Дифференциальное уравнение второго порядка с параметром

Дифференциальные уравнения с малым параметром при производной

Возьмем дифференциальное уравнение (где — параметр)

Если функция в некоторой замкнутой области изменения непрерывна по совокупности аргументов и удовлетворяет условию Липшица по

где не зависит от , то решение (1) непрерывно зависит от .

Во многих задачах физики приходится рассматривать уравнения вида (где — малый параметр)

Разделив обе части уравнения (2) на , приведем его к виду

откуда видно, что правая часть (3) терпит разрыв при , так что теоремой о непрерывной зависимости решений от параметра воспользоваться в этом случае нельзя.

Вопрос ставится так: при каких условиях для малых значений в уравнении (2) можно отбросить член и в качестве приближения к решению дифференциального уравнения (2) рассматривать решение так называемого «вырожденного уравнения»

Пусть для определенности 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAAQBAMAAACb51DZAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/QHAQSFZiDGh0BCgsXHgm/CxLgAAALNJREFUGNNjYCAecHtgF8+vWYFNmEWCoX4DnOcOZ/IuYAhMANJMCiAem00AVFzRgEHxAlDAULYBJKsCk3C8wKD4iYFhborzA4i5xg4Q8QIGRSEGjglwK1gnOyGJm5VvQEgkwMVZPy8OgIufT4CaL8TA3IAw5zDYnI0GICe1w4VVDkPs1QK6/wFD1yalPIhzLKE61UQZHgYwsEsZgl3EZgmzhqn+uRiQCsuAhAPcdibVZxsYAOHLKP4AljeRAAAAAElFTkSuQmCC» /> и пусть вырожденное уравнение (4) имеет лишь одно решение . В зависимости от поведения вблизи решения уравнения (4) решение дифференциального уравнения (2) при стремится к решению вырожденного уравнения, либо быстро удаляется от него.

В первом случае решение уравнения (4) называют устойчивым , во втором — неустойчивым .

Именно, если при переходе через график решения вырожденного уравнения (4) функция с возрастанием при фиксированном меняет знак с на , то решение вырожденного уравнения устойчиво и им можно приближенно заменить решение . уравнения (2) (рис. 47).

Если же функция меняет знак с на , то решение вырожденного уравнения (4) неустойчиво и заменять решение дифференциального уравнения (2) решением вырожденного уравнения (4) нельзя (рис. 48).

Достаточные условия устойчивости или неустойчивости выражаются следующими предложениями.

1. Если на решении уравнения (4), то решение вырожденного уравнения устойчиво.

2. Если 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAG0AAAAuBAMAAADQGoqnAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAD3RSTlMAnpQBwUdnMSEQgeDwsdDVhGY9AAAC90lEQVRIx61UTUhUURT+nDs/b6yRcVNCQdIPES66MOgirRnyJ8zISW0RJDObQJzFzNCsgnCMatNiJoso0pqFpERhqAVuGkgTFMyCWoUpSUEbw0atrKRz541vRl5XfdBdvHvfOee755zvnHuA/7Ps0bX/0fWMyx7ExaZ4gZuhtarW9Xwcb3gp9u6PQPVaFTvsl+PMfn6W4rEtLcBaCVgTOTrlhxwXm4G7GDCletBJoW715CoL5biOEArItmAWCDCgLdcffHE58EKvOwW4ncAUpRQ8n8mNM05SrxTW9bnZV4nI18FiNg68TVap5Hf3XySiCoqldM5x++Rr8tMItgi4Jlxpcb7//tg0h9kjw5nIuJ7oPhiHZVHQqoovI7ZngrSVUjoHwCYptDqkcWXfVfFtBEVq+SkZLuiEskA0/FFxDs1wF18Px/r8KBPxLVOqtFd4bKqcDYJOjlmpPy/uOlVfbEmUrwth6lJfyzfRnVJeWGfCPkf7oZ90Pkq4M8fQ9wTsUfiFrRYoT8j82Z6fEDqzCKibwzQSQmSY+KyJTBFbMXndFdEgrEIUOEZdRWwwQT4XJwS4zr60MednZ5t4eXlqVIpTy+KZDmbtL8k+UvbqcRowpL4sTVE6o8P5vNax7F/TgfTWnP5e0cTXMjdYejXRe7DlrD81DWZN0+DS5D3avUWrliNgK/qkXbJyNW3PsLgAVs8NjLpmdfZYjOLQXs1VHAjHGnZvtLTL25/m+DtVuNHScJc+ifYiXJKvErmpOGuELSPcLyPphau1+s0bgDW9W+2XkFU/jFt7ZLAirT9HA7rhf29f4N9zz1KU7YyrLTr1XiijG0asbyk2ycVYM77OZaaY0WV76K+PshvS7patktOtSR6pC38IGYLlDcH8W6k1LfkShnBBP/Ln80KOVMCQP5aMwkHjt9xjkJUVwgzQNDQWJSzUrz6/PR702uJGcArNqZN8y/A0P2KsiDvi17/AvT95Z5uxQDtGxuOwvrlV5TVYdxfH5nrlL0fPxey1y4iJAAAAAElFTkSuQmCC» style=»vertical-align: middle;» /> на решении уравнения (4), то решение вырожденного уравнения неустойчиво.

