Дифференциальное уравнение вынужденных электрических колебаний имеет вид

Вынужденные колебания

Определение вынужденных колебаний

Для того чтобы в реально существующей колебательной системе получать незатухающие колебания, следует каким-либо образом компенсировать потери энергии, которые происходят в результате существования сил сопротивления. Самым простым способом реализации незатухающих колебаний является воздействие на систему при помощи внешней периодической силы. Работа внешней силы обеспечить приток энергии в систему извне. Эта энергия не даст колебаниям затухнуть, при действии сил трения.

Колебания, которые возникают под действием периодически меняющейся силы (периодически изменяющейся ЭДС), называют вынужденными механическими (электромагнитными) колебаниями.

Дифференциальное уравнение вынужденных колебаний

Допустим, на механическую колебательную систему действует гармонически изменяющаяся внешняя сила:

Рассмотрим колебания груза на пружине (пружинный маятник). Уравнение незатухающих гармонических колебаний для этой системы можно записать как:

где $x$ — координата; $\delta $ — коэффициент затухания; $<\omega >_0$ — циклическая частота свободных незатухающих колебаний (если $\delta $=0, то $<\omega >_<0\ >$называют собственной частотой колебаний).

Если рассматривается, например, электрический колебательный контур, то роль периодически действующей силы может играть внешняя ЭДС или переменное напряжение. Их подводят к контуру извне и изменяются они по гармоническому закону. Уравнение колебаний в электрическом контуре можно представить как:

где $q$ — заряд; $\delta =\frac<2L>$ — коэффициент затухания; $<\omega >_0=\frac<1><\sqrt>$; $U=U_m<\cos \left(\omega t\right)\ >$ — внешнее переменное напряжение.

Уравнения (2) и (3) можно свести к линейному неоднородному дифференциальному уравнению вида:

где $s$ — колеблющийся параметр; $x_0=\frac$ если колебания механические ($x_0=\frac-\ в\ случае\ электрических\ колебаний$).

Решением уравнения (4) является сумма общего решения однородного уравнения и частного решения неоднородного уравнения. Однородное уравнение при этом имеет вид:

Его общее решение:

где $A_0$ — начальная амплитуда колебаний.

Частное решение уравнения (4) в представлено выражением:

Слагаемое $s_1$ в решении уравнения (5) играет значительную роль в начальной стадии установления колебаний, пока амплитуда вынужденных колебаний не будет определяться выражением (8).

Установившись, вынужденные колебания происходят с частотой $\omega $ и являются гармоническими. Амплитуда и фаза этих колебаний определяются равенствами (8) и (9), и они зависят от частоты $\omega $.

Резонанс вынужденных колебаний

Если частота вынуждающей силы приближается к собственной частоте колебаний, то возникает резкое увеличение амплитуды колебаний. Такое явление называют резонансом.

Из выражения (8) видно, что амплитуда имеет максимум. Для нахождения резонансной частоты (частоты при которой $A=max$), следует найти максимум функции $A(\omega )$. Взяв производную $\frac$ и приравняв ее к нулю получим:

Равенство (10) справедливо при:

Получается, что резонансная частота ($<\omega >_r$) равна:

При $<\delta >^2\ll <\omega >^2_0$ резонансная частота совпадает с собственной частотой колебаний $<\omega >_0.$ Подставим вместо частоты правую часть выражения (11) в формулу (8), получим выражение для резонансной амплитуды вынужденных колебаний:

При небольшом затухании колебаний (если $<\delta >^2\ll <\omega >^2_0$) амплитуда при резонансе равна:

где $Q=\frac<<\omega >_0><2\delta >$ — добротность колебательной системы, величина, характеризующая резонансные свойства колебательной системы. С увеличением добротности увеличивается амплитуда резонанса.

Примеры задач с решением

Задание. Какова добротность колебательного контура, представленного на рис.1?

