Дифференциальные уравнения элементы теории устойчивости

ЭЛЕМЕНТЫ ТЕОРИИ УСТОЙЧИВОСТИ

С описательной точки зрения в природе имеется важный класс механических систем, которые описываются дифференциальными уравнениями. Однако здесь важно отметить, что для возможности математического описания какого-нибудь реального явления или процесса неизбежно приходится упрощать, идеализировать это явление, выделяя и учитывая лишь наиболее существенные из влияющих на него факторов и отбрасывая остальные, менее существенные. При этом неизбежно встает вопрос о том, удачно ли выбраны упрощающие предположения. В конечном счете, этот вопрос решается практикой – соответствием полученных выводов с опытными данными, и во многих случаях, возможно, указать условия, при которых некоторые упрощения заведомо невозможны.

Если некоторое явление описывается системой дифференциальных уравнений

(II.1)

с начальными условиями , которые обычно являются результатами измерений и, следовательно, неизбежно получены с некоторой погрешностью, то естественно возникает вопрос о влиянии малого изменения начальных значений на искомое решение.

Если окажется, что сколь угодно малые изменения начальных данных способны изменить решение, то решение, определяемое выбранными нами неточными начальными данными, обычно не имеет никакого прикладного значения и даже приближенно не может описывать, изучаемое явление.

Устойчивость решений систем обыкновенных дифференциальных уравнений

Дадим некоторые основные понятия и определения, связанные с представлениями механических процессов и явлений, описываемыми дифференциальными уравнениями и их системами.

Траектории

Графическое представление любого решения системы дифференциальных уравнений (II.1) как геометрического места точек пространства переменных , обращающих систему (II.1) в систему тождеств, будем называть траекторией.

Проекция траектории на пространство переменных называется фазовой траекторией, а само пространство – фазовым.

Здесь важно отметить, что все фазовые траектории динамических систем вида (II.1) могут быть подразделены на три класса:

особые точки, которые соответствуют положениям равновесия системы; замкнутые траектории (среди них предельные циклы); все остальные – траектории общего вида.

Системы дифференциальных уравнений вида:

(II.2)

называются автономными. Их траектории совпадают с фазовыми траекториями, а пространство переменных – с фазовым пространством, так как в системе явно не присутствует независимая переменная .

II.2. Особые точки

Понятие особой точки имеет место для автономных систем вида (II.2). Особые точки, с механистической точки зрения, соответствуют положениям равновесия систем вида (II.1) или равновесным ее решениям. В этом смысле, такая точка при своем движении в фазовом пространстве, имеет проекции вектора скорости, равные нулю, то есть точка находится в покое[1] или движется равномерно относительно инерционной системы отсчета.

Таким образом, если известно, что точка является положением равновесия системы (II.2), то:

. (II.3)

Соотношения (II.3) фактически является определением, в соответствии с которым особые точки могут быть найдены, как решение системы (в общем случае нелинейной) алгебраических уравнений:

. (II.4)

Очевидно, что для линейной системы:

(II.5)

автоматически особой точкой (положением равновесия) является начало координат и других нет.

Здесь и далее, будем использовать обозначения: .

На плоскости, особой точкой системы

где функции и непрерывно дифференцируемы по обоим аргументам и , является такая точка , в которой , .

Особые точки линейных автономных систем дифференциальных уравнений имеют некоторую классификацию, которая связана с характером спектра ее матрицы. В частности, для классификации особых точек систем вида

необходимо найти корни характеристического уравнения

.

корни характеристического уравнения: и (одного знака), то особая точка – узел (устойчивый или неустойчивый в зависимости от знаков собственных чисел – корней характеристического уравнения). Узел изображен на рисунке 1 а);

корни характеристического уравнения: и (разных знаков), то особая точка – седло (см. рисунок 1 б)); если корни комплексные с ненулевой вещественной частью, то особая точка – фокус (устойчивый или неустойчивый, в зависимости от знака вещественной части). Фокус изображен на рисунке 1 в); если вещественные части комплексных корней характеристического уравнения нулевые (сами корни чисто мнимые), то особая точка – центр (см. рисунок 1 г); для двух вещественных и равных корней характеристического уравнения не равных нулю имеет место особая точка, которая классифицируется как вырожденный или дикритический узел (см. рисунок 1 д и е); в критическом случае, когда один или оба корня уравнения равны нулю (случай: ), то решения на плоскости изображаются параллельными прямыми.

Изображение фазовых траекторий (кривых, графически представляющих решения соответствующих систем на плоскости ) в случае узла, седла и вырожденного узла, необходимо, прежде всего, найти те решения, которые изображаются прямыми, проходящими через особую точку (в случае седла они называются сепаратриссами). Эти прямые всегда направлены вдоль собственных векторов матрицы, составленной из коэффициентов данной системы.

