Дифференциальные и интегральные уравнения теория

Определения и понятия теории дифференциальных уравнений

С этой темы мы рекомендуем начинать изучение теории дифференциальных уравнений. В одном разделе мы собрали все основные термины и определения, которые будут применяться при рассмотрении теоретической части. Для того, чтобы облегчить усвоение материала, мы приводим многочисленные примеры.

Дифференциальное уравнение

Дифференциальное уравнение – это уравнение, которое содержит неизвестную функцию под знаком производной или дифференциала.

Обыкновенное дифференциальное уравнение содержит неизвестную функцию, которая является функцией одной переменной. Если же переменных несколько, то мы имеем дело с уравнением в частных производных.

Имеет значение также порядок дифференциального уравнения, за который принимают максимальный порядок производной неизвестной функции дифференциального уравнения.

Обыкновенные дифференциальные уравнения 1 -го, 2 -го и 5 -го порядков:

1 ) y ‘ + 1 = 0 ; 2 ) d 2 y d x 2 + y = x · sin x ; 3 ) y ( 5 ) + y ( 3 ) = a · y , α ∈ R

Уравнения в частных производных 2 -го порядка:

1 ) ∂ 2 u ∂ t 2 = v 2 · ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 , u = u ( x , y , z , t ) , v ∈ R ; 2 ) ∂ 2 u ∂ x 2 — ∂ 2 u ∂ y 2 = 0 , u = u ( x , y )

С порядками ДУ разобрались. Далее мы будем в основном рассматривать обыкновенные дифференциальные уравнения n -ого порядка вида F ( x , y , y ‘ , y ‘ ‘ , . . . , y ( n ) ) = 0 или F x , y , d y d x , d 2 y d x 2 , . . . , d n y d x n = 0 , в которых Ф ( x , y ) = 0 — это заданная неявно функция. В тех случаях, когда это будет возможно, неявную функцию мы будем записывать в ее явном представлении y = f ( x ) .

Интегрирование дифференциального уравнения

Интегрирование дифференциального уравнения – это процесс решения этого уравнения.

Решением дифференциального уравнения является функция Ф ( x , y ) = 0 , которая задана неявно и которая обращает данное уравнение в тождество. В некоторых случаях нам нужно будет неявно заданную функцию у выражать через аргумент х явно.

Искать решение дифференциального уравнения мы всегда будем на интервале Х , который задается заранее.

В каких случаях мы будем учитывать интервал Х ? Обычно в условии задач он не упоминается. В этих случаях мы буде искать решение уравнения F ( x , y , y ‘ , y ‘ ‘ , . . . , y ( n ) ) для всех х , при которых искомая функция у и исходное уравнение будут иметь смысл.

Интеграл дифференциального уравнения – это название решения дифференциального уравнения.

Функции y = ∫ x d x или y = x 2 2 + 1 можно назвать решением дифференциального уравнения y ‘ = x .

У одного дифференциального уравнения может быть множество решений.

Функция y = x 3 3 является решением ДУ y ‘ = x 2 . Если мы подставим полученную функцию в исходное выражение, то получим тождество y ‘ = x 3 3 = 1 3 · 3 x 2 = x 2 .

Вторым решением данного дифференциального уравнения является y = x 3 3 + 1 . Подстановка полученной функции в уравнение также превращает его в тождество.

Общее решение ДУ

Общее решение ДУ – это все множество решений данного дифференциального уравнения.

Также общее решение часто носит название общего интеграла ДУ.

Общее решение дифференциального уравнения y ‘ = x 2 имеет вид y = ∫ x 2 d x или y = x 3 3 + C , где C – произвольная постоянная. Из общего интеграла ДУ y = x 3 3 + C мы можем прийти к двум решениям, которые мы привели в прошлом примере. Для этого нам нужно подставить значения С = 0 и C = 1 .

Частное решение ДУ

Частное решение ДУ – это такое решение, которое удовлетворяет условиям, заданным изначально.

