Дифференциальные уравнения движения свободной и несвободной

Дифференциальные уравнения движения свободной материальной точки

При векторном способе задания движения:

, , .

В координатной форме:

В естественной форме:

Интегрируя дважды по времени, получаем уравнения движения точки в координатной форме. Постоянные интегрирования определяют с использованием начальных (граничных) условий:

При t = 0

Задача Д1

Дифференциальные уравнения движения несвободной материальной точки

В этом случае используется принцип освобождаемости от связей: движение несвободной материальной точки не изменится, если ее сделать свободной и заменить связи их реакциями.

, — реакция связи.

Задача Д2

СИЛА ИНЕРЦИИ МТ. ПРИНЦИП ДАЛАМБЕРА ДЛЯ МТ

Рассматривается движение МТ М под действием силы , приложенной к ней со стороны тела А — ускоряющего тела.

Если ускоряющих тел несколько, то — равнодействующая. Эта сила определяется уравнением

.

В соответствии с законом о равенстве действия и противодействия точка М действует на тело А с силой . Поэтому

— сила инерции МТ.

Проекции силы инерции на декартовы оси и оси Эйлера

, , , , .

Пусть несвободная МТ М движется в инерциальном пространстве Oxyz.

Основное уравнение динамики для нее имеет вид

.

Здесь и — равнодействующие заданных сил и реакций связей. Тогда

.

Принцип Даламбера для МТ: Заданные силы и реакции связей, под действием которых движется точка, и сила инерции точки образуют уравновешенную систему сил

.

ДИНАМИЧЕСКИЕ МЕРЫ МАТЕРИАЛЬНЫХ ОБЪЕКТОВ

Динамическими мерами являются:

— момент количества движения (кинетический момент);

Масса, момент инерции – меры инертности МО, остальные – динамические меры механического движения МО.

Масса, центр масс МСМТ

Пусть в пространстве Oxyz рассматривается движение МСМТ k>n с массами <mk>n, положение которых определяется радиус-векторами .

Массой МСМТ называется величина, равная сумме масс точек системы

.

Центром масс (ЦМ) МСМТ называется точка С пространства Oxyz, радиус-вектор которой в каждый момент времени равен

.

, , .

Моменты инерции МСМТ и ТТ

Момент инерции МСМТ относительно оси (осевой момент инерции) – сумма произведений масс всех точек системы на квадраты их расстояний до этой оси:

,

,

.

Момент инерции МСМТ относительно центра О (полярный моментом инерции) — сумма произведений масс всех точек системы на квадраты их расстояний до центра:

.

Осевые и полярный моменты инерции характеризуют разброс точек МС относительно оси и центра.

Центробежный момент инерции МСМТ — сумма произведений масс всех точек системы на координаты этих точек вдоль двух осей:

,

,

.

Центробежные моменты инерции характеризуют асимметрию распределения МТ относительно координатных плоскостей.

Радиусом инерции МСМТ (ТТ) относительно оси l

.

Зная радиус инерции, момент инерции МСМТ (ТТ)

.

Дифференциальные уравнения движения материальной точки в теоретической механике

Содержание:

Дифференциальные уравнения движения материальной точки:

Используя основной закон динамики, можно вывести дифференциальные уравнения движения материальной точки в различных системах координат. По аксиоме о связях и силах реакций связей можно получить дифференциальные уравнения движения и несвободной точки так же, как и для свободной, только ко всем приложенным к точке силам надо добавить силы реакций связей.

Силы реакций связей при движении точки могут зависеть в общем случае не только от вида наложенных на точку связей и приложенных к ней сил, но и от характера ее движения, например от ее скорости при движении в воздухе или в какой-либо другой сопротивляющейся среде. В дальнейшем не будем делать различия между свободной и несвободной материальными точками. Обозначая равнодействующую всех заданных сил и сил реакций связей

Из кинематики точки известно, что ускорение выражается через радиус-вектор (рис. 3):

Дифференциальное уравнение движения материальной точки в векторной форме имеет вид

Если спроецировать обе части уравнений (7) или (8) на координатные оси, то можно получить дифференциальные уравнения движения точки в проекциях на эти оси.

