e 3 )*100% ≈ 95% значения U.
За время 5τ напряжение возрастёт до (1 — 1/e 5 )*100% ≈ 99% значения U.

Если к конденсатору емкостью C, заряженному до напряжения U, параллельно подключить резистор сопротивлением R, тогда в цепи пойдёт ток разряда конденсатора.

Напряжение на конденсаторе при разряде будет составлять UC = Ue -t/τ = U/e t/τ .

За время τ напряжение на конденсаторе уменьшится до значения U/e, что составит 1/e*100% ≈ 36.8% значения U.
За время 3τ конденсатор разрядится до (1/e 3 )*100% ≈ 5% от значения U.
За время 5τ до (1/e 5 )*100% ≈ 1% значения U.

Параметр τ широко применяется при расчётах RC-фильтров различных электронных цепей и узлов.

Связь мгновенных значений напряжений и токов на элементах

Электрической цепи

Резистор (идеальное активное сопротивление)Катушка индуктивности (идеальная индуктивность)Конденсатор (идеальная емкость)
; ;

Для последовательной цепи, содержащей линейные резистор R, катушку индуктивности L и конденсатор С, при ее подключении к источнику с напряжением u (см. рис. 1) можно записать

.(1)

Подставив в (1) значение тока через конденсатор

,

получим линейное дифференциальное уравнение второго порядка относительно

.

В общем случае уравнение, описывающее переходный процесс в цепи с n независимыми накопителями энергии,имеет вид:

,(2)

где х – искомая функция времени (напряжение, ток, потокосцепление и т.п.); — известное возмущающее воздействие (напряжение и (или) ток источника электрической энергии); — к-й постоянный коэффициент, определяемый параметрами цепи.

Порядок данного уравнения равен числу независимых накопителей энергии в цепи, под которыми понимаются катушки индуктивности и конденсаторы в упрощенной схеме, получаемой из исходной путем объединения индуктивностей и соответственно емкостей элементов, соединения между которыми являются последовательными или параллельными.

В общем случае порядок дифференциального уравнения определяется соотношением

,(3)

где и — соответственно число катушек индуктивности и конденсаторов после указанного упрощения исходной схемы; — число узлов, в которых сходятся только ветви, содержащие катушки индуктивности (в соответствии с первым законом Кирхгофа ток через любую катушку индуктивности в этом случае определяется токами через остальные катушки); — число контуров схемы, ветви которых содержат только конденсаторы (в соответствии со вторым законом Кирхгофа напряжение на любом из конденсаторов в этом случае определяется напряжениями на других).

Наличие индуктивных связей на порядок дифференциального уравнения не влияет.

Как известно из математики, общее решение уравнения (2) представляет собой сумму частного решения исходного неоднородного уравнения и общего решения однородного уравнения, получаемого из исходного путем приравнивания его левой части к нулю. Поскольку с математической стороны не накладывается каких-либо ограничений на выбор частного решения (2), применительно к электротехнике в качестве последнего удобно принять решение , соответствующее искомой переменной х в установившемся послекоммутационном режиме (теоретически для ).

Частное решение уравнения (2) определяется видом функции , стоящей в его правой части, и поэтому называется принужденной составляющей. Для цепей с заданными постоянными или периодическими напряжениями (токами) источников принужденная составляющая определяется путем расчета стационарного режима работы схемы после коммутации любым из рассмотренных ранее методов расчета линейных электрических цепей.

Вторая составляющая общего решения х уравнения (2) – решение (2) с нулевой правой частью – соответствует режиму, когда внешние (принуждающие) силы (источники энергии) на цепь непосредственно не воздействуют. Влияние источников проявляется здесь через энергию, запасенную в полях катушек индуктивности и конденсаторов. Данный режим работы схемы называется свободным, а переменная свободной составляющей.

В соответствии с вышесказанным, . общее решение уравнения (2) имеет вид

(4)

Соотношение (4) показывает, что при классическом методе расчета послекоммутационный процесс рассматривается как наложение друг на друга двух режимов – принужденного, наступающего как бы сразу после коммутации, и свободного, имеющего место только в течение переходного процесса.

