Дифференциального уравнения первого порядка методами рунге кутта

Метод Рунге — Кутты

Этот онлайн калькулятор реализует классический метод Рунге — Кутты (встречается также название метод Рунге — Кутта) четвертого порядка точности. Метод используется для решения дифференциальных уравнений первой степени с заданным начальным значением

Калькулятор ниже находит численное решение дифференциального уравнения первой степени методом Рунге-Кутты (иногда встречается название метод Рунге-Кутта, а в поисковиках бывает ищут «метод рунге кута», «метод рунги кутта» и даже «метод рунги кута»), который также известен как классический метод Рунге — Кутты (потому что есть на самом деле семейство методов Рунге-Кутты) или метод Рунге — Кутты четвертого порядка.

Для того, чтобы использовать калькулятор, вам надо привести дифференциальное уравнение к форме

и ввести правую часть уравнения f(x,y) в поле y’ калькулятора.

Также вам понадобится ввести начальное значение

и указать точку в которой вы хотите получить численное решение уравнения .

Последнее параметр калькулятора — размер шага с которым вычисляется следующее приближение по графику функции.

Описание метода можно найти под калькулятором.

Метод Рунге-Кутта решения диф. уравнений и их систем.

Метод позволяет решать системы обыкновенных дифференциальных уравнений (ОДУ) первого порядка следующего вида:

которые имеют решение:

где t — независимая переменная (например, время); X, Y и т.д. — искомые функции (зависимые от t переменные). Функции f, g и т.д. — заданы. Также предполагаются заданными и начальные условия, т.е. значения искомых функций в начальный момент.

Одно диф. уравнение — частный случай системы с одним элементом. Поэтому, далее речь пойдет для определенности о системе уравнений.

Метод может быть полезен и для решения диф. уравнений высшего (второго и т.д.) порядка, т.к. они могут быть представлены системой диф. уравнений первого порядка.

Метод Рунге-Кутта заключается в рекурентном применении следующих формул:

Реализация Метода Рунге-Кутта на Delphi может выглядеть так (привожу полностью модуль):

Модуль полностью работоспособен. Возвращаемое функцией Runge_Kutt значение — код ошибки. Вы можете дополнить список ошибок по своему усмотрению. Рассчитанные функции системы помещаются в массив Res. Чтобы не загромождать код, в модуле опущены проверки (типа блоков try). Рекомендую их добавить по своему усмотрению.

Ниже приводится описание функции Runge_Kutt и типов, использующихся в модуле.

  • FunArray — вектор функций (правых частей уравнений системы);
  • First, Last — начальная и конечная точки расчетного интервала;
  • Steps — число шагов по расчетному интервалу;
  • InitArray — вектор начальных значений
  • var Res — матрица результатов включая независимую переменную.

В модуле описаны типы:

Функция возвращает коды ошибок:

  • 0 — нет ошибок;
  • 100 — число уравнений не равно числу начальных условий.

Решение содержится в переменной-матрице Res. Первый индекс матрицы относится к переменной (0 — независимая переменная, 1 — первая зависимая и т.д.), второй — к номеру расчетной точки (0 — начальная точка).

Рассмотрим один пример использования модуля. Создадим новое приложение и подключим к нему модуль. На форме приложения разместим кнопку Button1 и область текста Memo1. Поместим в приложение две функции и обработчик нажатия кнопки:

Нажатие кнопки приведет к расчету точек системы, которые будут выведены в текстовую область.

Модуль с примером и справкой можно скачать бесплатно по адресу RK.zip (ZIP, 15,3Kb) (русский вариант). Английский вариант (условно-бесплатный) можно скачать по адресу RK_Eng.zip (ZIP, 23.4Kb)

Ссылки

  • http://sadovoya.narod.ru/RK.zip (русский вариант).
  • http://sintreseng.narod.ru/RK_Eng.zip (английский, условно-бесплатный вариант)

Оставить комментарий

Комментарии

Скачала по Вашей ссылке русский вариант, изменила для своей системы диф. уравнений, но при запуске выдаёт ошибку :
Project Ex.exe raised exception class EOverflow with message ‘ Floating point overflow ‘
Помогите, пожалуйста .

Вот изменённый мною модуль:

unit Unit1;
interface
uses
SysUtils, Forms, StdCtrls, Controls, Classes, Dialogs, Math;
type
TForm1 = class(TForm)
Memo1: TMemo;
rk_But: TButton;
procedure rk_ButClick(Sender: TObject);
private
< Private declarations >
public
< Public declarations >
end;
var
Form1: TForm1;
pn,k,ro,Pzv: Extended;

implementation
uses rk_method, Windows;

<$R *.dfm>
procedure Syst (var t: TFloat; var X: TFloatVector;
var RP: TFloatVector);
const
fdr1=0.503;
fdr2=0.503;
fdr3=0.196;
W1=179.8928;
W2=3773.8568;
W3=2504.1203;
b1=55.9203;
b2=98.6;
b3=98.6;
Ls1=3.78;
Ls2=9;
Ls3=15.3;
Svidj2=1352.438;
Svidj3=1352.438;
my=0.62;
vk=30;
m=1.2;
L1=30.969;
L2=42.131;
delta1=0;

begin
pn:=2.5*Power(10,4);
k:=6*Power(10,-7);
ro:=8.5*Power(10,-7);
Pzv:=3.919*Power(10,7);