Если вырожденное уравнение (4) имеет несколько решений , то каждое из них должно быть исследовано на устойчивость . При этом поведение интегральных кривых дифференциального уравнения (2) при может быть различным в зависимости от выбора начальных условий — начальной точки .

Возможен также полуустойчивый случай , когда функция при переходе через кривую не меняет знак (например, если есть корень четной кратности вырожденного уравнения (4)). В этом случае при малом интегральные кривые уравнения (2) с одной стороны кривой стремятся к этой кривой, а с другой — удаляются от нее.

В первом случае мы говорили, что начальная точка принадлежит области притяжения полуустойчивого решения , а во втором случае — области отталкивания.

В полуустойчивом случае, как правило, нельзя заменять решение исходного уравнения (2) решением вырожденного уравнения (4).

Можно указать критерии, когда интегральные кривые уравнения (2) при соответствующем выборе начальной точки приближаются к решению вырожденного уравнения и остаются в его окрестности при t_0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADIAAAASBAMAAADrvZC0AAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/EGEAcAwIdVhoRCxcVFiSWq88AAAANlJREFUGNNjYMADbqPx2R5AGbxiaDIcDVAGjwiInLkBLuO4AMY4ACL5m+FSihMgtLJhsAKI9mwugAhMDlwMYRUt/ARh+EVBaKUOJaj2gw5QU5iiEkAUixTQeeoghgzcaqajICkmeQaGWTpAl7PJwmXYl4JkmMUZuAXYBZC9wxQKdoprAwNfA4MYyDvMEFc6QV3guMDDOYBFiIGBNSAHLMDZBXV1ooEtcwADUIZT+DRYAuYdBp5WA2awHoYyiP8QoZPNwCnAIoY99Lml2RpwRMwsVQUcMuzaDAwA1XUm63jYJJgAAAAASUVORK5CYII=» style=»vertical-align: middle;» />, однако это справедливо лишь при отсутствии возмущений уравнения (2).

Приведем эти критерии.

