Дифференциального уравнения для затухающих электромагнитных колебаний

Затухающие колебания в контуре и их уравнение

Существуют колебания в системе без источника энергии, называемые затухающими. Рассмотрим реальный контур с сопротивлением не равным нулю. Для примера используют контур с включенным сопротивлением R , с емкостью конденсатора C , с катушкой индуктивности L , изображенный на рисунке 1 . Колебания, происходящие в нем, — затухающие.

Именно наличие сопротивления становится главной причиной их затухания. Данный процесс возможен посредствам потерь энергии на выделение джоулева тепла. Аналог сопротивления в механике – действие сил трения.

Характеристики затухающих колебаний

Затухающие колебания характеризуют коэффициентом затухания β . Применив второй закон Ньютона, получим:

m a = — k x — y v , d 2 x d t 2 + r m d x d t + k m x = 0 , ω 0 2 = k m , β = r 2 m .

Из записи видно, что β действительно является характеристикой контура. Реже вместо β применяют декремент затухания δ ,

Значение a ( t ) является амплитудой заряда, силы тока и так далее, δ равняется количеству колебаний, а N e — период времени уменьшения амплитуды в e раз.

Для R L C контура применима формула с ω частотой.

При небольшой δ ≪ 1 говорят, что β ≪ ω 0 ω 0 = 1 L C — собственная частота, отсюда ω ≈ ω 0 .

При рассмотрении затухающих колебаний последовательного контура колебательный контур характеризуется добротностью Q :

Q = 1 R L C = ω 0 L R , где R , L и C — сопротивление, индуктивность, емкость, а ω 0 — частота резонанса. Выражение L C называют характеристическим или волновым сопротивлением. Для параллельного контура формула примет вид:

Q = R L C = R ω 0 L .

R является входным сопротивлением параллельного контура.

Эквивалентное определение добротности применяется при слабых затуханиях. Его выражают через отношение энергий:

Q = ω 0 W P d = 2 π f 0 W P d , называемое общей формулой.

Уравнения затухающих колебаний

Рассмотрим рисунок 1 . Изменение заряда q на конденсаторе в таком контуре описывается дифференциальным уравнением:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Если t = 0 , то заряд конденсатора становится равным q 0 , и ток в цепи отсутствует.

Если R > 2 L C изменения заряда не относят к колебаниям, разряд называют апериодическим.

Значение сопротивления, при котором колебания превращаются в апериодический разряд конденсатора, критическое R k .

Функция изображается аналогично рисунку 2 .

Записать закон убывания энергии, запасенной в контуре W ( t ) при W ( t = 0 ) = W 0 с затухающими колебаниями. Обозначить коэффициент затухания в контуре β , а собственную частоту — ω 0 .

Решение

Отправная точка решения – это применение формулы изменения заряда на конденсаторе в R L C — контуре:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Предположим, что при t = 0 , a ‘ 0 = 0 . Тогда применим выражение

Для нахождения I ( t ) :

I ( t ) = — ω 0 q 0 e ( — 2 β t ) sin ( ω t + α ) , где t g α = β ω .

Очевидно, что электрическая энергия W q запишется как:

W q = q 2 2 C = q 0 2 2 C e ( — 2 β t ) cos 2 ( ω t ) = W 0 e ( — 2 β t ) cos 2 ( ω t ) .

Тогда значение магнитной энергии контура W m равняется:

W m = L 2 ω 0 2 q 0 2 e ( — 2 β t ) sin 2 ω t + a = W 0 e — 2 β t sin 2 ω t + a .

Запись полной энергии будет иметь вид:

W = W q + W m = W 0 e ( — 2 β t ) ( cos 2 ( ω t ) + sin 2 ( ω t + a ) ) = = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + α ) .

Где sin α = β ω 0 .

Ответ: W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) .

Применив результат предыдущего примера, записать выражение для энергии, запасенной в контуре W ( t ) , при медленно затухающих колебаниях. Начертить график убывания энергии.

Решение

Если колебания в контуре затухают медленно, то:

Очевидно, выражение энергии, запасенной в контуре, вычислим из

W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) , предварительно преобразовав до W ( t ) = W 0 e ( — 2 β t ) .

Такое упрощение возможно по причине выполнения условия β ω 0 ≪ 1 , sin ( 2 ω t + a ) ≤ 1 , что означает β ω 0 sin ( 2 ω t + a ) ≪ 1 .

Ответ: W ( t ) = W 0 e ( — 2 β t ) . Энергия в контуре убывает по экспоненте.

Дифференциальное уравнение затухающих электромагнитных колебаний

Как было показано в разделе 9.2, напряжение U на обкладках конден­сатора, который

вместе с катушкой индуктивностью L и сопротивлени­ем R образует колебательный

контур, изменяется со временем так, что функция U = U(t) является решением дифференциального уравнения (9.23)

Рассмотрим один из способов отыскания решений этого уравнения. Бу­дем искать решение этого уравнения в виде произведения

Производные этой функции

d 2 U/dt 2 = е — βt (d 2 f/ dt 2 — 2 β df/dt -β 2 f (t))

Подстановка функции (9.42) и ее производных в уравнение (9.23) приво­дит к дифференциальному уравнению

При условии, что

уравнение (9.43) представляет собой дифференциальное Уравнение гар­монических

d 2 f/ dt 2 + w 2 f = 0 . (9.45)

Общее решение уравнения (9.45) имеет вид

где Uo и а — постоянные величины. Подстановка этого выражения в формулу (9.42) приводит к функции

которая описывает затухающие колебания напряжения на конденсаторе.