Необходимо подчеркнуть, что, поскольку принцип наложения справедлив только для линейных систем, метод решения, основанный на указанном разложении искомой переменной х, справедлив только для линейных цепей.

Начальные условия. Законы коммутации

В соответствии с определением свободной составляющей в ее выражении имеют место постоянные интегрирования , число которых равно порядку дифференциального уравнения. Постоянные интегрирования находятся из начальных условий, которые принято делить на независимые и зависимые. К независимым начальным условиям относятся потокосцепление (ток) для катушки индуктивности и заряд (напряжение) на конденсаторе в момент времени (момент коммутации). Независимые начальные условия определяются на основании законов коммутации (см. табл. 2).

Таблица 2. Законы коммутации

Название законаФормулировка закона
Первый закон коммутации (закон сохранения потокосцепления)Магнитный поток, сцепленный с катушками индуктивности контура, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .
Второй закон коммутации (закон сохранения заряда)Электрический заряд на конденсаторах, присоединенных к любому узлу, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .

— See more at: http://www.toehelp.ru/theory/toe/lecture24/lecture24.html#sthash.jqyFZ18C.dpuf

Интегрирующая цепь RC

Рассмотрим электрическую цепь из резистора сопротивлением R и конденсатора ёмкостью C, представленную на рисунке.

Элементы R и C соединены последовательно, значит, ток в их цепи можно выразить, исходя из производной напряжения заряда конденсатора dQ/dt = C(dU/dt) и закона Ома U/R. Напряжение на выводах резистора обозначим UR.
Тогда будет иметь место равенство:

Проинтегрируем последнее выражение . Интеграл левой части уравнения будет равен Uout + Const . Перенесём постоянную составляющую Const в правую часть с тем же знаком.
В правой части постоянную времени RC вынесем за знак интеграла:

В итоге получилось, что выходное напряжение Uout прямо-пропорционально интегралу напряжения на выводах резистора, следовательно, и входному току Iin.
Постоянная составляющая Const не зависит от номиналов элементов цепи.

Чтобы обеспечить прямую пропорциональную зависимость выходного напряжения Uout от интеграла входного Uin, необходима пропорциональность входного напряжения от входного тока.

Нелинейное соотношение Uin/Iin во входной цепи вызвано тем, что заряд и разряд конденсатора происходит по экспоненте e -t/τ , которая наиболее нелинейна при t/τ ≥ 1, то есть, когда значение t соизмеримо или больше τ.
Здесь t — время заряда или разряда конденсатора в пределах периода.
τ = RC — постоянная времени — произведение величин R и C.
Если взять номиналы RC цепи, когда τ будет значительно больше t, тогда начальный участок экспоненты для короткого периода (относительно τ) может быть достаточно линейным, что обеспечит необходимую пропорциональность между входным напряжением и током.

Для простой цепи RC постоянную времени обычно берут на 1-2 порядка больше периода переменного входного сигнала, тогда основная и значительная часть входного напряжения будет падать на выводах резистора, обеспечивая в достаточной степени линейную зависимость Uin/Iin ≈ R.
В таком случае выходное напряжение Uout будет с допустимой погрешностью пропорционально интегралу входного Uin.
Чем больше величины номиналов RC, тем меньше переменная составляющая на выходе, тем более точной будет кривая функции.

В большинстве случаев, переменная составляющая интеграла не требуется при использовании таких цепей, нужна только постоянная Const, тогда номиналы RC можно выбирать по возможности большими, но с учётом входного сопротивления следующего каскада.

В качестве примера, сигнал с генератора — положительный меандр 1V периодом 2 mS подадим на вход простой интегрирующей цепи RC с номиналами:
R = 10 kOhm, С = 1 uF. Тогда τ = RC = 10 mS.

В данном случае постоянная времени лишь в пять раз больше времени периода, но визуально интегрирование прослеживается в достаточной степени точно.
График показывает, что выходное напряжение на уровне постоянной составляющей 0.5в будет треугольной формы, потому как участки, не меняющиеся во времени, для интеграла будут константой (обозначим её a), а интеграл константы будет линейной функцией. ∫adx = ax + Const. Величина константы a определит тангенса угла наклона линейной функции.

