Дифференциальное уравнение вынужденных колебаний в rlc контуре

Вынужденные колебания в контуре. Резонанс

Вы будете перенаправлены на Автор24

Уравнение вынужденных колебаний

Вынужденными колебаниями называют периодические изменения параметров, которые описывают систему под влиянием внешней силы. Для реализации вынужденных электрических колебаний в $RLC$ контуре в него включают переменную ЭДС (рис.1).

В общем случае вынужденные колебания в таком контуре можно записать как:

где $L$ — индуктивность, $R$ — сопротивление, $C$ — емкость, $U\left(t\right)$ — внешнее воздействие.

Рассмотрим случай, когда в контур подается переменное напряжение ($U$) изменяющееся по гармоническому закону:

Тогда уравнение колебаний запишется в виде:

где $<\omega >_0=\frac<1><\sqrt>$- собственная частота колебаний контура, $\beta =\frac<2L>.$ По аналогии с механическими колебаниями можно записать частное решение данного уравнения как:

Как известно, общее решение неоднородного уравнения получают как сумму частного решения данного уравнения (в нашем случае это (4)) и общего решения соответствующего однородного уравнения. Так для уравнения:

общим решением является выражение:

Так как выражение (6) содержит множитель $e^<\left(-\beta t\right)>$, то при $t\to \infty ,\ $ $e^<\left(-\beta t\right)>\to 0,$ поэтому для установившихся колебаний решением уравнения (3) считают функцию (4).

Сила тока для установившихся вынужденных колебаний может быть записана как:

где $I_m=<\omega q>_m$, $\varphi =\Psi-\frac<\pi ><2>$ — сдвиг фаз между тока и приложенного напряжения. Соответственно:

Готовые работы на аналогичную тему

Надо отметить, что выполняется равенство:

Выражение (9) означает, что сумма напряжений на каждом из элементов цепи в момент времени $t$ равна приложенному напряжению.

Резонанс

Появление сильных колебаний при частоте внешней силы равной (или почти равной) собственной частоте колебательного контура, называют резонансом. Суть явления заключается в том, что как бы одиночные «толчки» усиливают друг друга. В таком случае получается, что энергия, которая вкладывается в систему, является максимальной. Амплитуда колебаний нарастает до тех пор, пока увеличивающиеся силы трения (в среднем) за период толчка не станут компенсировать действие каждого «толчка». В этот момент устанавливается максимум энергии и максимум амплитуды.

Резонансной частотой для заряда ($<\omega >_$) и напряжения ($<\omega >_$) на конденсаторе являются частоты, заданные уравнениями:

Резонансные кривые для заряда и напряжения на конденсаторе имеют одинаковый вид (рис.2).

Если $\omega =0$ кривые (рис.2) сходятся в одной точке, при этом напряжение на конденсаторе равно напряжению, которое возникает на нем при подключении источника:

Максимум резонансной кривой выше и острее, чем меньше коэффициент затухания (меньше $R$, больше $L$).

Кривые для силы тока изображены на рис. 3. Амплитудное значение силы тока максимально, если $\omega L-\frac<1><\omega C>=0.\ $Частота силы тока при резонансе ($<\omega >_$):

Задание: Получите функции $U_R(t),U_C(t),U_L(t)$ в $RCL$ контуре, если приложенное напряжение задано уравнением: $U=U_m.$

Решение:

В качестве основы для решения задачи используем выражение:

\[I\left(t\right)=\left(\omega t-\varphi \right)\left(1.1\right).\]

Исходя из (1.1) для напряжения на сопротивлении ($U_R$) в соответствии с законом Ома для участка цепи можно записать, что:

\[U_R\left(t\right)=RI\left(t\right)=<_m cos\ >\left(\omega t-\varphi \right)\left(1.2\right).\]

Используя закон изменения заряда в контуре, заданном в условии:

найдем $U_C\left(t\right)$ как:

где $U_=\frac=\frac<С\omega >.$ Напряжение на катушке индуктивности найдем как:

Задание: Определите, во сколько раз напряжение на конденсаторе может превышать напряжение, которое приложено к $RLC$ контуру, если добротность контура равна $O$. Считать, что внешнее напряжение подчиняется гармоническому закону, затухание в контуре мало.

Решение:

Условие малости затухания для контура означает, что:

и резонансную частоту можно считать равной собственной частоте.

Напряжение на конденсаторе можно выразить как:

где $q_m=\frac<\omega \sqrt<^2>>$. Если при резонансе в нашем случае $\omega \approx <\omega >_0$, то максимальное напряжение на конденсаторе при резонансе равно ($U_$):

где при малом затухании можно считать, что $<\omega >_0L-\frac<1><<\omega >_0C>\approx 0$

Найдем отношение $\frac>$, получим:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 26 04 2021

Вынужденные колебания. Переменный ток

Дадим определение понятию вынужденных колебаний.

Вынужденные колебания – это процессы, которые происходят в электрических цепях под воздействием периодического источника тока.