Для ДУ y ‘ = x 2 частным решением, которое будет удовлетворять условию y ( 1 ) = 1 , будет y = x 3 3 + 2 3 . Действительно, y ‘ = x 3 3 + 2 3 ‘ = x 2 и y ( 1 ) = 1 3 3 + 2 3 = 1 .

К числу основных задач из теории дифференциальных уравнений относятся:

  • задачи Коши;
  • задачи нахождения общего решения ДУ при заданном интервале Х ;
  • краевые задачи.

Особенностью задач Коши является наличие начальных условий, которым должно удовлетворять полученное частное решение ДУ. Начальные условия задаются следующим образом:

f ( x 0 ) = f 0 ; f ‘ ( x 0 ) = f 1 ; f ‘ ‘ ( x 0 ) = f 2 ; . . . ; f ( n — 1 ) ( x 0 ) = f n — 1

где f 0 ; f 1 ; f 2 ; . . . ; f n — 1 — это некоторые числа.

Особенностью краевых задач является наличие дополнительных условий в граничных точках x 0 и x 1 , которым должно удовлетворять решение ДУ второго порядка: f ( x 0 ) = f 0 , f ( x 1 ) = f 1 , где f 0 и f 1 — заданные числа. Такие задачи также часто называют граничными задачами.

Линейное обыкновенное ДУ n -ого порядка имеет вид:

f n ( x ) · y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = f ( x )

При этом коэффициенты f 0 ( x ) ; f 1 ( x ) ; f 2 ( x ) ; . . . ; f n ( x ) — это непрерывные функции аргумента х на интервале интегрирования.

Уравнение f n ( x ) · y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = f ( x ) будет называться линейным однородным дифференциальным уравнением в том случае, если f ( x ) ≡ 0 . Если нет, то мы будем иметь дело с линейным неоднородным ДУ.

В линейных однородных ДУ коэффициенты f 0 ( x ) = f 0 ; f 1 ( x ) = f 1 ; f 2 ( x ) = f 2 ; . . . ; f n ( x ) = f n могут быть постоянными функциями (некоторыми числами), то мы будем говорить о ЛОДУ с постоянными коэффициентами или ЛНДУ с постоянными коэффициентами. В ЛОДУ с постоянными коэффициентами f ( x ) ≡ 0 , в ЛНДУ с постоянными коэффициентами f ( x ) ненулевая.

Характеристическое уравнение ЛНДУ n -ой степени с постоянными коэффициентами

Характеристическое уравнение ЛНДУ n -ой степени с постоянными коэффициентами – это уравнение n -ой степени вида f n · k n + f n — 1 · k n — 1 + . . . + f 1 · k + f 0 = 0 .

Остальные определения мы будем разбирать в других темах по мере изучения теории.

Дифференциальные и интегральные уравнения теория

pdf Лекция 1 . Первообразная и ее свойства. Неопределенный интеграл, его свойства, связь с дифференциалом. Таблица основных неопределенных интегралов.

pdf Лекция 2 . Интегрирование подстановкой и заменой переменной. Интегрирование по частям. Интегрирование выражений, содержащих квадратный трехчлен.

pdf Лекция 3 . Рациональные дроби. Разложение правильной рациональной дроби на сумму простейших (без д-ва). Интегрирование простейших дробей. Интегрирование правильных и неправильных рациональных дробей.

pdf Лекция 4 . Интегрирование выражений, рационально зависимых от тригонометрических функций. Интегрирование иррациональных функций. Примеры интегралов, не выражающихся через элементарные функции.

pdf Лекции 5-6 . Определенный интеграл как предел интегральных сумм. Теорема об интегрируемости кусочнонепрерывной функции (без д-ва). Геометрическая интерпретация определенного интеграла. Основные свойства определенного интеграла. Теоремы об оценке и о среднем значении.

pdf Лекция 7 . Определенный интеграл с переменным верхним пределом и теорема о его производной. Формула Ньютона-Лейбница. Вычисление определенных интегралов подстановкой и по частям. Интегрирование периодических функций, интегрирование четных и нечетных функций на отрезке, симметричном относительно начала координат.