Проинтегрируем синусоиду, получим косинус с обратным знаком ∫sinxdx = -cosx + Const.
В данном случае постоянная составляющая Const = 0.

Если подать на вход сигнал треугольной формы, на выходе будет синусоидальное напряжение.
Интеграл линейного участка функции — парабола. В простейшем варианте ∫xdx = x 2 /2 + Const.
Знак множителя определит направление параболы.

Недостаток простейшей цепочки в том, что переменная составляющая на выходе получается очень маленькой относительно входного напряжения.

Рассмотрим в качестве интегратора Операционный Усилитель (ОУ) по схеме, показанной на рисунке.

С учётом бесконечно большого сопротивления ОУ и правила Кирхгофа здесь будет справедливо равенство:

Напряжение на входах идеального ОУ здесь равно нулю, тогда на выводах конденсатора UC = Uout = — Uin .
Следовательно, Uout определится, исходя из тока общей цепи.

При номиналах элементов RC, когда τ = 1 Sec, выходное переменное напряжение будет равно по значению интегралу входного. Но, противоположно по знаку. Идеальный интегратор-инвертор при идеальных элементах схемы.

Дифференцирующая цепь RC

Рассмотрим дифференциатор с применением Операционного Усилителя.

Идеальный ОУ здесь обеспечит равенство токов IR = — IC по правилу Кирхгофа.
Напряжение на входах ОУ равно нулю, следовательно, выходное напряжение Uout = UR = — Uin = — UC .
Исходя из производной заряда конденсатора, закона Ома и равенства значений токов в конденсаторе и резисторе, запишем выражение:

Отсюда видим, что выходное напряжение Uout пропорционально производной заряда конденсатора dUin /dt , как скорости изменения входного напряжения.

При величине постоянной времени RC, равной единице, выходное напряжение будет равно по значению производной входного напряжения, но противоположно по знаку. Следовательно, рассмотренная схема дифференцирует и инвертирует входной сигнал.

Производная константы равна нулю, поэтому постоянная составляющая при дифференцировании на выходе будет отсутствовать.

В качестве примера, подадим на вход дифференциатора сигнал треугольной формы. На выходе получим прямоугольный сигнал.
Производная линейного участка функции будет константой, знак и величина которой определится наклоном линейной функции.

Для простейшей дифференцирующей цепочки RC из двух элементов используем пропорциональную зависимость выходного напряжения от производной напряжения на выводах конденсатора.

Если взять номиналы элементов RC, чтобы постоянная времени была на 1-2 порядка меньше длины периода, тогда отношение приращения входного напряжения к приращению времени в пределах периода может определять скорость изменения входного напряжения в определённой степени точно. В идеале это приращение должно стремиться к нулю. В таком случае основная часть входного напряжения будет падать на выводах конденсатора, а выходное будет составлять незначительную часть от входного, поэтому для вычислений производной такие схемы практически не используются.

Наиболее часто дифференцирующие и интегрирующие цепи RC применяют для изменения длины импульса в логических и цифровых устройствах.
В таких случаях номиналы RC рассчитывают по экспоненте e -t/RC исходя из длины импульса в периоде и требуемых изменений.
Например, ниже на рисунке показано, что длина импульса Ti на выходе интегрирующей цепочки увеличится на время 3τ. Это время разряда конденсатора до 5% амплитудного значения.

На выходе дифференцирующей цепи амплитудное напряжение после подачи импульса появляется мгновенно, так как на выводах разряженного конденсатора оно равно нулю.
Далее следует процесс заряда и напряжение на выводах резистора убывает. За время 3τ оно уменьшится до 5% амплитудного значения.

Здесь 5% — величина показательная. В практических расчётах этот порог определится входными параметрами применяемых логических элементов.


источники:

http://www.evkova.org/perehodnyie-protsessyi-v-elektricheskih-tsepyah

http://poisk-ru.ru/s1391t3.html