Основным отличием вынужденных колебаний по сравнению с собственными колебаниями в электрических цепях является то, что они являются незатухающими. Неизбежные потери энергии компенсируются за счет внешнего источника периодического воздействия, который не позволяет колебаниям затухать.

Что такое переменный ток?

Переменный ток — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

Рассмотрим случай, когда электрическая цепь способна совершать собственные свободные колебания с некоторой частотой ω 0 . Предположим, что к этой цепи подключен внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω .

Частота свободных колебаний в электрической сети ω 0 будет определяться параметрами этой сети. Вынужденные колебания, которые установятся при подключении внешнего источника ω , будут происходить на частоте этого внешнего источника.

Частота вынужденных колебаний устанавливается не сразу после включения внешнего источника, а спустя некоторое время Δ t . По порядку величины это время будет равно времени затухания свободных колебаний в сети τ .

Цепи переменного тока

Цепи переменного тока – это такие электрические цепи, в которых под воздействием периодического источника тока происходят установившиеся вынужденные колебания.

Рассмотрим устройство колебательного контура, в который включен источник тока с напряжением, изменяющимся по периодическому закону:

e ( t ) = ε 0 cos ω t,

где ε 0 – амплитуда, ω – круговая частота.

Фактически, это будет R L C -цепь.

Рисунок 2 . 3 . 1 . Вынужденные колебания в контуре.

Будем считать, что для изображенной на этом рисунке электрической цепи выполняется условие квазистационарности. Это позволит нам записать закон Ома для мгновенных значений токов и напряжений:

R J + q C + L d J d t = ε 0 c o c ω t.

Величину L d J d t принято называть напряжением на катушке индуктивности. Фактически, это ЭДС самоиндукции катушки, которую мы для простоты вычислений перенесли с противоположным знаком в левую часть уравнения из правой.

Уравнение вынужденных колебаний можно записать в виде:

u R + u C + u L = e ( t ) = ε 0 cos ω t.

где u R ( t ) , u C ( t ) и u L ( t ) – мгновенные значения напряжений на резисторе, конденсаторе и катушке соответственно. Амплитуды этих напряжений будем обозначать буквами U R , U C и U L . Напряжения при установившихся вынужденных колебаниях изменяются с частотой внешнего источника переменного тока ω .

Векторная диаграмма токов и напряжений

Для решения уравнения вынужденных колебаний мы можем использовать достаточно наглядный метод векторных диаграмм. Для этого используем векторную диаграмму, на которой с помощью векторов изобразим колебания определенной заданной частоты ω .

Давайте посмотрим, как построить векторную диаграмму токов и напряжений.

Рисунок 2 . 3 . 2 . Векторная диаграмма, на которой с помощью векторов изображены гармонические колебания A cos ( ω t + φ 1 ) , B cos ( ω t + φ 2 ) и их суммы C cos ( ω t + φ ) .

Наклон векторов к горизонтальной оси определяется фазой колебаний φ 1 и φ 2 , а длины векторов соответствуют амплитудам колебаний A и B . Относительный фазовый сдвиг определяет взаимную ориентацию векторов: ∆ φ = φ 1 — φ 2 . Для того, чтобы построить вектор, изображающий суммарное колебание, нам необходимо использовать правило сложения векторов: C → = A → + B → .

При вынужденных колебаниях в электрической цепи для построения векторной диаграммы напряжений и токов нам необходимо знать соотношения между амплитудами токов и напряжений и фазовый сдвиг между ними для любого участка цепи.

Источник переменного тока может быть подключен к:

  • катушке индуктивности L ;
  • резистору с сопротивлением R ;
  • конденсатору с емкостью С .

Рассмотрим эти три примера подробнее. Будем считать, что напряжение на резисторе, катушке и конденсаторе во всех трех случаях равно напряжению внешнего источника переменного тока.

Резистор в цепи переменного тока

J R R = u R = U R cos ω t ; J R = U R R cos ω t = I R cos ω t

Мы обозначили амплитуду тока, который протекает через резистор, через I R . Соотношение R I R = U R выражает связь между амплитудами тока и напряжения на резисторе. Фазовый сдвиг в этом случае равен нулю. Физическая величина R – это активное сопротивление на резисторе.

Конденсатор в цепи переменного тока

u C = q C = U C cos ω t

J C = d q d t = C d u C d t = C U C ( — ω sin ω t ) = ω C U C cos ω t + π 2 = I C cos ω t + π 2 .

Соотношение между амплитудами тока I C и напряжения U C : 1 ω C I C = U C .

Ток опережает по фазе напряжение на угол π 2 .

Физическая величина X C = 1 ω C — это емкостное сопротивление конденсатора.