Решение. Добротность электрического колебательного контура найдем как:

При этом собственная частота колебаний в таком контуре равна:

коэффициент затухания находим как:

Подставляет правые части выражений (1.2) (1.3) вместо соответствующих величин в (1.1), в результате, добротность представленного на рис. 1 контура найдем при помощи формулы:

Ответ. $Q=10$

Задание. Пружинный маятник выполняет вынужденные колебания в вязком веществе. Масса груза на пружине равна $m$, коэффициент упругости пружины $k$. Коэффициент сопротивления среды равен $r$. Систему заставляет совершать колебания сила $F=<\cos \left(\omega t\right)(Н).\ \ \ >$Чему равна резонансная амплитуда заданных колебаний ($A_r$)?

Решение. Допустим, что груз совершает колебания вдоль прямой X, тогда уравнением данных механических колебаний будет выражение:

где коэффициент затухания равен $\delta =\frac<2m>$. Из функции, которая задает вынуждающую силу:

мы видим, что амплитуда силы равна единице:

Собственная частота колебаний груза на пружине:

Амплитуда при резонансе таких колебаний равна:

Дифференциальное уравнение вынужденных колебаний и его интегрирование

Дифференциальное уравнение вынужденных колебаний и его интегрирование

  • Чтобы прояснить влияние линейного сопротивления на вынужденную вибрацию, рассмотрим наиболее распространенный случай, когда обобщенная сила Q состоит из трех сил. Потенциал Qn = —dP / dq— —eq, линейное сопротивление b (φ, = −dF / da = — == Hsin (pz + 8). Подставляя это значение обобщенной силы Q = Q «+ Q’t + QB в уравнение Лагранжа (1), aq + \ uj + cq = Hsm (pi + 5). Разделим обе части уравнения на π и введем обозначение k2 = c / a, 2n = c / a, h = Hja. Где A: круговая частота естественной вибрации.

Коэффициент демпфирования, а h относительная амплитуда возмущающей силы. Окончательный вид дифференциального уравнения: q + 2nq + k2q = hs \ n (pt-y8). (44) Линейное дифференциальное уравнение получается с постоянным фактором вынужденной вибрации, который учитывает линейное сопротивление. Поскольку это неравномерное уравнение, решение состоит из двух частей. qx — общее решение для равномерного уравнения. q2 является частным решением неоднородного уравнения. Общее решение однородного уравнения удовлетворяет уравнению для собственных колебаний с линейным сопротивлением.

Но для выявления сил, действие которых испытывает материальная точка, выберем ее собственную систему отсчета, по отношению к которой ее относительные скорость и ускорение равны нулю, т. Людмила Фирмаль

Таким образом, это движение не может быть вибрацией, но называется его собственным движением или вибрацией. Частное решение неоднородного уравнения q2 называется вынужденным колебанием. Общее движение системы характеризуется обобщенной координатой q, равной сумме qt и q2, где q = qt + q2 величина q называется общим вынужденным движением (или вынужденной вибрацией). Общее решение qt для однородного дифференциального уравнения q1 + 2nql + k2qi = 0 может быть выражено в одной из следующих трех форм в зависимости от соотношения между величинами n и k. n k, ql = e «‘(cie’ ^ r2 ‘+ C2 .

В любом из этих случаев qt стремится к нулю с течением времени, то есть затухает из-за наличия коэффициентов e

q. Если коэффициент демпфирования мал (n A) движение не будет колебаться, поскольку затухание очень велико. Следовательно, если через некоторое время возникает линейное сопротивление, суммарное вынужденное движение Людмила Фирмаль

Таким образом, это движение не может быть вибрацией, но называется его собственным движением или вибрацией. Частное решение неоднородного уравнения q2 называется вынужденным колебанием. Общее движение системы характеризуется обобщенной координатой q, равной сумме qt и q2, где q = qt + q2 величина q называется общим вынужденным движением (или вынужденной вибрацией). Общее решение qt для однородного дифференциального уравнения q1 + 2nql + k2qi = 0 может быть выражено в одной из следующих трех форм в зависимости от соотношения между величинами n и k. n k, ql = e «‘(cie’ ^ r2 ‘+ C2e

