Дифференциальные уравнения 2 порядка называется

10.1. Дифференциальные уравнения второго порядка. Основные понятия теории

Определение 1. Дифференциальным уравнением Второго по­рядка называется уравнение вида

Где Х — независимая переменная, У — искомая функция, У’ и У» — соответственно ее первая и вторая производные.

Примеры дифференциальных уравнений второго порядка:

Будем рассматривать уравнения, которые можно записать в виде, разрешенном относительно второй производной:

Как и в случае уравнения первого порядка, решением урав­нения (10.1) называется функция У = φ(X), определенная на некотором интервале (А, B), которая обращает это уравнение в тождество. График решения называется Интегральной кривой. Имеет место теорема существования и единственности реше­ния уравнения второго порядка.

ТЕОРЕМА 1 (теорема Коши). Пусть функция f(x, у, у’) и ее частные производные и , непрерывны в некоторой обла­сти D пространства переменных (x, у, у’). Тогда для любой внутренней точки М0(х0, у0, у’0) этой области существует единственное решение уравнения (10.2), удовлетворяющее ус­ловиям:

Геометрический смысл этой теоремы (ее доказательство мы не приводим) заключается в том, что через заданную точку (X0, Y0) на координатной плоскости Оху проходит Единствен­ная интегральная кривая с заданным угловым коэффициентом Y0 касательной (рис. 10.1).

Условия (10.3) называются Начальными условиями, а зада­чу отыскания решения уравнения (10.2) по заданным началь­ным условиям называют Задачей Коши.

Общим решением уравнения (10.2) в некоторой области D Называется функция У = φ(х, С1, С2), если она является реше­нием этого уравнения при любых постоянных величинах С1 и C2, которые могут быть определены единственным образом при заданных начальных условиях (10.3). Частным решением Уравнения (10.2) называется общее решение этого уравнения при фиксированных значениях постоянных С1 и C2: У = φ(х, С10, С20).

Рассмотрим для пояснения уравнение У» = 0. Его общее решение получается при двухкратном интегрировании этого уравнения:

Где С1 и C2 — произвольные постоянные. Это решение пред ставляет собой семейство прямых, проходящих в произвольных направлениях, причем через каждую точку плоскости Охy Проходит бесконечное число таких прямых. Поэтому для выделения частного решения, проходящего через заданную точку 0, y0), следует задать еще и угловой коэффициент прямой, совпадающей в данном случае со своей касательной. Например, найдем частное решение, удовлетворяющее начальным условиям

Т. е. нужно найти прямую, проходящую через точку M (l, 2), с угловым коэффициентом, равным единице. Подстановка на­чальных условий в общее решение уравнения приводит к сис­теме двух линейных уравнений относительно постоянных С1 и C2

Откуда С1 = 1, C2 = 1. Таким образом, искомое частное реше­ние — это прямая У = х + 1.

Лекция по высшей математике»Дифференциальные уравнения второго порядка»(для 26 гр.)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

1) ОСНОВНЫЕ ПОНЯТИЯ

Дифференциальным уравнением второго порядка называется уравнение, содержащее неизвестную (искомую) функцию у(х) , независимую переменную х , первую и вторую производные у’, у» или дифференциалы

Дифференциальное уравнение второго порядка символически можно записать в общем виде следующим образом:

Дифференциальное уравнение второго порядка, разрешенное относительно второй производной, имеет вид:

Решением дифференциального уравнения называется всякая функция, которая обращает его в тождество. Дифференциальное уравнение второго порядка имеет бесчисленное множество решений, которые можно представить в виде функции Эта совокупность решений называется общим решением .

Функция, получающаяся из общего решения при конкретных значениях постоянных С 1 и С 2 , называется частным решением . Частное решение находится при помощи задания начальных условий: у(х=х 0 )=у 0 и у'(х=х 0 )=у 0 , где х 0 , у 0 , у 0 – конкретные числа.