Модуль 2 — «Приложения определенного интеграла»

pdf Лекция 8 . Несобственные интегралы по бесконечному промежутку (1-го рода). Несобственные интегралы от неограниченных функций на отрезке (2-го рода). Признаки сходимости несобственных интегралов. Абсолютная и условная сходимости. Несобственные интегралы с несколькими особенностями.

pdf Лекции 9-10 . Признаки сходимости несобственных интегралов. Абсолютная и условная сходимости. Несобственные интегралы с несколькими особенностями.

pdf Лекция 11 . Вычисление площадей плоских фигур, ограниченных кривыми, заданными в декартовых координатах, параметрическии и в полярных координатах.

pdf Лекции 12-13 . Вычисление объемов тел по площадям поперечных сечений и объемов тел вращения. Вычисление длины дуги и площади поверхности вращения. Метод Симпсона приближенного вычисления определенного интеграла.

Модуль 3 — «ОДУ первого порядка»

pdf Лекция 14 . Задачи, приводящие к дифференциальным уравнениям. Дифференциальное уравнение первого порядка, его решения. Частные и общие решения. Интегральные кривые. Понятие частной производной функции нескольких переменных. Задача Коши для дифференциального уравнения первого порядка. Теорема Коши о существовании решения дифференциального уравнения.

pdf Лекция 15 . Решение дифференциальных уравнений первого порядка: с разделяющимися переменными, однородных, линейных, Бернулли.

pdf Лекция 16 . Геометрическая интерпретация дифференциального уравнения первого порядка. Изоклины. Геометрическое решение дифференциальных уравнений с помощью изоклин. Особые точки и особые решения дифференциального уравнения первого порядка.

pdf Лекция 17 . Дифференциальные уравнения n-го порядка. Частные и общие решения. Задача Коши и ее геометрическая интерпретация (n=2). Теорема Коши о существовании и единственности решения дифференциального уравнения (без док-ва). Краевая задача. Понижение порядка некоторых типов дифференциальных уравнений n-го порядка.

Модуль 4 — «ОДУ высших порядков»

pdf Лекции 18-19 . Линейные дифференциальные уравнения n-го порядка, однородные и неоднородные. Теорема существования и единственности решения. Дифференциальный оператор L[y], его свойства. Линейное пространство решений однородного линейного дифференциального уравнения. Линейная зависимость и независимость системы функций на промежутке. Определитель Вронского (вронскиан). Теорема о вронскиане системы линейно независимых решений однородного линейного дифференциального уравнения. Теорема о структуре общего решения однородного линейного дифференциального уравнения. Размерность пространства решений однородного линейного дифференциального уравнения. Фундаментальная система решений однородного линейного дифференциального уравнения. Формула Остроградского-Лиувилля и ее следствия. Понижение порядка однородного линейного уравнения (при известном частном решении).

pdf Лекции 20-21 . Линейные однородные уравнения с постоянными коэффициентами. Характеристическое уравнение линейного однородного дифференциального уравнения. Построение общего решения по корням характеристического уравнения (вывод для n=2). Линейные неоднородные дифференциальные уравнения. Структура общего решения линейного неоднородного дифференциального уравнения. Теорема о наложении частных решений. Метод Лагранжа вариации постоянных (вывод для n=2). Структура частного решения линейного неоднородного дифференциального уравнения с постоянными коэффициентами и правой частью специального вида.

pdf Лекция 22 . Нормальные системы дифференциальных уравнений. Автономные системы дифференциальных уравнений. Фазовое пространство и фазовые траектории. Задача и теорема Коши. Частные и общее решения. Сведение дифференциального уравнения высшего порядка к нормальной системе дифференциальных уравнений первого порядка. Сведение нормальной системы к дифференциальному уравнению высшего порядка (вывод для n=2). Первые интегралы системы. Понижение порядка системы дифференциальных уравнений при помощи первых интегралов. Интегрируемые комбинации. Симметрическая форма записи нормальной автономной системы дифференциальных уравнений.

pdf Лекция 23 . Системы линейных дифференциальных уравнений первого порядка. Определитель Вронского. Фундаментальная система решений. Формула Остроградского-Лиувилля. Теоремы о структуре общего решения однородной и неоднородной систем линейных дифференциальных уравнений. Метод вариации произвольных постоянных.

pdf Лекция 24 . Однородные системы линейных дифференциальных уравнений с постоянными коэффициентами. Характеристическое уравнение системы. Построение общего решения по корням характеристического уравнения (вывод только для случая действительных и различных корней).