В любом из этих случаев qt стремится к нулю с течением времени, то есть затухает из-за наличия коэффициентов e

Если коэффициент демпфирования мал (n A) движение не будет колебаться, поскольку затухание очень велико. Следовательно, если через некоторое время возникает линейное сопротивление, суммарное вынужденное движение

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение

Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью какого-либо периодически действующего фактора X(t), изменяющегося по гармоническому закону:

Если рассматривать механические ко­лебания, то роль X(t) играет внешняя вы­нуждающая сила

С учетом силы (147.1) закон движения для пружинного маятника (146.9) запи­шется в виде

Используя (142.2) и (146.10), придем к уравнению

Если рассматривать электрический ко­лебательный контур, то роль X(t) играет подводимая к контуру внешняя периодиче­ски изменяющаяся по гармоническому за­кону э.д.с. или переменное напряжение

Тогда уравнение (143.2) с учетом (147.3) можно записать в виде

Используя (143.4) и (146.11), придем

Колебания, возникающие под действи­ем внешней периодически изменяющейся силы или внешней периодически изменя­ющейся э.д.с., называются соответствен­но вынужденными механическими и вы­нужденными электромагнитными колеба­ниями.

Уравнения (147.2) и (147.4) можно свести к линейному неоднородному диффе­ренциальному уравнению

применяя впоследствии его решение для вынужденных колебаний конкретной фи­зической природы 0 в случае механиче­ских колебаний равно F0/m, в случае элек­тромагнитных — Um/L).

Решение уравнения (147.5) равно сум­ме общего решения (146.5) однородного уравнения (146.1) и частного решения не­однородного уравнения. Частное решение найдем в комплексной форме (см. § 140). Заменим правую часть уравнения (147.5) на комплексную величину х0е i w t :

Частное решение этого уравнения будем искать в виде

s=s0 i h t . Подставляя выражение для s и его про­изводных в уравнение (147.6), получим

Так как это равенство должно быть справедливым для всех моментов времени, то время t из него должно исключаться. Отсюда следует, что h=w. Учитывая это, из уравнения (147.7) найдем величину so и умножим ее числитель и знаменатель на (w 2 0-w-2idw):

Это комплексное число удобно предста­вить в экспоненциальной форме:

Следовательно, решение уравнения (147.6) в комплексной форме примет вид

Его вещественная часть, являющаяся ре­шением уравнения (147.5), равна

где A и j задаются соответственно форму­лами (147.8) и (147.9).

Таким образом, частное решение не­однородного уравнения (147.5) имеет вид

Решение уравнения (147.5) равно сум­ме общего решения однородного урав­нения

(см. 146.5)) и частного решения (147.11). Слагаемое (147.12) играет существенную роль только в начальной стадии процесса (при установлении колебаний) до тех пор, пока амплитуда вынужденных колебаний не достигнет значения, определяемого ра­венством (147.8). Графически вынужден­ные колебания представлены на рис. 209. Следовательно, в установившемся режиме вынужденные колебания происходят с частотой (о и являются гармоническими; амплитуда и фаза колебаний, определяемые выражениями (147.8) и (147.9), так­же зависят от w.

Запишем формулы (147.10), (147.8) и (147.9) для электромагнитных колеба­ний, учитывая, что w 2 0=1/(LC) (см. (143.4)) и d=R/(2L) (см. (146.11)):

Продифференцировав Q=Qmcos(wt-a) по t, найдем силу тока в контуре при установившихся колебаниях:

Выражение (147.14) может быть записано в виде

где j=a-p/2 — сдвиг по фазе между током и приложенным напряжением (см. (147.3)). В соответствии с выражени­ем (147.13)

Из формулы (147.16) вытекает, что ток отстает по фазе от напряжения (j>0), если wL>l/(wC), и опережает напряже­ние (j


источники:

http://lfirmal.com/differencialnoe-uravnenie-vynuzhdennyh-kolebanij-i-ego-integrirovanie/

http://allrefrs.ru/1-25817.html