Дифференциальное уравнение устройства оси балки

СОПРОМАТ ОН-ЛАЙН

Меню сайта

Расчет геометрических характеристик сечений он-лайн NEW — считает любые сечения (сложные). Определяет: площадь сечения, моменты инерции, моменты сопротивления.

Расчет балок на прочность он-лайн — построение эпюр Mx, Qy, нахождение максимального изгибающего момента Mx, максимальной сдвигающей силы Qy, расчет прогибов, подбор профиля и др. Все просто, все он-лайн.
+ Полное расписанное решение!
Теперь и для статически неопределимых балок!

Расчет рам, ферм балок он-лайн NEW — эпюры Q, M, N, перемещения узлов. Удобный графический интерфейс. Считает любые схемы.

Лекции — теория, практика, задачи.

Справочная информация — ГОСТы, сортамент проката, свойства материалов и другое.

Программы по сопромату (построение эпюр, различные калькуляторы, шпоры и другое).

Книги — разная литература по теме.

Базовый курс лекций по сопромату, теория, практика, задачи.

4. Изгиб. определение перемещений.

4.1. Дифференциальное уравнение изогнутой оси балки и его интегрирование.

При изгибе ось балки искривляется, а поперечные сечения перемещаются поступательно и поворачиваются вокруг нейтральных осей, оставаясь при этом нормальными к изогнутой продольной оси (рис. 8.22). Деформированная (изогнутая) продольная ось балки называется упругой линией, а поступательные перемещения сечений, равные перемещениям y = y ( x ) их центров тяжести сечений – прогибами балки.

Между прогибами y ( x ) и углами поворота сечений θ ( x ) существует определенная зависимость. Из рис. 8.22 видно, что угол поворота сечения θ равен углу φ наклона касательной к упругой линии ( θ и φ — углы с взаимноперпендикулярными сторонами). Но согласно геометрическому смыслу первой производной y / = tg θ . Следовательно, tg θ = tg φ = y / .

В пределах упругих деформаций прогибы балок обычно значительно меньше высоты сечения h , а углы поворота θ не превышают 0.1 – 0.15 рад. В этом случае связь между прогибами и углами поворота упрощается и принимает вид θ = y / .

Определим теперь форму упругой линии. Влияние перерезывающих сил Q на прогибы балок, как правило, незначительно. Поэтому с достаточной точностью можно принять, что при поперечном изгибе кривизна упругой линии зависит только от величины изгибающего момента M z и жесткости EI z (см. уравнение (8.8)):

.

В то же время в неподвижной системе координат кривизна упругой линии, как и всякой плоской кривой,

.

Приравнивая правые части (8.26) и (8.27) и учитывая, что правила знаков для M z и y // были приняты независимо друг от друга, получаем

.

Это равенство называется дифференциальным уравнением упругой линии. При малых деформациях второе слагаемое в знаменателе мало по сравнению с единицей (при θ = 0.1 рад ( y / ) 2 =0.01 ) и им можно пренебречь. В результате получим приближенное дифференциальное уравнение упругой линии балки

.

Выбор знака в правой части (8.29) определяется направлением координатной оси y , так как от этого направления зависит знак второй производной y // . Если ось направлена вверх, то, как видно из рис. 8.23, знаки y // и M z совпадают, и в правой части надо оставить знак плюс. Если же ось направлена вниз, то знаки y // и M z противоположны, и это заставляет выбрать в правой части знак минус.

Заметим, что уравнение (8.29) справедливо только в пределах применимости закона Гука и лишь в тех случаях, когда плоскость действия изгибающего момента M z содержит одну из главных осей инерции сечения.

Интегрируя (8.29), находим сначала углы поворота сечений

,

а после второго интегрирования – прогибы балки

.

Постоянные интегрирования определяются из граничных условий. На участках с различными аналитическими выражениями для изгибающих моментов дифференциальные уравнения упругой линии также различны. Интегрирование этих уравнений при n участках дает 2 n произвольных постоянных. Для их определения к граничным условиям на опорах добавляются условия равенства прогибов и углов поворота на стыке двух смежных участков балки.

Метод интегрирования дифференциального уравнения изгиба балки

Наиболее естественным методом определения функции прогибов является метод непосредственного интегрирования уравнения изгибающих моментов.