Дифференциальные уравнения

I

уравнения, содержащие искомые функции, их производные различных порядков и независимые переменные. Теория Д. у. возникла в конце 17 в. под влиянием потребностей механики и других естественнонаучных дисциплин, по существу одновременно с интегральным исчислением (См. Интегральное исчисление) и дифференциальным исчислением (См. Дифференциальное исчисление).

Простейшие Д. у. встречались уже в работах И. Ньютона и Г. Лейбница; термин «Д. у.» принадлежит Лейбницу. Ньютон при создании исчисления флюксий и флюент (см. Флюксий исчисление) ставил две задачи: по данному соотношению между флюентами определить соотношение между флюксиями; по данному уравнению, содержащему флюксии, найти соотношение между флюентами. С современной точки зрения, первая из этих задач (вычисление по функциям их производных) относится к дифференциальному исчислению, а вторая составляет содержание теории обыкновенных Д. у. Задачу нахождения неопределённого интеграла F (x) функции f (x) Ньютон рассматривал просто как частный случай его второй задачи. Такой подход был для Ньютона как создателя основ математического естествознания вполне оправданным: в очень большом числе случаев законы природы, управляющие теми или иными процессами, выражаются в форме Д. у., а расчёт течения этих процессов сводится к решению Д. у.

Следующие два простых примера могут служить иллюстрацией к сказанному.

1) Если тело, нагретое до температуры Т, помещено в среду, температура которой равна нулю, то при известных условиях можно считать, что приращение ΔТ (отрицательное в случае T > 0) его температуры за малый промежуток времени Δt с достаточной точностью выражается формулой

где k — постоянный коэффициент. При математической обработке этой физической задачи считают, что выполняется точно соответствующее предельное соотношение между дифференциалами

т. е. имеет место Д. у.

где T’ (обозначает производную по t. Решить полученное Д. у., или, как выражаются иначе, проинтегрировать его, значит найти функции, обращающие его в тождество. Для уравнения (1) все такие функции (т. е. все его частные решения) имеют вид

где С постоянно. Сама формула (2) с произвольной постоянной С называется общим решением уравнения (1).

2) Пусть, например, груз р массы m подвешен к пружине и находится в положении равновесия (рис. 1, а). Отклоняя его от положения равновесия с помощью растяжения пружины (рис. 1, б), приводят груз в движение. Если x (t) обозначает величину отклонения тела от положения равновесия в момент времени t, то ускорение тела выражается 2-й производной (t). Сила mх» (t), действующая на тело, при небольших растяжениях пружины по законам теории упругости пропорциональна отклонению x (t). Т. о., получается Д. у.

Его решение имеет вид:

и показывает, что тело будет совершать Гармонические колебания (рис. 1, в).

Теория Д. у. выделилась в самостоятельную детально разработанную научную дисциплину в 18 в. (труды Д. Бернулли, Ж. Д’ Аламбера (См. Д’Аламбер) и особенно Л. Эйлера).

Д. у. делятся на «обыкновенные», содержащие производные одной или нескольких функций одного независимого переменного, и «уравнения с частными производными», содержащие частные производные функций нескольких независимых переменных. Порядком Д. у. называется наибольший порядок входящих в него производных. Так, например,

есть Д. у. с частными производными 2-го порядка.

Обыкновенные дифференциальные уравнения. Уравнения 1-го порядка. Обыкновенным Д. у. 1-го порядка с одной неизвестной функцией (только такие пока будут рассматриваться) называется соотношение

между независимым переменным х, искомой функцией у и её производной

Если уравнение (А) может быть разрешено относительно производной, то получается уравнение вида

Многие вопросы теории Д. у. проще рассматривать для таких разрешённых относительно производной уравнений, предполагая функцию f (x, y) однозначной.

