Дифференциальные нелинейные уравнения высших порядков

Дифференциальные уравнения высших порядков

Дифференциальные уравнения высших порядков, решаемые в квадратурах

Уравнения, содержащие переменную и старшую производную

Разрешенные относительно старшей производной

Рассмотрим дифференциальное уравнение следующего вида:
.
Интегрируем n раз.
;
;
и так далее. Так же можно использовать формулу:
.
См. Дифференциальные уравнения, решающиеся непосредственным интегрированием

Разрешенные относительно переменной

Рассмотрим дифференциальное уравнение, в котором независимая переменная x является функцией от старшей производной:
.
Это уравнение можно решить параметрическим методом. Для этого вводим параметр . В результате получаем:
;
.
Из последнего уравнения . Интегрируя, получаем зависимость производной от x в параметрическом виде:
.
Продолжая интегрирование аналогичным образом, получим зависимость y от x в параметрическом виде.

Общий случай

Рассмотрим дифференциальное уравнение, содержащее только независимую переменную и старшую производную общего вида:
.
Его можно решить в квадратурах в параметрическом виде, если удастся подобрать такие функции и , для которых .

Если такие функции найдены, то положим . Тогда исходное уравнение выполняется автоматически. Дифференцируя первую функцию, находим связь между дифференциалами переменных x и t : . Тогда
.
Интегрируя последнее соотношение, получаем решение для производной более низкого порядка в параметрическом виде. Продолжая действовать подобным способом, получим общее решение в квадратурах.

Уравнения, содержащие только производные порядков n и n-1

Рассмотрим дифференциальное уравнение, содержащее только производные n-го и n-1-го порядков:
.
Его можно решить в квадратурах, если удастся найти такие функции и , которые удовлетворяют уравнению
.
Тогда положим
.
Считаем, что такое параметрическое представление эквивалентно исходному уравнению .

Тогда
;
.
Интегрируя эти уравнения, получим параметрическое представление производной порядка n – 2 . Продолжая подобным образом, получаем выражения остальных производных и самой функции y через параметр t .
Подробнее, см. здесь.

Уравнения, содержащие только производные порядков n и n-2

Рассмотрим дифференциальное уравнение, содержащее только производные n-го и n-2-го порядков:
.
Его можно решить в квадратурах, если удастся найти такие функции и , которые удовлетворяют уравнению
.
Положим
.
Считаем, что такое параметрическое представление эквивалентно исходному уравнению.

Тогда
;
;
;
;
.
Интегрируя, получим параметрическое представление производных порядка n, n – 1 и n – 2 . Далее интегрируем как в предыдущем случае ⇑. В результате получаем выражения остальных производных и самой функции y через параметр t .
Подробнее, см. здесь.

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Уравнения, не содержащие зависимую переменную y в явном виде

Подстановка приводит к понижению порядка уравнения на единицу. Здесь – функция от .
См. Дифференциальные уравнения высших порядков, не содержащие функцию в явном виде

Уравнения, не содержащие независимую переменную x в явном виде

Для решения этого уравнения, делаем подстановку
.
Считаем, что является функцией от . Тогда
.
Аналогично для остальных производных. В результате порядок уравнения понижается на единицу.
См. Дифференциальные уравнения высших порядков, не содержащие переменную в явном виде

Однородные дифференциальные уравнения высших порядков

Уравнения, однородные относительно функции и ее производных

Дифференциальное уравнение

является однородным относительно функции и ее производных, если оно обладает свойством:
.
Здесь t – число или любая функция; число p называют показателем однородности.

Чтобы распознать такое уравнение, нужно сделать замену
.
Если после преобразований t сократится, то это однородное уравнение.

Для его решения делаем подстановку
,
где – функция от . Тогда
.
Аналогично преобразуем производные и т.д. В результате порядок уравнения понижается на единицу.
См. Однородные относительно функции и ее производных дифференциальные уравнения высших порядков

Обобщенно однородные уравнения относительно переменных

Теперь рассмотрим дифференциальные уравнения, которые не меняют вида, если сделать замену переменных: , где c – постоянная; s – измерение однородности для переменной y. При такой замене производная порядка m умножается на :
.
Если записать исходное уравнение в общем виде:
,
то оно является обобщенно однородным относительно переменных, если обладает свойством:
,
где t – число или любая функция; p – показатель однородности.

При подобные уравнения можно назвать однородными дифференциальными уравнениями относительно переменных.