Пусть в окрестности полуустойчивого решения вырожденного уравнения (4) функция . Если 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAE4AAAAYBAMAAACmU9bEAAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADXRSTlMAQcWdZ4ER4PAxIVGx9LHpLAAAAYVJREFUKM+1kz9LAzEYxp/z2t4fr3CKoEuhWqyrVtBBhKIdughHBSeFji4FERXFpRRxcak6SqEfoTg5iri49cATi/hdfPMmuVYtIoiBJG+SX+7N8yQH/E+x53/HZYrUrIjIq/7E7dCqGYjIyX9bHOuHOaqTVG+Aza/Y3eJJHL9RPaC6D9TanzH3AmU9ZewBiToljSg9S7qOabOLtFaZJBnePbGh5GlnToNWFiNZ4BJYe0qRDDtAshJtwe3JFA++5NLEdYE8zMaxGNc6MKamafFZnasgwQxziQDjVUvMZKhpCWsiLWC5qLkQXpu+6GluQwSzsdJKJ+YsGAE1ilvVXnJJMVfjvDbMNtbFbMtn+wbyFjivTVwdI4GF0XPW1YEbpbIxpzB47J/TKEzMNdmnAEZoEhxKX5RcmuQjXb2/LknfyeeZR/L5Rfrs62OWS2eiO1QPyaB7MKqSH7w3uCUROz09PpXdrj/05dE1q3Iru+3hL1TcsdrB+pyj4ZzTf+cLvK/5l//sA8btRxt561mKAAAAAElFTkSuQmCC» style=»vertical-align: middle;» />, то интегральные кривые уравнения (2), приближающиеся к кривой , не могут пересечь эту кривую и остаются в ее окрестности при t_0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADIAAAASBAMAAADrvZC0AAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/EGEAcAwIdVhoRCxcVFiSWq88AAAANlJREFUGNNjYMADbqPx2R5AGbxiaDIcDVAGjwiInLkBLuO4AMY4ACL5m+FSihMgtLJhsAKI9mwugAhMDlwMYRUt/ARh+EVBaKUOJaj2gw5QU5iiEkAUixTQeeoghgzcaqajICkmeQaGWTpAl7PJwmXYl4JkmMUZuAXYBZC9wxQKdoprAwNfA4MYyDvMEFc6QV3guMDDOYBFiIGBNSAHLMDZBXV1ooEtcwADUIZT+DRYAuYdBp5WA2awHoYyiP8QoZPNwCnAIoY99Lml2RpwRMwsVQUcMuzaDAwA1XUm63jYJJgAAAAASUVORK5CYII=» style=»vertical-align: middle;» /> (начальная точка должна находиться в области притяжения полуустойчивого решения ; если находится в области отталкивания, то соответствующая интегральная кривая уравнения (2) быстро удаляется от кривой ) (рис. 49). Если , то интегральные кривые, приближающиеся к графику функции , пересекут его и с другой стороны кривой быстро удалятся от нее. Если 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAE4AAAAYBAMAAACmU9bEAAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADXRSTlMAQcWdZ4ER4PAxIVGx9LHpLAAAAYVJREFUKM+1kz9LAzEYxp/z2t4fr3CKoEuhWqyrVtBBhKIdughHBSeFji4FERXFpRRxcak6SqEfoTg5iri49cATi/hdfPMmuVYtIoiBJG+SX+7N8yQH/E+x53/HZYrUrIjIq/7E7dCqGYjIyX9bHOuHOaqTVG+Aza/Y3eJJHL9RPaC6D9TanzH3AmU9ZewBiToljSg9S7qOabOLtFaZJBnePbGh5GlnToNWFiNZ4BJYe0qRDDtAshJtwe3JFA++5NLEdYE8zMaxGNc6MKamafFZnasgwQxziQDjVUvMZKhpCWsiLWC5qLkQXpu+6GluQwSzsdJKJ+YsGAE1ilvVXnJJMVfjvDbMNtbFbMtn+wbyFjivTVwdI4GF0XPW1YEbpbIxpzB47J/TKEzMNdmnAEZoEhxKX5RcmuQjXb2/LknfyeeZR/L5Rfrs62OWS2eiO1QPyaB7MKqSH7w3uCUROz09PpXdrj/05dE1q3Iru+3hL1TcsdrB+pyj4ZzTf+cLvK/5l//sA8btRxt561mKAAAAAElFTkSuQmCC» style=»vertical-align: middle;» /> при и при t_1″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADIAAAASBAMAAADrvZC0AAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAD3RSTlMAAaiFwGEw00IhQBBx8FF4mUoDAAAAxElEQVQY02NgwANOo/HZHkAZPN/QZNgLoAyhjyAydANcRl4BypAFM1iL4VL9ARB6sb3zAhAtWjwBIhDsrwxhzdCPgDDknCB0R3kHVLuuANQUDqcEEMX4CUhkgxiX4FZzqICkOL4yMBj9Arn+D1yGEyzD/JOBIfEXinc4XBpAlAjQO4wgGaaPzBBXSkBdIK8gLgCWYXFIAguwFkFdnW9gA9HDelkb4tMJsDApMYDIMEyD+A8ROtlQe7AC3DLm3x1waAEFCwDPjC4HC7XnhAAAAABJRU5ErkJggg==» style=»vertical-align: middle;» />, то при достаточно малом интегральные кривые, выходящие из точки , принадлежащей области притяжения корня , остаются вблизи кривой при 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAARCAMAAACVS259AAAANlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAR2LVAAAAEnRSTlMA5dARAV6h/4HAIUExsUAQcZHkvQX+AAAAz0lEQVQoz51S0RLDIAgThyJFV/v/Pztx7Wm1W2/zgTshJgEx5o/zeD5+QDu2ZJcbwlZnNDmt39ABQuIDwe5OHorZVFjrydCsu3whA74EIXnfFkodkw1j35FCjduhRZ0ddNaf+3YVjsR6WTkJQV9G4dODcMDVPJdHiYY5SuGY4LYqRU3I2J54jhfsDKiJ6VuXBu+8I+mQNhi5mZueVLgoEiHs4XOruM9dxxdKAwK9l2mQZQdK3atrsya72Xj6pmnb0NvsYQdh7KnD5S7HLMr9Ah4fBg4hVyWJAAAAAElFTkSuQmCC» />; в окрестности точки они пересекают кривую и затем удаляются от нее.