Уравнение (Б) можно записать в виде соотношения между дифференциалами

тогда оно становится частным случаем уравнений вида

В уравнениях вида (В) естественно считать переменные х и у равноправными, т. е. не интересоваться тем, какое из них является независимым.

Геометрическая интерпретация дифференциальных уравнений. Пусть у = у (х) есть решение уравнения (Б). Геометрически это значит, что в прямоугольных координатах касательная к кривой у = у (х) имеет в каждой лежащей на ней точке М (х, у) угловой коэффициент k = f (x, у). Т. о., нахождение решений у = у (х) геометрически сводится к такой задаче: в каждой точке некоторой области на плоскости задано «направление», требуется найти все кривые, которые в любой своей точке М имеют направление, заранее сопоставленное этой точке. Если функция f (x, у) непрерывна, то это направление меняется при перемещении точки М непрерывно, и можно наглядно изобразить поле направлений, проведя в достаточно большом числе достаточно густо расположенных по всей рассматриваемой области точек короткие чёрточки с заданным для этих точек направлением. На рис. 2 это выполнено для уравнения у’ = у 2 . Рисунок позволяет сразу представить себе, как должны выглядеть графики решения — так называемые интегральные кривые Д. у. Вычисление показывает, что общее решение данного уравнения есть

На рис. 2 вычерчены интегральные кривые, соответствующие значениям параметра С = 0 и С = 1.

График любой однозначной функции у = у (х) пересекает каждую прямую, параллельную оси Оу, только один раз. Таковы, следовательно, интегральные кривые любого уравнения (Б) с однозначной непрерывной функцией в правой части. Новые возможности для вида интегральных кривых открываются при переходе к уравнениям (В). При помощи пары непрерывных функций Р (х, у) и Q (x, у) можно задать любое непрерывное «поле направлений». Задача интегрирования уравнений (В) совпадает с чисто геометрической (не зависящей от выбора осей координат) задачей разыскания интегральных кривых по заданному на плоскости полю направлений. Следует заметить, что тем точкам (x0, у0), в которых обе функции Р (х, у) и Q (x, у) обращаются в нуль, не соответствует какое-либо определённое направление. Такие точки называются особыми точками уравнения (В).

Пусть, например, задано уравнение

которое можно записать в виде

хотя, строго говоря, правая часть этого последнего уравнения теряет смысл при х = 0 и у = 0. Соответствующие поле направлений и семейство интегральных кривых, являющихся в этом случае окружностями х 2 + у 2 = С, изображены на рис. 3. Начало координат (х = 0, у = 0) — особая точка данного уравнения. Интегральными кривыми уравнения

изображёнными на рис. 4, являются всевозможные прямолинейные лучи, выходящие из начала координат; начало координат является особой точкой и этого уравнения.

Начальные условия. Геометрическая интерпретация Д. у. 1-го порядка приводит к мысли, что через каждую внутреннюю точку М области G с заданным непрерывным полем направлений можно провести одну вполне определённую интегральную кривую.

В отношении существования интегральной кривой сформулированная гипотеза оказывается правильной. Доказательство этого предложения принадлежит Дж. Пеано. В отношении же единственности интегральной кривой, проходящей через заданную точку, высказанная выше гипотеза оказывается, вообще говоря, ошибочной. Уже для такого простого уравнения, как

у которого правая часть непрерывна во всей плоскости, интегральные кривые имеют вид, изображённый на рис. 5. Единственность интегральной кривой, проходящей через заданную точку, нарушается здесь во всех точках оси Ox.

Единственность, т. е. однозначное определение интегральной кривой условием её прохождения через заданную точку, имеет место для уравнений (Б) с непрерывной правой частью при том дополнительном условии, что функция f (х, у) имеет в рассматриваемой области ограниченную производную по у.

Это требование является частным случаем следующего, несколько более широкого условия Липшица: существует такая постоянная L, что в рассматриваемой области всегда

Это условие чаще всего приводится в учебниках как достаточное условие единственности.