RP[0] := (1/(k*W1))*(my*fdr1*sqrt(2/ro)*sqrt(Abs(pn-X[0]))-my*fdr2*sqrt(2/ro)*sqrt(Abs(X[0]-X[1]))-(delta1*delta1*delta1*b1)/(12*ro*vk*Ls1)*X[0]); // dp1/dt
RP[1] := (1/(k*W2))*(my*fdr2*sqrt(2/ro)*sqrt(Abs(X[0]-X[1]))-my*fdr3*sqrt(2/ro)*sqrt(Abs(X[1]-X[2]))-(X[4]*X[4]*X[4]*b2)/(12*ro*vk*Ls2)*X[1]); // dp2/dt
RP[2] := (1/(k*W3))*(my*fdr3*sqrt(2/ro)*sqrt(Abs(X[1]-X[2]))-(X[6]*X[6]*X[6]*b3)/(12*ro*vk*Ls3)*X[2]); // dp3/dt;
RP[3] := (((Svidj2*X[1]*(L1+L2))/L1)-Pzv)*(2/m); // dv2/dt
RP[4] := X[3]; // d delta2/dt
RP[5] := (((Svidj3*X[2]*(L1+L2))/L2)-Pzv)*(2/m); // dv3/dt
RP[6] := X[5]; // d delta3/dt
end;

procedure TForm1.rk_ButClick(Sender: TObject);
var
I, t1, t2: Cardinal;
tOut, InitConds: TFloatVector;
XOuts: TFloatMatrix;
Points: Cardinal;
First, Last: TFloat;
StepsFact: Cardinal;
Count: Word;
begin
Memo1.Clear;
First := 0.0;
Last := 10.0;
Count:= 7;
Points:=10+1; //11 points for output
StepsFact:=1000000; //all steps inside function = 10*StepsFact

try
SetLength(InitConds, Count);
InitConds[0]:=0.0; //x0(0)=0
InitConds[1]:=0.0; //x1(0)=0
InitConds[2]:=0.0; //x2(0)=0
InitConds[3]:=0.0; //x3(0)=0
InitConds[4]:=0.0; //x4(0)=0
InitConds[5]:=0.0; //x5(0)=0
InitConds[6]:=0.0; //x6(0)=0

SetLength(tOut, Points);
SetLength(XOuts, Count, Points);
except
ShowMessage(‘Out of memory. ‘);
exit;
end;

7.1. Метод Эйлера (метод Рунге-Кутта 1-го порядка)

Разобьем [a, b] на n равных частей – Элементарных отрезков, x0, x1,…,xn будем называть Узлами сетки, h = (b-a)/n — Шаг сетки.

Очевидно, что , ; , .

Заменим в уравнении (7.1) y’ в точке xi её приближенной оценкой – отношением приращений (это следует из определения производной):

Отсюда формула Эйлера:

(7.4)

, – номер узла

Зная y0 в точке x0 (начальное условие) можно найти y1, затем, используя уже известные значения x1 и y1, вычислить x2 и y2 и так далее.

Рассмотрим геометрическую иллюстрацию метода Эйлера. В координатах (x, y) отобразим известные данные: отрезок [a, b] на оси Х и начальное условие y0 – точка А с координатами (a, y0). Отрезок [a, b] разобьем на n равных частей, получим узлы равномерной сетки a = x0, x1, x2, … , xn = b. Вычислим значения первой производной искомой функции в точке А, используя координату этой точки и исходное уравнение (7.3)

Полученное значение позволяет построить касательную к искомой функции в точке А. Эту касательную можно использовать для вычисления приближенного значения искомой функции в новом узле х1 (кривую y(x) заменяем на отрезком АВ на элементарном отрезке [x0, x1]).

Рис. 7.1. Геометрическая иллюстрация метода Эйлера.

Зная (x1,y1), можно аналогично получить новую точку (x2,y2) и т. д.

Из геометрической иллюстрации следует, что:

1. На каждом шаге есть погрешность (на рисунке это отрезок BD). Погрешность тем больше, чем больше шаг.

2. Ошибка может накапливаться.

Формула Эйлера (7.4) имеет погрешность метода

Для практического выбора h с целью обеспечения заданной точности решения задачи e применяется следующий прием.

Выполняются 2 расчета: с n и 2n узлами. Если полученные значения функции в во всех узлах отличаются не более чем на e, задача считается решенной. Если нет, число узлов вновь удваивают и опять сравнивают полученные значения функций.

Таким образом, расчет продолжается до достижения условия

(7.5)

Значение n может достигать большой величины – более 1000. Чтобы не печатать столько значений функции, в алгоритме решения ОДУ методом Эйлера нужно предусмотреть печать не всех рассчитанных значений, а только части их, например, 10-ти значений, распределенных равномерно по всему отрезку.


источники:

http://codenet.ru/progr/alg/Runge-Kutt-Method/

http://matica.org.ua/metodichki-i-knigi-po-matematike/vychislitelnaia-matematika/7-1-metod-eilera-metod-runge-kutta-1-go-poriadka