$EI\,y»(x) = M(x)$ – полученное дифференциальное уравнение;

$EI\,y'(x) = EI\,\varphi (x) = \int dx + C$ – первый интеграл (уравнение углов поворота);

$EI\,y(x) = \int dx = \iint dxdx + C\,x + D$ – второй интеграл (уравнение прогибов).

Кроме интегрирования уравнения изгибающих моментов $M(x)$, для получения уравнения прогибов необходимо определить две постоянных интегрирования $C$ и $D$ из условий закрепления балки. При этом надо учесть, что шарнирная опора исключает прогибы балки, а жесткое зажатие – прогибы и углы поворота (то есть они равны нулю).

Физический смысл постоянных интегрирования такой: при $x = 0$ угол поворота $EI\,\varphi (0) = C$, а прогиб $EI\,y(0) = D$, то есть константа $C$ равна углу поворота в начале координат, константа $D$ равна прогибу балки при x=0.

Консольная балка с силой на конце

На левой опоре возникают реакции – вертикальная сила $F$ и момент $M = F \cdot l$.

Уравнения изгибающих моментов

$M(x) = — Fl + Fx = F(x — l)$

Уравнение углов поворота

$EI\,y'(x) = EI\,\varphi (x) = \int dx + C = F(\frac<<>> <2>— lx) + C$

Так как в сечении $A$ (в защемлении) отсутствует прогиб и угол поворота, получим следующую систему уравнений

$\left\ < \beginEI\,\varphi (0) = F(\frac<<<0^2>>> <2>— l \cdot 0) + C = 0 \hfill \\ EI\,y(0) = F(\frac<<<0^3>>> <6>— l\frac<<<0^2>>><2>) + C \cdot 0 + D = 0. \hfill \\ \end \right.$

Решение этой системы уравнений приводит к результату $C = 0$, $D = 0$.

Окончательно функция прогибов для рассматриваемой балки имеет вид

Максимальный прогиб будет иметь место при $x = l$

где знак « – » указывает направление перемещений – в сторону, противоположную положительному направлению оси $y$. Стрела прогиба $f = \frac<>><<3\,EI>>$.

Максимальный угол поворота сечения также будет иметь место при $x = l$

знак « – » указывает направление угла поворота – сечение поворачивается по часовой стрелке.

Шарнирно закрепленная балка с силой посередине

На опорах возникают вертикальные реакции $ = = F/2$.

Поскольку уравнение изгибающих моментов разное на двух разных участках, функция прогибов также будет разная. Используя полную симметрию расчетной схемы, далее будем рассматривать только левый участок, для которого уравнение изгибающих моментов имеет вид

$M(x) = \frac<2>x$, то есть $EI\,y»(x) = \frac<2>x$, интегрируем дважды

Константы интегрирования $C$ и $D$ полученного уравнения справедливы только для первого участка, поэтому их необходимо определять из условий, связанных с перемещениями на первом участке. Такими условиями является равенство нулю прогибов на опоре $A$ ($x = 0$) и, исходя из симметрии, равенство нулю угла поворота под силой $F$ ($x = l/2$). Имеем систему уравнений

Окончательно функция прогибов для рассматриваемой балки имеет вид

Максимальный прогиб будет иметь место при $x = l/2$

Максимальные углы поворота сечений будут на опорах ($x = 0$ и $x = l$).

Консольная балка с равномерно распределенной нагрузкой

На левой опоре возникают реакции – вертикальная сила $ql$ и момент $M = \frac<>><2>$.

$M(x) = — \frac<>> <2>+ ql \cdot x — \frac<>><2>$, дважды интегрируем

Так как в сечении $A$ (в защемлении) отсутствует прогиб и угол поворота, получим следующую систему уравнений

$\left\ < \beginEI\,y'(0) = F(\frac<<<0^2>>> <2>— l \cdot 0) + C = 0 \hfill \\ EI\,y(0) = F(\frac<<<0^3>>> <6>— l\frac<<<0^2>>><2>) + C \cdot 0 + D = 0. \hfill \\ \end \right.$

Решение системы уравнений приводит к результату $C = 0$, $D = 0$.

Окончательно функция прогибов для рассматриваемой балки имеет вид

Максимальный прогиб будет иметь место при $x = l$

Максимальный угол поворота сечения также будет иметь место при $x = l$

Дифференциальное уравнение изогнутой оси балки

От действия внешних сил, расположенных в одной из главных плоскостей инерции прямой балки, ось балки изгибается в той же плоскости. При этом точки оси балки получают вертикальные перемещения, а поперечные сечения балки получают некоторые повороты относительно их начального состояния.