С аналитической стороны теоремы существования и единственности для уравнения вида (Б) обозначают следующее: если выполнены надлежащие условия [например, функция f (x, y) непрерывна и имеет ограниченную производную по у], то задание для «начального» значения x0 независимого переменного х «начального» значения у0 = у (x0) функции у (х) выделяет из семейства всех решений у (х) одно определённое решение. Например, если для рассмотренного выше уравнения (1) потребовать, чтобы в начальный момент времени t0 = 0 температура тела была равна «начальному» значению Т0, то из бесконечного семейства решений (2) выделится одно определённое решение, удовлетворяющее заданным начальным условиям:

Этот пример типичен: в механике и физике Д. у. обычно определяют общие законы течения какого-либо явления; однако, чтобы получить из этих законов определённые количественные результаты, надо присоединить к ним сведения о начальном состоянии изучаемой физической системы в некоторый определённый выбранный в качестве «начального» момент времени t0.

Если условия единственности выполнены, то решение y (x), удовлетворяющее условию у (x0) = у0, можно записать в виде:

где x0 и у0 входят как параметры, функция же φ (х; x0, y0) трёх переменных х, x0 и y0 однозначно определяется самим уравнением (Б). Важно отметить, что при достаточно малом изменении поля (правой части Д. у.) функция φ(х; x0, у0) меняется сколь угодно мало на конечном промежутке изменения переменного х — имеется непрерывная зависимость решения от правой части Д. у. Если правая часть f (x, у) Д. у. непрерывна и её производная по у ограничена (или удовлетворяет условию Липшица), то имеет место также непрерывность φ(х; х0, у0) по x0 и y0.

Если в окрестности точки (х0, у0) для уравнения (Б) выполнены условия единственности, то все интегральные кривые, проходящие через достаточно малую окрестность точки (x0, у0), пересекают вертикальную прямую х = х0 и определяются ординатой у = С своей точки пересечения с этой прямой (см. рис. 6). Т. о., все эти решения содержатся в семействе с одним параметром С:

которое является общим решением Д. у. (Б).

В окрестности точек, в которых нарушаются условия единственности, картина может быть сложнее. Весьма сложен и вопрос о поведении интегральных кривых «в целом», а не в окрестности точки (x0, у0).

Общий интеграл. Особые решения. Естественно поставить обратную задачу: задано семейство кривых, зависящих от параметра С, требуется найти Д. у., для которого кривые заданного семейства служили бы интегральными кривыми. Общий метод для решения этой задачи заключается в следующем: считая семейство кривых на плоскости хОу заданным при помощи соотношения

дифференцируют (6) при постоянном С и получают

или в симметричной записи

и из двух уравнений (6) и (7) или (6) и (8) исключают параметр С. Если данное Д. у. получается таким образом из соотношения (6), то это соотношение называется общим интегралом заданного Д. у. Одно и то же Д. у. может иметь много различных общих интегралов. После нахождения для заданного Д. у. общего интеграла оказывается необходимым, вообще говоря, ещё исследовать, не имеет ли Д. у. дополнительных решений, не содержащихся в семействе интегральных кривых (6).

Пусть, например, задано семейство кривых

Дифференцируя (9) при постоянном С получают

после же исключения С приходят к Д. у.

равносильному уравнению (4). Легко видеть, что кроме решений (9), уравнение (10) имеет решение

Решение уравнения (10) самого общего вида таково:

где -∞ ≤ C1 ≤ C2 ≤ +∞ (рис. 7). Оно зависит от двух параметров C1 и C2, но составляется из кусков кривых однопараметрического семейства (9) и куска особого решения (11).

Решение (11) уравнения (10) может служить примером особого решения Д. у. В качестве другого примера можно рассмотреть семейство прямых

Эти прямые являются интегральными кривыми Д. у.

Особой же интегральной кривой этого Д. у. служит парабола

огибающая прямые (12) (рис. 8). Картина, наблюдавшаяся в рассмотренном примере, типична; особые интегральные кривые обычно являются огибающими семейства интегральных кривых, получаемых из общего решения.