Задача отыскания частного решения дифференциального уравнения, удовлетворяющего начальному условию, называется задачей Коши . Практически задачу Коши решают следующим образом: находят общее решение, затем в него подставляют начальные условия, получают систему двух уравнений, определяют произвольные постоянные С 1 и С 2 и подставляют их конкретные значения в общее решение.

2) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО

ПОРЯДКА, ДОПУСКАЮЩИЕ ПОНИЖЕНИЕ ПОРЯДКА

Рассмотрим некоторые типы дифференциальных уравнений второго порядка, которые позволяют понизить порядок уравнения и привести его к уравнениям первого порядка.

2.1. Дифференциальное уравнение вида

Правая часть уравнения не содержит у и у’ . Уравнение решается путем последовательного интегрирования. Найдем сначала первую производную (промежуточное общее решение):

Интегрируя еще раз, получим общее решение:

Пример 1. Найти частное решение уравнения при заданных начальных условиях у(х= 0 )= 1 и у'(х= 0 )= 1.

Решение. Последовательно интегрируя, найдем сначала первую производную (промежуточное общее решение):

Интегрируя еще раз, получим общее решение:

Так как мы интегрировали дважды, то получили две произвольные постоянные С 1 и С 2 . Подставляя начальные условия в соотношения (2.1) и (2.2), получим С 1 =1 и С 2 =1. Следовательно, частное решение имеет вид:

2.2. Дифференциальное уравнение вида

Правая часть уравнения не содержит искомой функции у . Уравнение решается с помощью подстановки:

где z – функция от х . Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка: .

Решая это уравнение, найдем общее решение в виде Делая обратную замену получим еще одно дифференциальное уравнение первого порядка:

Разделяя переменные и интегрируя, получим общее решение

Пример 2. Найти общее решение уравнения

Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка с разделяющимися переменными:

Разделяем переменные: Интегрируем:

Получаем промежуточное общее решение: или

Делая обратную замену получим еще одно дифференциальное уравнение первого порядка с разделяющимися переменными: или

Интегрируя, получим общее решение:

Пример 3. Найти общее решение уравнения

Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка:

Уравнение (2.3) является однородным и решается с помощью подстановки:

Подставляя (2.4) в (2.3), получим дифференциальное уравнение с разделяющимися переменными:

Сокращаем на х и разделяем переменные:

Интеграл в левой части равенства (2.5) вычисляем методом замены переменной:

После интегрирования (2.5) получаем промежуточное общее решение:

Делая обратную замену получим дифференциальное уравнение первого порядка с разделяющимися переменными: или .

Разделяем переменные и интегрируем: (2.6)

Интеграл, стоящий в правой части, вычисляем с помощью формулы интегрирования по частям:

После интегрирования (2.6) получим общее решение:

Пример 4. Найти общее решение уравнения

Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка:

Уравнение (2.7) является линейным неоднородным и решается с помощью подстановки:

Подставляя (2.8) в (2.7), получим:

Квадратную скобку приравняем к нулю и решим полученное уравнение с разделяющимися переменными:

Разделяем переменные и интегрируем: Получаем: или

Функцию подставляем в соотношение (2.9):

Сокращаем на х , разделяем переменные и интегрируем:

Делая обратную замену получим дифференциальное уравнение первого порядка с разделяющимися переменными: или

Разделяем переменные и интегрируем:

Интеграл, стоящий в правой части (2.10), вычисляем с помощью формулы интегрирования по частям:

После интегрирования (2.10) получим общее решение:

2.3. Дифференциальное уравнение вида

Правая часть уравнения не содержит независимой переменной х . Уравнение решается с помощью подстановки: или

где z – функция от у , т.е. z = z [ y ( x )] – сложная функция от х . Тогда :

Исходное уравнение преобразуется в дифференциальное уравнение первого порядка:

где z искомая функция, у – независимая переменная.