Если в окрестности полуустойчивого решения функция , то для справедливости высказанных утверждений знаки у производной надо заменить противоположными.

Пример 1. Выяснить, стремится ли решение уравнения

удовлетворяющее начальному условию к решению вырожденного уравнения при t_0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADIAAAASBAMAAADrvZC0AAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/EGEAcAwIdVhoRCxcVFiSWq88AAAANlJREFUGNNjYMADbqPx2R5AGbxiaDIcDVAGjwiInLkBLuO4AMY4ACL5m+FSihMgtLJhsAKI9mwugAhMDlwMYRUt/ARh+EVBaKUOJaj2gw5QU5iiEkAUixTQeeoghgzcaqajICkmeQaGWTpAl7PJwmXYl4JkmMUZuAXYBZC9wxQKdoprAwNfA4MYyDvMEFc6QV3guMDDOYBFiIGBNSAHLMDZBXV1ooEtcwADUIZT+DRYAuYdBp5WA2awHoYyiP8QoZPNwCnAIoY99Lml2RpwRMwsVQUcMuzaDAwA1XUm63jYJJgAAAAASUVORK5CYII=» style=»vertical-align: middle;» /> и .

Решение. Имеем , так что решение вырожденного уравнения устойчиво и, следовательно, решение исходного уравнения , выходящее из любой начальной точки , стремится к решению вырожденного уравнения при и t_0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADIAAAASBAMAAADrvZC0AAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/EGEAcAwIdVhoRCxcVFiSWq88AAAANlJREFUGNNjYMADbqPx2R5AGbxiaDIcDVAGjwiInLkBLuO4AMY4ACL5m+FSihMgtLJhsAKI9mwugAhMDlwMYRUt/ARh+EVBaKUOJaj2gw5QU5iiEkAUixTQeeoghgzcaqajICkmeQaGWTpAl7PJwmXYl4JkmMUZuAXYBZC9wxQKdoprAwNfA4MYyDvMEFc6QV3guMDDOYBFiIGBNSAHLMDZBXV1ooEtcwADUIZT+DRYAuYdBp5WA2awHoYyiP8QoZPNwCnAIoY99Lml2RpwRMwsVQUcMuzaDAwA1XUm63jYJJgAAAAASUVORK5CYII=» style=»vertical-align: middle;» /> (рис.50).