Порядок такого уравнения можно понизить на единицу, если искать решение в параметрическом виде, и перейти от зависимой переменной (функции) y к новой зависимой переменной (новой функции) с помощью подстановок:
, где t – параметр.
В результате для функции получим дифференциальное уравнение n — го порядка, которое не содержит переменную t в явном виде. Далее понижаем порядок изложенным выше методом ⇑.
См. Обобщенно однородные дифференциальные уравнения относительно переменных высших порядков

Дифференциальные уравнения с полной производной

Это уравнения, которые можно привести к полной производной:
.
Отсюда сразу получаем первый интеграл:
.
Он представляет собой дифференциальное уравнение, на единицу меньшего порядка по сравнению с исходным уравнением .

В качестве примера рассмотрим дифференциальное уравнение второго порядка:
.
Разделим его на . Тогда
.
Отсюда получаем первый интеграл, который является дифференциальным уравнением первого порядка:
.
См. Дифференциальные уравнения высших порядков с полной производной.

Линейные дифференциальные уравнения высших порядков

Рассмотрим линейное однородное дифференциальное уравнение n-го порядка:
(1) ,
где – функции от независимой переменной . Пусть есть n линейно независимых решений этого уравнения. Тогда общее решение уравнения (1) имеет вид:
(2) ,
где – произвольные постоянные. Сами функции образуют фундаментальную систему решений.
Фундаментальная система решений линейного однородного уравнения n-го порядка – это n линейно независимых решений этого уравнения.

Рассмотрим линейное неоднородное дифференциальное уравнение n-го порядка:
.
Пусть есть частное (любое) решение этого уравнения. Тогда общее решение имеет вид:
,
где – общее решение однородного уравнения (1).

Линейные дифференциальные уравнения с постоянными коэффициентами и приводящиеся к ним

Линейные однородные уравнения с постоянными коэффициентами

Это уравнения вида:
(3) .
Здесь – действительные числа. Чтобы найти общее решение этого уравнения, нам нужно найти n линейно независимых решений , которые образуют фундаментальную систему решений. Тогда общее решение определяется по формуле (2):
(2) .

Ищем решение в виде . Получаем характеристическое уравнение:
(4) .

Если это уравнение имеет различные корни , то фундаментальная система решений имеет вид:
.

Если имеется комплексный корень
,
то существует и комплексно сопряженный корень . Этим двум корням соответствуют решения и , которые включаем в фундаментальную систему вместо комплексных решений и .

Кратным корням кратности соответствуют линейно независимых решений: .

Кратным комплексным корням кратности и их комплексно сопряженным значениям соответствуют линейно независимых решений:
.

Линейные неоднородные уравнения со специальной неоднородной частью

Рассмотрим уравнение вида
,
где – многочлены степеней s 1 и s 2 ; – постоянные.

Сначала мы ищем общее решение однородного уравнения (3). Если характеристическое уравнение (4) не содержит корень , то ищем частное решение в виде:
,
где
;
;
s – наибольшее из s 1 и s 2 .

Если характеристическое уравнение (4) имеет корень кратности , то ищем частное решение в виде:
.

После этого получаем общее решение:
.

Линейные неоднородные уравнения с постоянными коэффициентами

Здесь возможны три способа решения.

1) Метод Бернулли.
Сначала находим любое, отличное от нуля, решение однородного уравнения
.
Затем делаем подстановку
,
где – функция от переменной x . Получаем дифференциальное уравнение для u , которое содержит только производные от u по x . Выполняя подстановку , получаем уравнение n – 1 — го порядка.

2) Метод линейной подстановки.
Сделаем подстановку
,
где – один из корней характеристического уравнения (4). В результате получим линейное неоднородное уравнение с постоянными коэффициентами порядка . Последовательно применяя такую подстановку, приведем исходное уравнение к уравнению первого порядка.

3) Метод вариации постоянных Лагранжа.
В этом методе мы сначала решаем однородное уравнение (3). Его решение имеет вид:
(2) .
Далее мы считаем, что постоянные являются функциями от переменной x . Тогда решение исходного уравнения имеет вид:
,
где – неизвестные функции. Подставляя в исходное уравнение и накладывая на некоторые ограничения, получаем уравнения, из которых можно найти вид функций .

Уравнение Эйлера

Оно сводится к линейному уравнению с постоянными коэффициентами подстановкой:
.
Однако, для решения уравнения Эйлера, делать такую подстановку нет необходимости. Можно сразу искать решение однородного уравнения в виде
.
В результате получим такие же правила, как и для уравнения с постоянными коэффициентами, в которых вместо переменной нужно подставить .