Изогнутая ось балки называется упругой линией, а перемещения точек оси балки в направлении нормали к недеформированной оси, называются прогибами балки.

Прогиб оси балки в произвольной точке, расположенной на расстоянии x от начала координат, будем обозначать через v( x).

Угол поворота поперечного сечения балки, который находится на расстоянии x от начала координат, будем обозначать через φ( x ).

Прогибы балки принимаются с положительным знаком, если они направлены вверх, а углы поворота имеют положительный знак, если поперечные сечения балки получают повороты, направленные против движения часовой стрелки. Прогибы балки измеряются в единицах длины (м, см), а углы поворота в радианах.

При изгибе балки длина ее оси не изменяется, потому что она расположена в нейтральном слое, где нормальные напряжения равняются нулю. Прогибы и углы поворота являются очень малыми величинами в сравнении с размерами балки.

На рис. начерчена прямолинейная ось балки до её нагружения, и криволинейная упругая линия, после нагружения балки. Произвольная точка оси балки, взятая на расстоянии x от начала координат, получает прогиб v( x). Поперечное сечение балки в этой точке получает поворот на угол φ( x ). Этот угол равняется углу между касательной к упругой линии в данной точке и осью балки до деформации, или между нормалью к упругой линии в данной точке и поперечным сечением недеформированной балки.

Для определения прогибов и углов поворота необходимо составить дифференциальное уравнение изогнутой оси балки. Для этого используем известную зависимость между радиусом кривизны изогнутой оси балки r и изгибающим моментом M y, полученной при выводе формулы нормальных напряжений:

,

а также известную из курса высшей математики зависимость между радиусом кривизны и производными от уравнения изогнутой оси:

Приравняем правые части двух приведенных зависимостей и учтем, что при действии положительного изгибающего момента вторая производная от уравнения изогнутой оси балки также имеет положительный знак. Тогда будем иметь:

(15)

Первая производная от уравнения изогнутой оси балки по абсциссе x, которая содержится в знаменателе левой части зависимости (15), есть тангенс угла между осью x и касательной к упругой линии в произвольной точке. Учитывая, что углы поворота очень малые по сравнению с размерами балки (тангенсы этих углов практически не превышают 0,01 радиана), можем пренебречь квадратом первой производной в сравнении с единицей. Тогда дифференциальное уравнение изогнутой оси балки (или упругой линии) будет иметь вид:

(16)

или (17)

Определение перемещений в балках постоянной

жесткости методом начальных параметров

Рассмотрим часть балки длиной , нагруженную сосредоточенной силой F i, сосредоточенным моментом M i, равномерно распределенной нагрузкой q i, а также внутренними усилиями M y(0), Q z(0), которые действуют в начальном сечении балки, то есть в сечении, расположенном в начале координат (рис.2).

Это сечение балки может иметь перемещения v(0) и φ(0), которые не показаны на рис.. Внутренние усилия M y(0), Q z(0) и перемещения v(0), φ(0), имеют название начальных параметров деформации балки при изгибе. Их значения зависят от условий закрепления балки на левом торце, то есть в начале системы координат.

Начало системы координат О всегда принимается на левом торце балки а ось x направляется вправо. Если, например, левый торец балки жестко закреплен, то начальный угол поворота и начальный прогиб балки равняются нулю, а начальные внутренние усилия равняются соответствующим реакциям жесткого закрепления со знаками изгибающего момента.

Более обстоятельно этот вопрос рассмотрим позже, когда будут получены уравнения углов поворота и прогибов упругой линии.

Направления действия всех внешних нагрузок и внутренних усилий, которые приведены на рис. 2 отвечают положительным знакам этих нагрузок и усилий.

Перемещения v(0) и φ(0) будем также считать положительными, то есть направленными вверх и против часовой стрелки.

Часть балки, которую мы рассматриваем, содержит 5 участков обозначенных римскими цифрами. Составим дифференциальное уравнение упругой линии (то есть изогнутой оси балки) для последнего правого участка балки, используя зависимость (17). Правая часть этой зависимости есть изгибающий момент в произвольном сечении последнего правого участка балки. Продолжим распределенную нагрузку q i до конца части балки, которую рассматриваем (то есть в пределах пятого участка), и чтобы не нарушить равновесие балки, приложим в пределах пятого участка такую же нагрузку — q i противоположного направления (рис.2).