В этом можно убедиться непосредственно проверкой. Решая дифференциальное уравнение (5) как линейное неоднородное при заданном начальном условии , найдем

откуда непосредственно видно, что при t_0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADIAAAASBAMAAADrvZC0AAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/EGEAcAwIdVhoRCxcVFiSWq88AAAANlJREFUGNNjYMADbqPx2R5AGbxiaDIcDVAGjwiInLkBLuO4AMY4ACL5m+FSihMgtLJhsAKI9mwugAhMDlwMYRUt/ARh+EVBaKUOJaj2gw5QU5iiEkAUixTQeeoghgzcaqajICkmeQaGWTpAl7PJwmXYl4JkmMUZuAXYBZC9wxQKdoprAwNfA4MYyDvMEFc6QV3guMDDOYBFiIGBNSAHLMDZBXV1ooEtcwADUIZT+DRYAuYdBp5WA2awHoYyiP8QoZPNwCnAIoY99Lml2RpwRMwsVQUcMuzaDAwA1XUm63jYJJgAAAAASUVORK5CYII=» style=»vertical-align: middle;» />, то есть 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAFQAAAATCAMAAAA56NonAAAANlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAR2LVAAAAEXRSTlMA2FEQQYEhAcCcYYIx8LBwQH4YNZwAAAErSURBVDjLzZTZEoMgDEVZEkgQ0Pz/zxbUcSlo7Uwfmgd0HDjm3oQo9ffhIfr11Yb7rSY+ZEJi1uvmUdzdViv4jOlSyS6kBUba3yYqpj3PnTxYCscLz0Ysj8tgse3HibgxRVOF1hQBWQjhUjuiTtjTD0xwUuhlgZZ8HbAYuDTVghGGfqUckzlg3Q59bClMtoPVYTsMQnOFBM6WGtzDni2lYHSrx9tBmw4UZG9TM+yxQr3W9RGyUsg9zzfowVM1fOrSGZVLrYxu5ONBvk8zVCdfyGVhuLXUZUVYNbWOnntva1AiFfN1pijRUpyhk7zV/txS5aewLuVecbZ3dy/X6/yeKRC16kIax7Qk79yHyeNXT8fd08jdQy4E98VQq9Vn/vWo5NGQ/fkAjtPjrS8ifApdhRxBDgAAAABJRU5ErkJggg==» style=»vertical-align: middle;» /> и имеем .

Пример 2. Исследовать на устойчивость решение вырожденного уравнения для уравнения

Решение. Вырожденное уравнение имеет два решения . Имеем

так что решение устойчивое

так что решение вырожденного уравнения неустойчивое (рис. 51).

Пример 3. Исследовать на устойчивость решение вырожденного уравнения, отвечающего уравнению