Решая это уравнение, найдем общее решение в виде Делая обратную замену получим еще одно дифференциальное уравнение первого порядка:

Разделяя переменные и интегрируя, получим общее решение

Пример 5. Найти общее решение уравнения

Решение. Сделаем подстановку:

Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка с разделяющимися переменными:

Сокращаем на z ( z ≠0) и разделяем переменные:

Получаем промежуточное общее решение: или

Делая обратную замену получим еще одно дифференциальное уравнение первого порядка с разделяющимися переменными:

Разделяем переменные: Интегрируя, получим общее решение:

3) Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Линейные однородные дифференциальные уравнения.

Линейным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида , (1)

т.е. уравнение, которое содержит искомую функцию и её производные только в первой степени и не содержит их произведений. В этом уравнении и — некоторые числа, а функция задана на некотором интервале .

Если на интервале , то уравнение (1) примет вид , (2)

и называется линейным однородным . В противном случае уравнение (1) называется линейным неоднородным . Рассмотрим комплексную функцию , (3)

где и — действительные функции. Если функция (3) является комплексным решением уравнения (2), то и действительная часть , и мнимая часть решения в отдельности являются решениями этого же однородного уравнения. Таким образом, всякое комплексное решение уравнения (2) порождает два действительных решения этого уравнения.

Решения однородного линейного уравнения обладают свойствами:

Если есть решение уравнения (2), то и функция , где С – произвольная постоянная, также будет решением уравнения (2);

Если и есть решения уравнения (2), то и функция также будет решением уравнения (2);

Если и есть решения уравнения (2), то их линейная комбинация также будет решением уравнения (2), где и – произвольные постоянные.

Функции и называются линейно зависимыми на интервале , если существуют такие числа и , не равные нулю одновременно, что на этом интервале выполняется равенство

Если равенство (4) имеет место только тогда, когда и , то функции и называются линейно независимыми на интервале .

Пример 1 . Функции и линейно зависимы, так как на всей числовой прямой. В этом примере .

Пример 2 . Функции и линейно независимы на любом интервале, т. к. равенство возможно лишь в случае, когда и , и .

Построение общего решения линейного однородного уравнения.

Для того, чтобы найти общее решение уравнения (2), нужно найти два его линейно независимых решения и . Линейная комбинация этих решений , где и – произвольные постоянные, и даст общее решение линейного однородного уравнения. Линейно независимые решения уравнения (2) будем искать

в виде , (5) ,где – некоторое число. Тогда , . Подставим эти выражения в уравнение (2):

Так как , то . Таким образом, функция будет решением уравнения (2), если будет удовлетворять уравнению . (6)

Уравнение (6) называется характеристическим уравнением для уравнения (2). Это уравнение является алгебраическим квадратным уравнением.

Пусть и есть корни этого уравнения. Они могут быть или действительными и различными, или комплексными, или действительными и равными. Рассмотрим эти случаи.

Пусть корни и характеристического уравнения действительные и различны. Тогда решениями уравнения (2) будут функции и . Эти решения линейно независимы, так как равенство может выполняться лишь тогда, когда и , и . Поэтому общее решение уравнения (2) имеет вид , где и — произвольные постоянные.

Пример 3 . Найти общее решение дифференциального уравнения .

Решение . Характеристическим уравнением для данного дифференциального будет . Решив это квадратное уравнение, найдём его корни и . Функции и являются решениями дифференциального уравнения. Общее решение этого уравнения имеет вид .

Комплексным числом называется выражение вида , где и — действительные числа, а называется мнимой единицей. Если , то число называется чисто мнимым. Если же , то число отождествляется с действительным числом .

Число называется действительной частью комплексного числа, а — мнимой частью. Если два комплексных числа отличаются друг от друга только знаком мнимой части, то они зазываются сопряжёнными: ,

Пример 4 . Решить квадратное уравнение .