Дифференциальные уравнения высших порядков и системы дифференциальных уравнений. Д. у. n-го порядка с одной неизвестной функцией у (х) независимого переменного х записывают так:

Если ввести дополнительные неизвестные функции

то уравнение (13) можно заменить системой из n уравнений с n неизвестными функциями, но зато 1-го порядка. Для этого достаточно к n — 1 уравнениям (14) присоединить уравнение

Аналогичным образом сводятся к системам уравнений 1-го порядка и системы уравнений высших порядков. В механике сведение систем уравнений 2-го порядка к системе из удвоенного числа уравнений 1-го порядка имеет простой механический смысл. Например, система трёх уравнений движения материальной точки

где х, у, z — координаты точки, зависящие от времени t, сводится к системе шести уравнений:

при помощи введения в качестве новых переменных составляющих u, v, w скорости.

Наибольшее значение имеют системы, в которых число уравнений равно числу неизвестных функций. Система из n уравнений 1-го порядка с n неизвестными функциями, разрешённая относительно производных, имеет вид:

Решением системы Д. у. (а) называется система функций x1(t), x2(t), . xn (t), которая при подстановке в уравнения (а) обращает их в тождества. Часто встречаются системы вида (а), в которых правые части не зависят от t. В этом случае изучение системы (а) в основном сводится к изучению системы из (n — 1)-го уравнения, которую целесообразно записывать в симметричной форме

не предрешая вопроса о том, от какого из переменных х1, x2. xn мыслятся зависящими остающиеся n — 1 переменных. Считая х = (x1, x2. xn) вектором, можно записать систему (а) в виде одного векторного уравнения:

что позволяет широко пользоваться при изучении систем (а) аналогией с теорией одного уравнения 1-го порядка вида (Б). В частности, оказывается, что для систем (а) сохраняют силу основные результаты относительно существования и единственности решения задачи с начальными условиями: если в окрестности точки (t0, х1 0 , x2 0 , . xn 0 ) все функции Fi непрерывны по совокупности переменных t, x1, x2, . xn и имеют ограниченные производные по переменным x1, x2, . xn, то задание начальных значений xi (t0) = xi 0 , i = 1, 2, . n, определяет одно, вполне определённое, решение системы (а). Этим объясняется то, что, вообще говоря, решение систем из n уравнений 1-го порядка с n неизвестными функциями зависит от n параметров.

Для приведённых выше конкретных примеров Д. у. их общее решение удаётся выразить при помощи элементарных функций. Типы Д. у., допускающие такого рода решение, детально изучаются. Часто придерживаются более общей точки зрения, считая Д. у. «решённым», если искомая зависимость между переменными (и входящими в общее решение параметрами c1, c2, . ) может быть выражена при помощи элементарных функций и одной или нескольких операций взятия неопределённого интеграла («решение выражено в квадратурах»).

Большой общностью обладают способы нахождения решений при помощи разложения их в степенные ряды. Например, если правые части уравнений (а) в окрестности точки (t0, x1 0 , x2 0 , . xn 0 ) голоморфны (см. Аналитические функции), то решение соответствующей начальной задачи выражается функциями xi (t), разлагающимися в степенные ряды:

коэффициенты которых можно найти последовательным дифференцированием правых частей Д. у. (а) и сопоставлением коэффициентов при одинаковых степенях в левых и правых частях этих уравнений.

Из специальных типов Д. у. особенно хорошо разработана теория линейных Д. у. и систем линейных Д. у. (см. Линейные дифференциальные уравнения).

Для линейных Д. у. сравнительно просто решаются также вопросы «качественного» поведения интегральных кривых, т. е. их поведение во всей области задания Д. у. Для нелинейных Д. у., где нахождение общего решения особенно сложно, вопросы качественной теории Д. у. приобретают иногда даже доминирующее значение. После классических работ А. М. Ляпунова ведущую роль в качественной теории Д. у. играют работы советских математиков, механиков и физиков. В связи с этой теорией см. Динамическая система, Особая точка, Устойчивость, Предельный цикл.