Решение. Вырожденное уравнение имеет корень второй кратности. Функция 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAALkAAAAaBAMAAAAZC+AvAAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAhEGnwQEQMSFh0HHnUV2ErEoAAAL8SURBVEjH1VXPaxNBFH67m83uugSytARFDaF68BSKEfVQi2LSCoJssSeVssWiHkTiLwQPJUr+gAj1UqUYiz0ED1FKD0VCWq3SiFLQoxaSNiYhxL/BN7ObdHc2iSjm4EBmN29mvn3zve+9B/AfjAeRRA/RF7j3vQOX6nKjh74vdUEX8Xeb8WbQvet4+9NfyMQtdAL3RkdAYlf7XNuEVPvjQhan+3HW/NCKsxApwa4NANWwLRKDcyzqbTkB7yo6OHKNsY+tRE24G9pRmMXnnP37yhp7w9V24L4SQL8Ol43vzMI+w2OSu7kB4jryOuxwbp3Zrj5rhz72A70LQSZKv60+bgVpBZQKfQsmQKqi4a3jXIRM/AAdlCp/O/QL+M1xv6xpdNW7GLDsfBH4Onl59FlLqGXgte39JgX9ga94qTfkJpMaHcQ8gYHwnb4XcYTvZjCdgrEXO7qateA5RN8iL7cKA4YQA/lA7RBdmLqbOfYRIMzkdjgEoF0sJE86hBF8nQCubJPtU1O3XAP4beprEcCDZ85bcTwM5yYbJpoD3cAk4GthRyKIQRQGX7ZbDlJ4rmSh8zWkDtEvWedS4jtv3EJXKTF7iXlOBz7OVSWis1dNq5hB/vgSuOAJMxSdq5jo01lrXS6SeZqgczvomyQOHvN+LXRybxf6qB1dKJvM5JpUKKUmzwwzGFqmQPhIeeErbmZ8RSIbIqoYyjZG5L4HiPYiQllEFYTjrqgqZzZTasopdyXrjOqMGVW8lOnkBEpVwQ1RaVD6mcALXc8raMq5FempDoeSjpTz5JMGcGs2Re623oZAoOkXRiHLmE3fIob3JXqWfj5/CvcdYbLJ4wd1/kl61MnMFv4fb9HlXW5mE0ydHaKXz6GwSSWQ4zooiC7psq67K4GCrlwBtlhdBVoJmtViyZZoxCqfoE7OWOWylUJKnq1iHzpV8OXOXYWrf6JVxPz+nR1GXdW8r1N7WO3SEgtU5lb3CPxN9/B3aYmi+fh954NOnU/8F51Z1P/4yC/Sm7UN4zo0AAAAAABJRU5ErkJggg==» style=»vertical-align: middle;» /> в окрестности этого корня, и 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAG8AAAAYBAMAAAAGzL4qAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/UGBGsE9XKEx4JGxcdABEMZC1QAAAbxJREFUOMvFlM8rBGEYx7+NEbPosWVahexii1ysJU4aLia1sRuR/BFW9kCUNgdpD1OOCsnmIO3FyYl/QPwLUm4aRY7reWfG7OxYW7sXTz3zPu/zvJ+nZ573B/A/0tJeJxg448+xlWK9JnD6EVBehEXPv4Ky5vfMnDoGpTkWCAMJ0LR/2cf2iM/zdXVoOOYB6zjrk4bmvfJVpN77wYjRcOGY56wh1lUTSoe/sIgFSmOu4wFyj5XTlLk3EgPUyRqqDGJn360B1M1jU7Lb4P9qKECaVEdBK3+AFHVIhcGgCeQ2MmILWhegDIYG7H/FTJ+QIS/IZMoaJRtUnGZ8LgCNBQJinAxHcSETZSBIT5kecDlugxx+F0kssEKpQvSUB8zntR8wsl4dJP21BDYapVJjGqqVCn1ZxGRVNBbDjpObQ0kzC0yJ1BWbM2g3B2+Qu4CT+eKumLUVgCXlDrQmZt5y0w4Yzf44tDbe9BY1afVVnJh0TgP1+I5cMhjsFUZm372E17eiGbNb9oJLrt7A7yNHZtHavRtyy0hsCn/RnlPGdvoPeSmBJ1VZYC5sX02t1ldAWbSyvdb+fvTX8XTUId9rEmFOUsSE2wAAAABJRU5ErkJggg==» style=»vertical-align: middle;» />. Следовательно, решение — полуустойчивое, и если начальная точка лежит в полуплоскости под прямой (область притяжения корня ), то интегральная кривая , выходящая из точки , будет при t_0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADIAAAASBAMAAADrvZC0AAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/EGEAcAwIdVhoRCxcVFiSWq88AAAANlJREFUGNNjYMADbqPx2R5AGbxiaDIcDVAGjwiInLkBLuO4AMY4ACL5m+FSihMgtLJhsAKI9mwugAhMDlwMYRUt/ARh+EVBaKUOJaj2gw5QU5iiEkAUixTQeeoghgzcaqajICkmeQaGWTpAl7PJwmXYl4JkmMUZuAXYBZC9wxQKdoprAwNfA4MYyDvMEFc6QV3guMDDOYBFiIGBNSAHLMDZBXV1ooEtcwADUIZT+DRYAuYdBp5WA2awHoYyiP8QoZPNwCnAIoY99Lml2RpwRMwsVQUcMuzaDAwA1XUm63jYJJgAAAAASUVORK5CYII=» style=»vertical-align: middle;» /> оставаться в окрестности линии (рис.52).