В том случае, когда сопротивление контура больше критического, т.е.

неравенство (9.44) нарушается. Теперь уравнение (9.43) следуем записать

d 2 f/ dt 2 +λ 2 f = 0 (9.49)

при условии, что λ > w0. Непосредственной подстановкой нетрудно убе­диться в том, что общим решением уравнения (9.49) является сумма

где С1 и С2 — произвольные постоянные. При этом функция (9.42) будет иметь вид

Такая функция описывает апериодические изменения напряжения на конденсаторе, с которого стекают накопленные на его обкладках заряды. Возможные графики этой функции изображены на рис. 9.6.

Рис. 9.6. Зависимость напряжения на конденсаторе от времени

Кривая 1 на рис. 9.6 соответствует случаю, когда в момент времени t = 0 конденсатор был заряжен, а ток в контуре был равен нулю. Затем конденсатор стал разряжаться и в контуре появился ток. В некоторый момент времени напряжение на конденсаторе станет равным нулю, но при этом в контуре еще будет идти ток. Поэтому конденсатор снова на­чнет заряжаться, но в обратной полярности. После того как напряжение на конденсаторе достигнет наибольшего значения, он будет разряжаться. Кривая 2 соответствует случаю, когда в момент времени t = 0 конденса­тор не был заряжен, но по контуру шел ток и в катушке было магнитное поле. Затем заряды стали натекать на обкладки коденсатора, т.е. он стал заряжаться. Напряжение на конденсаторе растет до максимума и после этого снижается до нуля.

Дата добавления: 2015-09-11 ; просмотров: 5 | Нарушение авторских прав

III. ЗАТУХАЮЩИЕ КОЛЕБАНИЯ В ЭЛЕКТРИЧЕСКОМ КОЛЕБАТЕЛЬНОМ КОНТУРЕ

Затухающие электромагнитные колебания возникают при разряде конденсатора в электрическом контуре, содержащем индуктивность , и активное сопротивление . Электрический колебательный контур изображён на рис. 4.

Для данного колебательного контура второе уравнение Кирхгоффа запишется:

(17)

где — падение напряжения на активном сопротивлении, падение напряжения на конденсаторе, — ЭДС самоиндукции, возникающая в катушке индуктивности.

Очевидно, возникающий в цепи электрический ток, связан с разрядом конденсатора соотношением:

, . (18)

С учетом (18) уравнение (17) запишется:

. (19)

Если ввести обозначение и , уравнение (19) совпадает с уравнением(1) -дифференциальным уравнением затухающих колебаний:

. (20)

Следовательно, изменение заряда на пластинах конденсатора будет происходить по закону:

, (21)

где q0 — начальное значение заряда на конденсаторе.

Так как напряжение на конденсаторе связано с зарядом, то

. (22)

Кривую зависимости U(t) можно наблюдать при помощи электронного осциллографа.

Учитывая определение силы тока (18), зависимость переменного, возникающего в цепи, тока от временизапишется:

, (23)

где начальная амплитуда силы тока.

Уравнения (21), (22) и (23) называются уравнениями электромагнитных колебаний.

Из выражений (8) ,(19) и (20) следует, что период затухающих колебаний в зависимости от параметров колебательной системы определится:

(24)

Период незатухающих (гармонических) колебаний тоже зависит от параметров колебательной системы:

(25)

Как следует из формул (24) и (25), T отличается от T0 тем сильнее, чем больше величина δ (при δ 0, а I(t) = I0(t=0) – δ t в процессе колебаний уменьшается за счет выделения теплоты на активном сопротивлении колебательного контураR. Амплитуда затухающих колебаний уменьшается со временем тем быстрее, чем больше коэффициент затухания δ.

Из определения добротности колебательной системы (11) и зависимости коэффициента затухания и собственной частоты колебаний от параметров колебательного контура, получим выражение для добротности колебательного контура .

. (28)

Добротность электрического колебательного контура равна отношению волнового сопротивления контура к его электрическому сопротивлению R.


источники:

http://lektsii.net/4-97921.html

http://poisk-ru.ru/s171t17.html

Читайте также:
  1. II. ЦЕПЬ РЕЛЕ 380 И ЭЛЕКТРОМАГНИТНЫХ ЗАЩЕЛОК
  2. Амплитудной модуляцией называется процесс изменения амплитуды колебаний радиочастоты в соответствии с изменением амплитуды колебаний низкой частоты передаваемого сигнала.
  3. Виды электромагнитных волн.
  4. Воздействие внешним электромагнитным сигналом определенного спектра колебаний
  5. Волновое уравнение
  6. Волновое уравнение. Формула Пуассона
  7. Глава 5 Уравнение судьбы
  8. Диссоциацию кислой соли можно выразить уравнением
  9. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ
  10. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