Большое значение имеет аналитическая теория Д. у., изучающая решения Д. у. с точки зрения теории аналитических функций, т. е. интересующаяся, например, расположением их особых точек в комплексной плоскости и т.п.

Наряду с рассмотренной выше начальной задачей, в которой задаются значения искомых функций (а в случае уравнений старших порядков и их производных) в одной точке (при одном значении независимого переменного), находят широкое применение Краевые задачи.

Дифференциальные уравнения с частными производными. Типичной особенностью Д. у. с частными производными и систем Д. у. с частными производными является то, что для однозначного определения частного решения здесь требуется задание не значений того или иного конечного числа параметров, а некоторых функций. Например, общим решением уравнения

где f и g — произвольные функции. Т. о., Д. у. (16) лишь в той мере ограничивает произвол в выборе функции двух переменных u (х, у), что её удаётся выразить через две функции f (z) и g (v) от одного переменного, которые остаются [если в дополнение к уравнению (16) не дано каких-либо «начальных» или «краевых» условий] произвольными.

Типичной задачей с начальными условиями для системы Д. у. с частными производными 1-го порядка

где независимыми переменными являются t, x1. xn, а u1. um суть функция от этих независимых переменных, может служить задача Коши: по заданным при каком-либо t = t0 значениям

В теории Д. у. с частными производными порядка выше первого и систем Д. у. с частными производными рассматриваются как задачи типа Коши, так и ряд краевых задач.

При постановке и решении краевых задач для Д. у. с частными производными порядка выше первого существенное значение имеет тип уравнения. В качестве примера можно привести классификацию Д. у. с частными производными 2-го порядка с одной неизвестной функцией z (х, у) от двух переменных:

то (18) есть эллиптическое уравнение. Примером может служить уравнение Лапласа:

Если D = 0, то (18) есть параболическое уравнение. Примером может служить уравнение распространения тепла:

О краевых задачах для этих различных типов уравнений см. Уравнения математической физики.

Лит.: Обыкновенные Д. у. Степанов В. В., Курс дифференциальных уравнений, 8 изд., М., 1959; Петровский И. Г., Лекции по теории обыкновенных дифференциальных уравнений, 5 изд., М., 1964; Понтрягин Л. С., Обыкновенные дифференциальные уравнения, 2 изд., М., 1965; Камке Э., Справочник по обыкновенным дифференциальным уравнениям, пер. с нем., 3 изд., М., 1965; Филиппов А. Ф., Сборник задач по дифференциальным уравнениям, 2 изд., М., 1965.

Д. у. с частными производными. Петровский И. Г., Лекции об уравнениях с частными производными, 3 изд., М., 1961; Тихонов А. Н., Самарский А. А., Уравнения математической физики, 3 изд., М., 1966; Соболев С. Л., Уравнения математической физики, 4 изд., М., 1966; Смирнов М. М., Задачи по уравнениям математической физики, 5 изд., М., 1968.

По материалам одноимённой статьи из 2-го издания БСЭ.

Рис. 1 к ст. Дифференциальные уравнения.

Рис. 2 к ст. Дифференциальные уравнения.

Рис. 3 к ст. Дифференциальные уравнения.

Рис. 4 к ст. Дифференциальные уравнения.

Рис. 5 к ст. Дифференциальные уравнения.

Рис. 6 к ст. Дифференциальные уравнения.

Рис. 7 к ст. Дифференциальные уравнения.

Рис. 8 к ст. Дифференциальные уравнения.

II

Дифференциа́льные уравне́ния («Дифференциа́льные уравне́ния»,)

ежемесячный научный математический журнал, основан в 1965, издаётся в Минске. Публикует результаты исследований в области дифференциальных, интегро-дифференциальных и интегральных уравнений, а также уравнений в конечных разностях. Переводится в США на английский язык и издается под названием «Differential equations».


источники:

http://fn.bmstu.ru/educational-work-fs-12/70-lections/241-int

http://gufo.me/dict/bse/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F