Решение . Дискриминант уравнения . Тогда . Аналогично, . Таким образом, данное квадратное уравнение имеет сопряжённые комплексные корни.

Пусть корни характеристического уравнения комплексные , т.е. , , где . Решения уравнения (2) можно записать в виде , или , . По формулам Эйлера: , .

Тогда , . Как известно, если комплексная функция является решением лин. одн. ур-я, то решениями этого уравнения являются и действительная, и мнимая части этой функции. Таким образом, решениями уравнения (2) будут функции и . Так как равенство

может выполняться только в том случае, если и , то эти решения линейно независимы. Следовательно, общее решение уравнения (2) имеет вид ,

где и — произвольные постоянные.

Пример 5 . Найти общее решение дифференциального уравнения .

Решение . Уравнение является характеристическим для данного дифференциального. Решим его и получим комплексные корни , . Функции и являются линейно независимыми решениями дифференциального уравнения. Общее решение этого уравнения имеет вид .

Пусть корни характеристического уравнения действительные и равные, т.е. . Тогда решениями уравнения (2) являются функции и . Эти решения линейно независимы, так как выражение может быть тождественно равным нулю только тогда, когда и . Следовательно, общее решение уравнения (2) имеет вид .

Пример 6 . Найти общее решение дифференциального уравнения .

Решение . Характеристическое уравнение имеет равные корни . В этом случае линейно независимыми решениями дифференциального уравнения являются функции и . Общее решение имеет вид .

Неоднородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами и специальной правой частью.

Общее решение линейного неоднородного уравнения (1) равно сумме общего решения соответствующего однородного уравнения и любого частного решения неоднородного уравнения: .

В некоторых случаях частное решение неоднородного уравнения можно найти довольно просто по виду правой части уравнения (1). Рассмотрим случаи, когда это возможно.

Пусть неоднородное уравнение имеет вид , (7)

т.е. правая часть неоднородного уравнения является многочленом степени m . Если не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде многочлена степени m , т.е. .

Коэффициенты определяются в процессе нахождения частного решения.

Если же является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде .

Пример 7 . Найти общее решение дифференциального уравнения .

Решение . Соответствующим однородным уравнением для данного уравнения является

. Его характеристическое уравнение имеет корни и .

Общее решение однородного уравнения имеет вид .

Так как не является корнем характеристического уравнения, то частное решение неоднородного уравнения будем искать в виде функции . Найдём производные этой функции , и подставим их в данное уравнение :

или . Приравняем коэффициенты при и свободные члены: Решив данную систему , получим , . Тогда частное решение неоднородного уравнения имеет вид , а общим решением данного неоднородного уравнения будет сумма общего решения соответствующего однородного уравнения и частного решения неоднородного:

Пусть неоднородное уравнение имеет вид (8)

Если не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде . Если же есть корень характеристического уравнения кратности k ( k =1 или k =2), то в этом случае частное решение неоднородного уравнения будет иметь вид .

Пример 8 . Найти общее решение дифференциального уравнения .

Решение . Характеристическое уравнение для соответствующего однородного уравнения имеет вид . Его корни , . В этом случае общее решение соответствующего однородного уравнения записывается в виде .

Так как число 3 не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде . Найдём производные первого и второго порядков: ,. Подставим в дифференциальное уравнение: +,

Приравняем коэффициенты при и свободные члены:

Тогда частное решение данного уравнения имеет вид , а общее решение

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Основные понятия о линейных дифференциальных уравнениях второго порядка и их решениях

Линейным дифференциальным уравнением второго порядка называется уравнение вида

где y — функция, которую требуется найти, а p(x) , q(x) и f(x) — непрерывные функции на некотором интервале (a, b) .

Если правая часть уравнения равна нулю ( f(x) = 0 ), то уравнение называется линейным однородным уравнением. Таким уравнениям и будет в основном посвящена практическая часть этого урока. Если же правая часть уравнения не равна нулю ( f(x) ≠ 0 ), то уравнение называется линейным неоднородным уравнением (смотрите отдельный урок).