В декартовой системе координат в общем случае

Проекции ускорения на координатные оси можно выразить через вторые производные по времени от координат движущейся точки:

Рис. 3

Дифференциальные уравнения движения материальной точки в прямоугольной декартовой системе координат имеют вид

Частные случаи дифференциального уравнения движения материальной точки

Если известно, что материальная точка движется в одной и той же плоскости, то, принимая ее за координатную плоскость , имеем

Так как , то, следовательно, . В случае движения точки по прямой линии, направив по ней координатную ось , получим одно дифференциальное уравнение прямолинейного движения точки

Так как при движении , то, следовательно, . Для естественных подвижных осей координат (рис. 4), проецируя обе части (7) на эти оси, получаем:

где и — соответственно проекции ускорения и равнодействующей силы на касательную, главную нормаль и бинормаль к траектории в рассматриваемом положении движущейся точки. Учитывая, что

где — радиус кривизны траектории, дифференциальные уравнения движения точки в проекциях на естественные оси имеют вид

Второе уравнение из (12) можно преобразовать:

где — угловая скорость вращения касательной к траектории движущейся точки и, следовательно, — угол смежности между касательными в двух бесконечно близких точках.

Дифференциальные уравнения (12) можно представить в виде

Рис. 4

Эта форма дифференциальных уравнений движения точки удобна при исследовании некоторых случаев полета снарядов и ракет, особенно по траектории, лежащей в плоскости. Тогда будет углом между касательной к траектории и любой осью, лежащей в плоскости траектории.

Дифференциальные уравнения движения точки можно представить в любой другой системе координат. Для этого надо знать выражения проекций ускорения на эти оси координат.

Дифференциальные уравнения относительного движения точки

Кориолисовыми силами инерции называют две векторные величины, имеющие размерность силы и добавляемые к силам, приложенным к материальной частице, для определения ее относительного ускорения

Все дифференциальные уравнения движения, с которыми мы ознакомились в этой главе, относятся к абсолютному движению, т. е. к движению по отношению к инерциальной системе отсчета. Для написания дифференциальных уравнений движения точки (или частицы) относительно подвижных осей подставим в основное уравнение динамики (123) вместо абсолютного ускорения точки его выражение (110):

(153)

имеющую размерность силы, равную произведению массы материальной частицы на ее переносное ускорение и направленную противоположно этому ускорению, называют переносной силой инерции Кориолиса.

(154)

равную произведению массы материальной частицы на ее кориолисово ускорение и направленную противоположно этому ускорению, называют поворотной силой инерции Кориолиса.

(155 / )

или в проекциях на оси координат:

(155)

Таким образом, относительное движение материальной точки можно описать такими же (по форме) дифференциальными уравнениями, как и абсолютное, но к действующим на точку силам нужно прибавить две кориолисовы силы инерции: переносную и поворотную.

Эти величины следует отличать от даламберовых сил инерции (см. гл. XX), введение которых позволяет решать задачи динамики методом статики.

Пример решения задачи №1

Определить амплитуду вынужденных колебаний в относительном движении вибрографа для записи вертикальных колебаний фундамента (рис. 171), совершающего вместе с фундаментом колебания по закону χ = a sin pt, если вес груза равен G и жесткость пружины с.


Рис. 171

Решение. Рама жестко соединена с фундаментом и участвует в его колебаниях, как и вращающийся барабан В, на котором груз G, перемещаясь вверх и вниз, записывает колебания фундамента. Вертикальные перемещения х’ груза G по отношению к раме являются относительными и по отношению к барабану, если пренебречь его вращением. Уравнение этих относительных перемещений можно составить как уравнение абсолютного движения, если к заданным силам добавить переносную кориолисову силу, равную и противоположную произведению вектора переносного ускорения на массу груза. Переносная сила инерции груза равна

Напишем дифференциальное уравнение относительных колебаний груза, сократив на m:

x’ + k 2 χ’ = ар 2 sin pt.

где Пренебрегая свободными колебаниями груза, напишем уравнение (149′) установившегося вынужденного колебания груза:

Амплитуда этих колебаний тем менее отличается от амплитуды колебаний фундамента, чем меньше собственная частота k прибора сравнительно с частотой р, т. е. чем меньше жесткость пружины и чем больше масса груза.

Ответ.

Пример решения задачи №2

Ползун G (рис. 172) может скользить по хорде AB равномерно вращающегося горизонтального диска, к точкам А и В которой он прикреплен двумя одинаковыми пружинами жесткостью каждая. Принимая ползун за точку массы т и пренебрегая трением, определить зависимость периода τ его колебаний в относительном движении по хорде от угловой скорости ω диска.