Составим уравнение изгибающего момента в поперечном сечении последнего правого участка, который находится на переменном расстоянии x от начала координат. Чтобы это уравнение было структурированным относительно расстояния каждого вида нагрузки от рассматриваемого сечения, используем определение и правило знаков изгибающего момента, а также сосредоточенные моменты M y(0)M i умножим на их расстояния от сечения, возведенные в нулевую степень. Тогда получим следующее уравнение изгибающих моментов на пятом участке:

(18)

Из уравнения (18) легко получить уравнение изгибающих моментов на любом участке, если сохранить в нем сумму моментов всех сил, которые действуют слева от конца этого участка.

Подставим в уравнение (18) вместо M y( x) его значение согласно зависимости (17) получим дифференциальное уравнение балки при изгибе:

(19)

Это уравнение всегда составляется для последнего правого участка балки, но оно используется для любого предыдущего участка. Для этого в правой части уравнения сохраняются моменты сил, которые действуют слева от рассматриваемого участка.

Интегрируем уравнение () дважды по независимой переменной x, используя прием Клебша (интегрируем без раскрытия скобок), получим соответственно уравнение углов поворота и прогибов поперечных сечений балки на пятом участке:

(20 )

(21)

Нетрудно доказать, что постоянные интеграции C5 и D5 для пятого участка равняются соответствующим постоянным интегрирования для любого участка и равняются начальным значением угла поворота и прогиба, умноженным на жесткость балки при изгибе (равенства C2= C1 и D2= D1=0 были получены в предыдущем параграфе).

В результате имеем:

C5 =C4= C3= C2= C1= (22)

D5= D4= D3= D2= D1= (23)

Заменим постоянные интегрирования в зависимостях (20) и (21) их значениями согласно (22) и (23), получим:

(24)

(25)

Зависимости (24) и (25) являются уравнениями углов поворота и прогибов балки на её произвольном участке. При составлении этих уравнений нужно учесть все нагрузки, которые действуют слева от рассматриваемого сечения балки. При этом нагрузки, которые действуют по часовой стрелке относительно сечения, учитываются с положительным знаком, а нагрузки, которые действуют против часовой стрелки относительно сечения, учитываются с отрицательным знаком.

Перед использованием составленных уравнений нужно определить начальные параметры из условий закрепления балки.

Если, например, балка шарнирно закреплена на двух концах и на левом торце не нагружена сосредоточенным моментом, то начальный изгибающий момент и начальное прогиб равняются нулю, то есть: M y(0)=0 и φ (0)=0. Начальная поперечная сила равняется вертикальной реакции левой опоры, а начальный угол поворота определяется из условия равенства нулю прогиба балки на правой опоре, то есть из условия: .

Если левый торец балки закреплен с помощью жесткой опоры, то начальный угол поворота и начальное прогиб балки равняются нулю, а начальный изгибающий момент и начальная поперечная сила равняются соответствующим реакциям жесткого закрепления. Знаки этих параметров принимаются в соответствии с направлениями действия реакций опоры по правилу знаков изгибающего момента и поперечной силы.

Если левый торец балки свободен от всякого закрепления, а правый торец имеет жесткую опору, то начальный изгибающий момент и начальная поперечная силы равняются нулю, или сосредоточенным нагрузкам того же характера на этом торце балки. Начальный прогиб и угол поворота неизвестны и их значения определяются из условий равенства нулю прогиба и угла поворота правого торца балки.

Если, наконец, левый торец балки свободен от всякого закрепления, а балка имеет две шарнирные опоры, то начальный прогиб и угол поворота неизвестны и их значения определяются из условий равенства нулю прогиба оси балки в точках закрепления шарнирными опорами.

Используя указанные условия и уравнения, составленные по типу уравнений (24) и (25) находим неизвестные начальные параметры, потом подставляем значение всех начальных параметров в те же зависимости (24) и (25), которые составлены для конкретной балки, и находим окончательные уравнения углов поворота и прогибов для произвольного участка балки.

Для определения величин угла поворота и прогиба в каком-либо сечении, нужно подставить в соответствующие уравнения значение абсциссы этого сечения и учесть только те нагрузки, которые действуют слева от этого сечения. Сосредоточенные силы Fi учитываем при условии, что , сосредоточенные моменты Mi учитываем при условии, что и распределенные нагрузки qi учитываем при условии, что , или


источники:

http://sopromat.xyz/lectures?node=1966

http://lektsii.org/17-34602.html