В задачах от нас требуется разрешить уравнение относительно y» :

Линейные дифференциальные уравнения второго порядка имеют единственное решение задачи Коши.

Линейное однородное дифференциальное уравнение второго порядка и его решение

Рассмотрим линейное однородное дифференциальное уравнение второго порядка:

Если y 1 (x) и y 2 (x) — частные решения этого уравнения, то верны следующие высказывания:

1) y 1 (x) + y 2 (x) — также является решением этого уравнения;

2) Cy 1 (x) , где C — произвольная постоянная (константа), также является решением этого уравнения.

Из этих двух высказываний следует, что функция

также является решением этого уравнения.

Возникает справедливый вопрос: не является ли это решение общим решением линейного однородного дифференциального уравнения второго порядка, то есть таким решением, в котором при различных значениях C 1 и C 2 можно получить все возможные решения уравнения?

Ответ на этот вопрос следуюший: может, но при некотором условии. Это условие о том, какими свойствами должны обладать частные решения y 1 (x) и y 2 (x) .

И это условие называется условием линейной независимости частных решений.

Теорема. Функция C 1 y 1 (x) + C 2 y 2 (x) является общим решением линейного однородного дифференциального уравнения второго порядка, если функции y 1 (x) и y 2 (x) линейно независимы.

Определение. Функции y 1 (x) и y 2 (x) называются линейно независимыми, если их отношение является константой, отличной от нуля:

Однако установить по определению, являются ли эти функции линейно независимыми, часто очень трудоёмко. Существует способ установления линейной независимости с помощью определителя Вронского W(x) :

.

Если определитель Вронского не равен нулю, то решения — линейно независимые. Если определитель Вронского равен нулю, то решения — линейно зависимымые.

Пример 1. Найти общее решение линейного однородного дифференциального уравнения .

Решение. Интегрируем дважды и, как легко заметить, чтобы разность второй производной функции и самой функции была равна нулю, решения должны быть связаны с экспонентой, производная которой равна ей самой. То есть частными решениями являются и .

Так как определитель Вронского

не равен нулю, то эти решения линейно независимы. Следовательно, общее решение данного уравнения можно записать в виде

.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

где p и q — постоянные величины.

На то, что это уравнение второго порядка, указывает наличие второй производной от искомой функции, а на его однородность — нуль в правой части. Постоянными коэффициентами называются уже упомянутые выше величины.

Чтобы решить линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами, нужно сначала решить так называемое характеристическое уравнение вида

которое, как видно, является обычным квадратным уравнением.

В зависимости от решения характеристического уравнения возможны три различных варианта решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами, которые сейчас разберём. Для полной определённости будем считать, что все частные решения прошли проверку определителем Вронского и он во всех случаях не равен нулю. Сомневающиеся, впрочем, могут проверить это самостоятельно.

Корни характеристического уравнения — действительные и различные

Иными словами, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 2. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и — вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Пример 3. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и — вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравения — вещественные и равные

То есть, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 4. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Пример 5. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравнения — комплексные

То есть, , , . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 6. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет комплексные корни и . Соответственно и . Общее решение данного дифференциального уравения имеет вид

.

Пример 7. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет комплексные корни и . Соответственно и . Общее решение данного дифференциального уравения имеет вид

.

Решить линейное однородное дифференциальное уравнение с постоянными коэффициентами самостоятельно, а затем посмотреть решение

Пример 8. Решить линейное однородное дифференциальное уравнение

.

Пример 9. Решить линейное однородное дифференциальное уравнение

.


источники:

http://infourok.ru/lekciya-po-visshey-matematikedifferencialnie-uravneniya-vtorogo-poryadkadlya-gr-2311306.html

http://function-x.ru/differential_equations7.html