Рис. 172

Решение. Построим оси подвижной системы координат с началом в точке О (в положении относительного равновесия ползуна), направив Ox’ но хорде.

Определим силы, действующие на ползун. Если ползун отклонится от равновесного положения О на величину х’, то одна из пружин сожмется, а другая растянется. Согласно закону Гука сила каждой из пружин пропорциональна деформации х’ и направлена к точке О. Следовательно, на ползун действует активная сила

Кроме активной силы, надо учесть действие кориолисовых сил: Φe—переносной и Φc-поворотной.
Переносная сила инерции равна произведению массы т ползуна на его переносное ускорение: и направлена против переносного ускорения, т. е. от центра C диска. Чтобы определить проекцию этой силы на Ox’, надо ее модуль умножить на направляющий косинус, который при OG = х’ равен .

Поворотная сила Кориолиса равна произведению массы ползуна иа кориолисово ускорение 2ωx’ и направлена против этого ускорения. Таким образом, чтобы определить направление поворотной силы Кориолиса, надо вектор относительной скорости повернуть на 90° против переносного вращения. Находим, что поворотная сила инерции действует перпендикулярно AB и проекция ее на Ox’ равна нулю.

При найденных значениях активных сил и кориолисовых сил дифференциальное уравнение относительного движения ползуна по хорде имеет вид:

mх’ = — cx’ + mω 2 x’= — (с—mω 2 )x’.

Это уравнение выражает гармоническое колебание с периодом

Ответ. и не зависит от положения хорды.

Пример решения задачи №3

Составить дифференциальное уравнение относительного движения ползуна, описанного в предыдущей задаче, считая, что при его движении вдоль хорды AB возникает трение, пропорциональное нормальному давлению на хорду.

Решение. Нормальное давление обусловлено поворотной силой инерции и нормальной составляющей переносной силы инерции.

Поворотная сила ползуна Φс=2mωx’ переменна по величине и направлению. Она направлена перпендикулярно к хорде AB, но в сторону положительных значений у’, если точка G движется в сторону отрицательных значений х’, т. е, если х’ 2 h. Эта составляющая в рассматриваемом механизме всегда направлена в сторону положительных у’, а потому в суммарном давлении обе кориолисовы силы складываются при х’ 0, и дифференциальное уравнение относительного движения точки имеет вид

mх’ =— (с—mω 2 ) x’ — fm (2ωx’ ± ω2h),

причем знак второго слагаемого в скобках надо брать положительным при х’ 0. Решение такого уравнения при движении точки G влево и вправо получается, конечно, различным. Если Л — 0 и хорда является диаметром, то вместо кулонова трения получается вязкое демпфирование, зависящее от скорости.

Рекомендую подробно изучить предмет:
  • Теоретическая механика
Ещё лекции с примерами решения и объяснением:
  • Две основные задачи динамики точки
  • Прямолинейное движение точки
  • Криволинейное движение материальной точки
  • Движение несвободной материальной точки
  • Сложное движение точки
  • Сложение движение твердого тела
  • Кинематика сплошной среды
  • Аксиомы классической механики

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Дифференциальные уравнения движения свободной и несвободной МТ. Две задачи динамики точки

Используя основной закон динамики и формулы для ускорения МТ при различных способах задания движения, можно получить дифференциальные уравнения движения как свободной, так и несвободной материальной точки. При этом для несвободной материальной точки ко всем приложенным к МТ активным (заданным) силам надо добавить на основании аксиомы связей (принципа освобождаемости) силы пассивные (реакции связи).

Пусть – равнодействующая системы сил (активных и реакций), действующих на точку.

На основании второго закона динамики

(1)

с учетом соотношения, определяющего ускорение точки при векторном способе задания движения:

,

получим дифференциальное уравнение движения МТ постоянной массы в векторной форме:

. (2)

Спроектировав соотношение (1) на оси декартовой системы координат Oxyz и использовав соотношения, определяющие проекции ускорения на оси декартовой системы координат:

, , ,

получим дифференциальные уравнения движения МТ в проекциях на эти оси:

(3)

Спроектировав соотношение (1) на оси естественного трехгранника ( ) и использовав соотношения, определяющие формулы для ускорения точки при естественном способе задания движения:

, , ,

получим дифференциальные уравнения движения МТ в проекциях на оси естественного трехгранника :

(4)

Аналогично можно получить дифференциальные уравнения движения МТ в других системах координат (полярной, цилиндрической, сферической и т. д.).