Замечание: Напомним, как определяется спектр (полный набор собственных чисел) матрицы и совокупность ее собственных векторов. Матрица

,

как линейный оператор, действуя как отображение на векторное пространство, некоторые векторы только деформирует (сжимает или растягивает) с некоторым коэффициентом деформации . Таким образом:

. (II.6)

Такие векторы называют собственными векторами, а соответствующие числа – собственными числами. Собственные числа образуют спектр.

Из (II.6), простыми алгебраическими преобразованиями получим

.

Получим однородную систему линейных алгебраических уравнений:

, (единичная матрица),

которая неопределенна, так как собственный вектор матрицы может быть определен с точностью до направления.

(II.7)

– характеристическое уравнение, записанное в векторной форме. В матричной форме (II.7) будет иметь вид:

. (II.8)

Заметим также, что, если раскрыть определитель в соотношении (II.8), то в итоге, после приведения подобных, получим алгебраическое уравнение й степени относительно параметра :

. (II.9)

И, как уже отмечалось, согласно основной теореме алгебры, (II.9) имеет ровно корней, вещественных и комплексных с учетом их кратности. Таким образом, спектр матрицы имеет ровно элементов (среди которых возможны и одинаковые).

Относительно множества собственных векторов это не совсем так. Дело в том, что совокупность собственных векторов, образует так называемое инвариантное пространство, и здесь учитываются только те векторы (а их бесконечное множество, так как каждый собственный вектор определяется с точностью до направления), которые линейно независимы в совокупности.

Вернемся к особым точкам и фазовым траекториям. В случае узла фазовые траектории касаются той прямой, которая направлена вдоль собственного вектора, соответствующего меньшему по абсолютной величине значению .

Для фокуса необходимо определить направление закручивания траекторий. Здесь, исследуется устойчивость этой точки по знакам вещественных частей собственных чисел и, далее, определяется направление, в котором происходит движение точек вдоль траектории вокруг особой точки. Для этого достаточно построить в какой-нибудь из них вектор скорости – он направлен по касательной к движению.

II.1.3. Устойчивость по первому приближению

При исследовании устойчивости точки покоя системы дифференциальных уравнений

(II.10)

где дифференцируемые в окрестности особой точки функции, часто применяется следующий метод.

Пользуясь дифференцируемостью функций , представляют систему (II.10) в окрестности в виде

, (II.11)

где имеют порядок выше первого относительно , и вместо точки покоя системы (II.10) исследуют свойства устойчивости той же точки покоя, но для линеаризованной в ее окрестности системы

, (II.12)

которая называется системой уравнений первого приближения для (II.11).

Очевидно, что исследование свойств устойчивости системы уравнений первого приближения, является задачей более легкой, чем аналогичные исследования исходной нелинейной системы.

Теорема 1. Если система уравнений (II.11) стационарна в первом приближении, все члены в достаточно малой окрестности начала координат при удовлетворяют неравенствам , где и , причем (т. е., если не зависят от , то их порядок выше первого относительно нормы: и все корни характеристического уравнения

, (II.13)

имеют отрицательные вещественные части, то тривиальные (нулевые) решения системы уравнений (II.11) и системы уравнений (II.12) асимптотически устойчивы.

Теорема 2. Если система уравнений (II.11) стационарна в первом приближении, все функции удовлетворяют условиям предыдущей теоремы, и хотя бы один корень характеристического уравнения (II.13) имеет положительную вещественную часть, то точка покоя системы (II.11) и соответственно системы (II.12) неустойчива.

Пример 1. Исследовать на устойчивость точку покоя системы

Нелинейности системы удовлетворяют условиям теоремы 1 и 2. Система первого приближения в окрестности имеет вид:

имеет корни . Следовательно, в силу теоремы 2, рассматриваемая точка покоя системы может быть классифицирована как неустойчивый фокус.

Пример 2. Исследовать на устойчивость точку покоя системы

.

Используя разложения функций и в ряд Маклорена, представляем систему в виде

,

где функции и удовлетворяют условиям теоремы 1 и теоремы 2.

Характеристическое уравнение имеет вид:

.

Откуда легко находятся собственные числа матрицы системы первого приближения. Нетрудно видеть, что они имеют отрицательные вещественные части и, следовательно, точка покоя – асимптотически устойчива – устойчивый фокус.

Исследование устойчивости с помощью функций Ляпунова

Второй метод, или, как принято сейчас говорить – прямой метод, получил наибольшее распространение, благодаря своей простоте и эффективности. Суть его заключается в построении для исследуемой системы дифференциальных уравнений некоторой непрерывной однозначной функции, так называемой функции Ляпунова такой, что по свойствам этой функции и ее полной производной, взятой в силу системы

,

можно говорить о поведении нулевого решения системы (II.1), в смысле его устойчивости (здесь – правые части исследуемой системы).