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Дифференциальное уравнение второго порядка с параметром

Линейным называется дифференциальное уравнение n -го порядка , если оно 1-ой степени относительно искомой функции y ( x ) и ее производных , то есть имеет вид:

Если коэффициент P 0 ( x ) ≠ 1, то на него можно поделить и после соответствующих переобозначений получить:

Уравнение (8.43) называется уравнением с переменными коэффициентами. Предположим, что в нем функции , непрерывны на интервале . Тогда для уравнения (8.43) на данном интервале имеет место задача Коши, сформулированная нами ранее.

Примечание. Частным случаем (8.43) является линейное дифференциальное уравнение 2-го порядка с переменными коэффициентами:

Если в уравнении (8.43) f ( x ) ≡ 0, то оно называется однородным, если f ( x ) ≠ 0, то неоднородным.

Теорема 8.3 (о структуре общего решения линейного неоднородного ДУ). Общее решение линейного неоднородного дифференциального уравнения представляет собой сумму общего решения соответствующего однородного и некоторого частного решения неоднородного уравнения . Запишем коротко:

Однородное дифференциальное уравнение, соответствующее неоднородному уравнению (8.43), имеет вид:

Пусть в уравнении (8.45) функции . Тогда оно принимает вид:

и называется линейным однородным дифференциальным уравнением n -го порядка с постоянными коэффициентами , где – функции, n раз дифференцируемые.

Рассмотрим решения уравнений (8.45) и (8.46). Обозначим полную совокупность их линейно независимых решений через . Тогда, по свойству решений однородного уравнения, их линейная комбинация также является решением уравнения (8.45) и (8.46), т о есть общее решение может быть записано в виде:

где ci – константы интегрирования.

Перейдем к конструированию функций . Какого они вида? Так как эти функции в уравнениях (8.45) и (8.46) n раз дифференцируемы, то их конструкция при дифференцировании не меняется. Это возможно в случае экспоненциального вида функций, то есть при

где , . Отсюда, линейная комбинация функций (8.48):

– также решение уравнений (8.45) и (8.46).

Рассмотрим одну из функций (8.48) – функцию y = e λx как решение для уравнения (8.46) с постоянными коэффициентами. Продифференцируем ее n раз:

Так как e λx 0 , то ( 8.50)

–алгебраическое уравнение n -ой степени относительно λ, называемое характеристическим уравнением для уравнения (8.46). Известно, что уравнение n -ой степени имеет равно n корней как действительных, так и комплексных, с учетом их кратности. Значит, характеристическое уравнение (8.50) дает нам n значений числа λ, ранее обозначенных нами через , которые при подстановке в (8.49) приводит нас к окончательному виду общего решения линейного однородного дифференциального уравнения (8.46) с постоянными коэффициентами.

Рассмотрим наиболее распространенный частный случай уравнения (8.46) – его аналог 2-го порядка:

Для данного уравнения характеристическое уравнение (8.50) принимает вид:

Уравнение (8.52) является квадратным относительно λ. В зависимости от дискриминанта D характеристического уравнения рассматривают три случая, приведенных в таблице 8.1.

Пример 8.17. Найти общее решение уравнений:

а) Составляем характеристическое уравнение λ 2 +2 λ – 15 = 0. Корнями этого уравнения будут λ 1 = –5 и λ 2 = 3 . Тогда, применяя (8.53), получаем общее решение: y=C 1 e – 5x +C 2 e 3x .

б) Составляем характеристическое уравнение λ 2 – 16 λ + 64 = 0.

Решая это уравнение, получим λ 1 = λ 2 = 8 . Так как корни равные, то, применяя (8.54), будем иметь:

в) Характеристическое уравнение λ 2 – 4 λ + 13 = 0 имеет комплексные корни λ 1 = 2+3 i и λ 2 = 2 –3 i . Положив в (8.55) α=2 и β = 3, получим общее решение: .