С помощью уравнений (2)-(4) ставятся и решаются две основные задачи динамики МТ

Первая (прямая) задача динамики МТ: зная массу МТ и заданные тем или иным способом уравнения или кинематические параметры ее движения, необходимо найти действующие на МТ силы.

Например, если заданы уравнения движения МТ в декартовой системе координат:

то проекции на оси координат силы , действующей на МТ, определятся после использования соотношений (3):

Зная проекции силы на координатные оси, легко определить модуль силы и направляющие косинусы углов, которые составляет сила с осями декартовой системы координат.

Для несвободной МТ обычно необходимо еще, зная действующие на нее активные силы, определить реакции связи.

Вторая (обратная) задача динамики МТ: зная массу точки и действующие на нее силы, необходимо определить уравнения или кинематические параметры ее движения при определенном способе задания движения.

Для несвободной МТ обычно необходимо, зная массу МТ и действующие на нее активные силы, определить уравнения или кинематические параметры ее движения и реакции связи.

Силы, приложенные к точке, могут зависеть от времени, положения МТ в пространстве и от скорости ее движения, т. е.

.

Рассмотрим решение второй задачи в декартовой системе координат. Правые части дифференциальных уравнений движения (3) в общем случае содержат функции времени, координат, их производных по времени:

(5)

Для того, чтобы найти уравнения движения МТ в декартовых координатах, необходимо дважды проинтегрировать систему трех обыкновенных дифференциальных уравнений второго порядка (5), в которых неизвестными функциями являются координаты движущейся точки, а аргументом – время t. Из теории обыкновенных дифференциальных уравнений известно, что общее решение системы трех дифференциальных уравнений второго порядка содержит шесть произвольных постоянных:

(6)

где Cg, (g = 1,2,…,6) – произвольные постоянные.

Продифференцировав соотношения (6) по времени, определим проекции скорости МТ на координатные оси:

(7)

В зависимости от значений постоянных Cg, (g =1,2,…,6) уравнения (6) описывают целый класс движений, который могла бы совершить МТ под действием данной системы сил.

Действующие силы определяют только ускорение МТ, а скорость и положение МТ на траектории зависят еще от скорости, которую сообщили МТ в начальный момент, и от начального положения МТ.

Для выделения конкретного вида движения МТ (т. е. чтобы сделать вторую задачу определенной) надо дополнительно задать условия, позволяющие определить произвольные постоянные. В качестве таких условий задают начальные условия, т. е. в какой-то определенный момент времени, принимаемый за начальный, задаются координаты движущейся МТ и проекции ее скорости:

(8)

где – значения координат МТ и их производных в начальный момент времени t=0.

Используя начальные условия (8), формулы (7) и (6), получаем шесть алгебраических уравнений для определения шести произвольных постоянных:

(9)

Из системы (9) можно определить все шесть произвольных постоянных:

. (g = 1,2,…,6)

Подставляя найденные значения Cg, (g = 1,2,…,6) в уравнения движения (6), находим решения второй задачи динамики в виде закона движения точки.

Дата добавления: 2015-04-21 ; просмотров: 24 ; Нарушение авторских прав


источники:

http://www.evkova.org/differentsialnyie-uravneniya-dvizheniya-materialnoj-tochki-v-teoreticheskoj-mehanike

http://lektsii.com/2-41301.html

Читайте также:
  1. GNU(рекурсивный акроним от GNU’s Not UNIX — «GNU — не Unix!») — это проект создания свободной UNIX-подобная операционной системы, открытый в 1983 году Ричардом Столлмэном.
  2. Grand sissonne owerte без продвижения
  3. Grand sissonne owerte без продвижения
  4. II.Четыре главных средства продвижения
  5. V2:4 Новые религиозные движения и нетрадиционные религии
  6. А) понятие и задачи
  7. Автобус как средство передвижения. Организация автобусных туров, их география, известные туроператоры.
  8. Аграрная реформа П.А. Столыпина: основные задачи и последствия;
  9. Агрегатные состояния вещества. Характер теплового движения в этих состояниях. Особенности теплового движения в различных агрегатных состояниях вещества.
  10. Адвокатура. Понятие, задачи и виды юридической помощи