Вынужденные колебания

Определение вынужденных колебаний

Для того чтобы в реально существующей колебательной системе получать незатухающие колебания, следует каким-либо образом компенсировать потери энергии, которые происходят в результате существования сил сопротивления. Самым простым способом реализации незатухающих колебаний является воздействие на систему при помощи внешней периодической силы. Работа внешней силы обеспечить приток энергии в систему извне. Эта энергия не даст колебаниям затухнуть, при действии сил трения.

Колебания, которые возникают под действием периодически меняющейся силы (периодически изменяющейся ЭДС), называют вынужденными механическими (электромагнитными) колебаниями.

Дифференциальное уравнение вынужденных колебаний

Допустим, на механическую колебательную систему действует гармонически изменяющаяся внешняя сила:

Рассмотрим колебания груза на пружине (пружинный маятник). Уравнение незатухающих гармонических колебаний для этой системы можно записать как:

где $x$ — координата; $\delta $ — коэффициент затухания; $<\omega >_0$ — циклическая частота свободных незатухающих колебаний (если $\delta $=0, то $<\omega >_<0\ >$называют собственной частотой колебаний).

Если рассматривается, например, электрический колебательный контур, то роль периодически действующей силы может играть внешняя ЭДС или переменное напряжение. Их подводят к контуру извне и изменяются они по гармоническому закону. Уравнение колебаний в электрическом контуре можно представить как:

где $q$ — заряд; $\delta =\frac<2L>$ — коэффициент затухания; $<\omega >_0=\frac<1><\sqrt>$; $U=U_m<\cos \left(\omega t\right)\ >$ — внешнее переменное напряжение.

Уравнения (2) и (3) можно свести к линейному неоднородному дифференциальному уравнению вида:

где $s$ — колеблющийся параметр; $x_0=\frac$ если колебания механические ($x_0=\frac-\ в\ случае\ электрических\ колебаний$).

Решением уравнения (4) является сумма общего решения однородного уравнения и частного решения неоднородного уравнения. Однородное уравнение при этом имеет вид:

Его общее решение:

где $A_0$ — начальная амплитуда колебаний.

Частное решение уравнения (4) в представлено выражением:

Слагаемое $s_1$ в решении уравнения (5) играет значительную роль в начальной стадии установления колебаний, пока амплитуда вынужденных колебаний не будет определяться выражением (8).

Установившись, вынужденные колебания происходят с частотой $\omega $ и являются гармоническими. Амплитуда и фаза этих колебаний определяются равенствами (8) и (9), и они зависят от частоты $\omega $.

Резонанс вынужденных колебаний

Если частота вынуждающей силы приближается к собственной частоте колебаний, то возникает резкое увеличение амплитуды колебаний. Такое явление называют резонансом.

Из выражения (8) видно, что амплитуда имеет максимум. Для нахождения резонансной частоты (частоты при которой $A=max$), следует найти максимум функции $A(\omega )$. Взяв производную $\frac$ и приравняв ее к нулю получим:

Равенство (10) справедливо при:

Получается, что резонансная частота ($<\omega >_r$) равна:

При $<\delta >^2\ll <\omega >^2_0$ резонансная частота совпадает с собственной частотой колебаний $<\omega >_0.$ Подставим вместо частоты правую часть выражения (11) в формулу (8), получим выражение для резонансной амплитуды вынужденных колебаний:

При небольшом затухании колебаний (если $<\delta >^2\ll <\omega >^2_0$) амплитуда при резонансе равна:

где $Q=\frac<<\omega >_0><2\delta >$ — добротность колебательной системы, величина, характеризующая резонансные свойства колебательной системы. С увеличением добротности увеличивается амплитуда резонанса.

Примеры задач с решением

Задание. Какова добротность колебательного контура, представленного на рис.1?

Решение. Добротность электрического колебательного контура найдем как:

При этом собственная частота колебаний в таком контуре равна:

коэффициент затухания находим как:

Подставляет правые части выражений (1.2) (1.3) вместо соответствующих величин в (1.1), в результате, добротность представленного на рис. 1 контура найдем при помощи формулы:

Ответ. $Q=10$

Задание. Пружинный маятник выполняет вынужденные колебания в вязком веществе. Масса груза на пружине равна $m$, коэффициент упругости пружины $k$. Коэффициент сопротивления среды равен $r$. Систему заставляет совершать колебания сила $F=<\cos \left(\omega t\right)(Н).\ \ \ >$Чему равна резонансная амплитуда заданных колебаний ($A_r$)?

Решение. Допустим, что груз совершает колебания вдоль прямой X, тогда уравнением данных механических колебаний будет выражение:

где коэффициент затухания равен $\delta =\frac<2m>$. Из функции, которая задает вынуждающую силу:

мы видим, что амплитуда силы равна единице:

Собственная частота колебаний груза на пружине:

Амплитуда при резонансе таких колебаний равна:


источники:

http://zaochnik.com/spravochnik/fizika/elektromagnitnye-kolebanija-volny/vynuzhdennye-kolebanija-peremennyj-tok/

http://www.webmath.ru/poleznoe/fizika_42_vynuzhdennye_kolebanija.php