г) Характеристическое уравнение λ 2 +9 = 0 имеет корни λ 1;2 = ± 3 i . П олагая в (8.55) α=0 и β = 3, получим общее решение

Рассмотрим теперь линейное неоднородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами:

Теорема 8.4. Пусть задано линейное дифференциальное неоднородное уравнение второго порядка с постоянными коэффициентами и п равой частью специального вида

1. Если не является корнем характеристического уравнения соответствующего однородного уравнения, то частное решение уравнения (8.57) имеет вид:

где – многочлены общего вида (с неопределенными коэффициентами).

2. Если – корень характеристического уравнения кратности s , то частное решение уравнения (8.57) имеет вид:

– многочлены общего вида

Рассмотрим в таблице 8.2 некоторые случаи составления частного решения линейного неоднородного дифференциального уравнения (8.57) по специальному виду его правой части.

Пример 8.18. Найти общее решение уравнения .

Решение. Найдем общее решение соответствующего однородного ДУ: . Х арактеристическое уравнение λ 2 +2 λ +1 = 0 имеет корень λ1 = 1 кратности 2 (смотри таблицу 8.1). Значит, yo . o . = c 1 e x + c 2 x e x . Находим частное решение исходного уравнения. В нем правая часть x –4=( x –4) e 0 x есть формула вида P 1 ( x ) e 0 x , причем α= 0 не является корнем характеристического уравнения: α λ . Поэтому согласно формуле (8.58), частное решение y ч.н. ищем в виде y ч.н. = Q 1 ( x ) e 0 x , т.е. y ч.н. = Ax + B , где A и B – неопределенные коэффициенты. Тогда

Пример 8.19. Решить уравнение .

уравнения . Характеристическое уравнение λ 2 – 4 λ +13 = 0 имеет корни λ1 = 2+3 i , λ 2 = 2 –3 i (смотри таблицу 8.1). Следовательно, .

Находим частное решение y ч.н. . Правая часть неоднородного уравнения в нашем случае имеет вид

Отсюда, сравнивая коэффициенты при косинусе и синусе, имеем . Следовательно, A = 1, B = – 3 . Поэтому . И наконец, с учетом теоремы 8.3 получаем общее решение заданного линейного неоднородного ДУ в виде:

Пример 8.20. Найти частное решение уравнения , удовлетворяющее начальным условиям .

Решение . Находим общее решение однородного уравнения . Характеристическое уравнение λ 2 – λ – 2 = 0 имеет два корня λ 1 = –1 и λ 2 = 2 (смотри таблицу 8.1) ; тогда yo . o . = C 1 ex + C 2 e 2 x – общее решение соответствующего однородного ДУ.

В правой части заданного уравнения имеется показательная функция. Так как в данном случае α=2 совпадает с одним из корней характеристического уравнения, то частное решение следует искать в виде функции Axe 2 x . Таким образом, y ч.н. = Axe 2 x . Дифференцируя дважды это равенство, по лучим: . Подставим y ч.н. и ее производные в левую часть заданного уравнения и найдем коэффициент A : . Следовательно, частное решение y ч.н. = 3xe 2 x , общее решение

Используя начальные условия, определим значения произвольных постоянных C 1 и C 2 . Дифференцируя общее решение (8.60), получим:

Подставим в общее решение (8.60) значения x = 0 и y = 2, будем иметь 2 = C 1 + C 2 . Подставим в выражение для значения x = 0 и , будем иметь: 13 = – C 1 +2 C 2 +3 ; 10 = – C 1 + C 2 . Из этих уравнений составим систему , из которой находим: C 1 = – 2 и C 2 =4 . Таким образом, есть то частное решение, которое удовлетворяет заданным начальным условиям

Теорема 8.5 (о наложении решений). Если правая часть уравнения (8.56) представляет собой сумму двух функций: , а y 1 ч.н. и y 2 ч.н. – частные решения уравнений и соответственно, то функция

является частным решением данного уравнения


источники:

http://mathdf.com/dif/ru/

http://www.sites.google.com/site/vyssaamatem/glava-viii-elementy-teorii-obyknovennyh-differencialnyh-uravnenij/viii-4-linejnye-differencialnye-uravnenia-vtorogo-poradka