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 13-06-2017 Изменено: 11-05-2021

Основные понятия и определения дифференциальных уравнений высших порядков

Дифференциальное уравнение n-го порядка имеет вид или, если оно разрешено относительно ,

Задача нахождения решения уравнения (I), удовлетворяющего начальным условиям

называется задачей Коши для уравнения (1).

Теорема существования и единственности решения задачи Коши . Если в уравнении (1) функция

а) непрерывна по всем своим аргументам в некоторой области их изменения,

б) имеет ограниченные в области частные производные по аргументам , то найдется интервал , на котором существует единственное решение уравнения (1), удовлетворяющее условиям

где значения содержатся в области .

Для уравнения второго порядка начальные условия имеют вид

где — данные числа. В этом случае теорема существования и единственности геометрически означает, что через данную точку плоскости с данным тангенсом угла наклона касательной проходит единственная кривая.

Рассмотрим, например, уравнение и начальные условия

В данном случае . Эта функция определена и непрерывна при всех значениях . Ее частные производные по и равны соответственно

и являются всюду непрерывными и ограниченными функциями своих аргументов. Следовательно, каковы бы ни были начальные условия

существует единственное решение данного уравнения, удовлетворяющее этим условиям.

Общим решением дифференциального уравнения n-го порядка (1) называется множество всех его решений, определяемое формулой , содержащей произвольных постоянных таких, что если заданы начальные условия (2), то найдутся такие значения , что будет являться решением уравнения (1), удовлетворяющим этим начальным условиям.

Любое решение, получаемое из общего решения при конкретных значениях произвольных постоянных называется частным решением дифференциального уравнения (1).

Уравнение вида , которое определяет неявно общее решение дифференциального уравнения, называется общим интегралом уравнения . Давая постоянным , конкретные допустимые числовые значения, получим частный интеграл дифференциального уравнения. График частного решения или частного интеграла называется интегральной кривой данного дифференциального уравнения.

Пример 1. Показать, что есть общее решение дифференциального уравнения .

Решение. Покажем, что удовлетворяет данному уравнению при любых значениях постоянных и . В самом деле, имеем .

Пусть теперь заданные произвольные начальные условия . Покажем, что постоянные и можно подобрать так, что будет удовлетворять этим условиям. Имеем . Полагая , получаем систему

из которой однозначно определяются и . Таким образом, решение удовлетворяет поставленным начальным условиям.

Геометрически это означает, что через каждую точку плоскости с заданным угловым коэффициентом проходит единственная прямая.

Задание одного начального условия, например , определяет пучок прямых с центром в точке , т.е. одного начального условия недостаточно для выделения единственного решения.

НЕЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ

Перов А. И. 1 , Каверина В.К. 2

1 Доктор физико-математических наук, Воронежский государственный университет, 2 Кандидат физико-математических наук, Воронежский государственный архитектурно-строительный университет

Работа выполнена при поддержке гранта РФФИ №16-01-00197

НЕЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ

Аннотация

В статье изучается вопрос существования периодических решений у возмущенного дифференциального уравнения -го порядка. Полученные теоремы навеяны проблемой В.И. Зубова и связаны с понятиями асимптотической устойчивости в целом и устойчивости по Дирихле. Доказательства этих теорем носят топологический характер и опираются на понятие степени отображения.

Ключевые слова: нелинейные скалярные дифференциальные уравнения высшего порядка, периодические решения (свободные и вынужденные колебания), топологическая степень отображения, метод направляющих функций.

Perov A. I. 1 , Kaverina V. K. 2

1 PhD in Physics and Mathematics, Voronezh State University, 2 PhD in Physics and Mathematics, Voronezh State University of Architecture and Civil Engineering

NON-LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER

Abstract

In this article we study the problem of the existence of periodic solutions of the perturbed differential equations of higher order. These theorems were inspired by the work of V.I. Zubov and associated with such notions as asymptotically stability in the large and stability in the Dirichlet’s sense in the large. Proofs of these theorems have a topological sense.

Keywords: nonlinear scalar differential equations of higher order, periodic solutions (free and forced oscillations), topological degree of mapping, method of guiding functions.


источники:

http://mathhelpplanet.com/static.php?p=differentsialnye-uravneniya-vysshih-poryadkov

http://research-journal.org/physics-mathematics/the-variations-on-the-vladimir-zubovs-theme-2/