В частности, самим А. М. Ляпуновым была сформулирована следующая теорема.

Теорема (А. М. Ляпунова). Если дифференциальные уравнения возмущенного движения таковы, что, возможно, найти знакоопределенную функцию, производная которой в силу этих уравнений была бы или знакоопределенной (знакопостоянной) функцией противоположного знака с, или тождественно равной нулю, то невозмущенное движение устойчиво.

В частности, если условие

при

заменить более сильным условием:

при ,

а функция непрерывна при , то нулевое решение системы (II.1) асимптотически устойчиво.

Теорема (Н. Г. Четаева). Пусть система (II.1) обладает нулевым решением. Пусть в некоторой области пространства переменных существует дифференцируемая функция, причем:

точка принадлежит границе области ; на границе области при ; в области при имеем, , функция непрерывна.

Тогда нулевое решение системы (II.1) неустойчиво.

Не существует общего метода построения функции Ляпунова , когда общее решение системы (II.1) неизвестно. В ряде случаев функцию Ляпунова удается построить в виде квадратичной формы

,

или в виде суммы квадратичной формы и интегралов от нелинейных функций, входящих в правую часть данной системы.

Частотные критерии устойчивости

1). Условия отрицательности всех вещественных частей корней уравнения

, (II.14)

с вещественными коэффициентами.

а). Необходимое условие: все . В случае это условие является и достаточным.

б). Условие Рауса – Гурвица: необходимо и достаточно, чтобы были положительными все главные диагональные миноры матрицы Гурвица

.

На главной диагонали этой матрицы стоят числа .В каждой строке индекса предыдущего числа. Числа с индексами или заменяются нулями.

Главные диагональные миноры матрицы Гурвица

в) Условия Льенара-Шипара. Необходимо и достаточно, чтобы все >0 и чтобы >0, >0, >0,…, где главные диагональные миноры матрицы Гурвица.

Эти условия равносильны условиям Рауса-Гурвица, но удобнее, т. к. содержат меньше детерминантов.

Пример 3. Исследовать устойчивость нулевого решения уравнения

.

Запишем условия Льенара-Шипара:

>0, >0

Условия Льенара-Шипара выполнены и, следовательно, корни уравнения имеют отрицательные вещественные части. Таким образом, если уравнение является характеристическим для некоторой линейной системы дифференциальных уравнений, то ее (системы) равновесное решение будет устойчивым, причем асимптотически.

г) Критерий Михайлова.

Необходимо и достаточно, чтобы на комплексной плоскости точка , где левая часть характеристического уравнения, при изменении от 0 до +не проходила через начало координат и сделала поворот вокруг него на угол в положительном направлении.

Другая (эквивалентная) формулировка критерия Михайлова:

Необходимо и достаточно, чтобы корни многочленов

Теория устойчивости дифференциальных уравнений с примерами решения и образцами выполнения

Рассмотрим вопрос о зависимости решения задачи Коши от начальных данных. Пусть дана задача Коши

Если функция f(t, х) непрерывна по совокупности аргументов и имеет ограниченную производную в некоторой области изменения t, х, содержащей точку (tо, xo), то решение задачи Коши (1)-(2) существует и единственно. Если изменять значения t0 и хо, то будет меняться и решение. Возникает важный в приложениях вопрос: как оно будет меняться? Вопрос этот имеет и большое принципиальное значение. Действительно, если какая-либо физическая задача приводит к задаче Коши, то начальные значения находятся из опыта и за абсолютную точность измерения ручаться нельзя. И если сколь угодно малые изменения начальных данных способны сильно изменять решение, то математическая модель окажется малопригодной для описания реального процесса.

Справедлива следующая теорема о непрерывной зависимости решения от начальных условий.

Теорема:

Если правая часть f(t, х) дифференциального уравнения

непрерывна по совокупности переменных и имеет ограниченную частную производную в некоторой области G изменения t , х, то решение

удовлетворяющее начальному условию непрерывно зависит от начальных данных.

Иными словами, пусть через точку проходит решение x(t) уравнения (1), определенное на отрезке Тогда для любого найдется такое решение уравнения (1), проходящее через точку существует на отрезке и отличается там от x(t) меньше чем на

Аналогичная теорема справедлива и для системы дифференциальных уравнений

При выполнении условий теоремы (1) решение задачи Коши существует, единственно и непрерывно зависит от начальных данных. В этом случае говорят, что задача Коши поставлена корректно. Существенным является то обстоятельство, что отрезок [а, b] изменения t конечен. Однако во многих задачах нас интересует зависимость решения от начальных данных в бесконечном промежутке Переход от конечного промежутка, в котором рассматривается непрерывная зависимость решения от начальных значений, к бесконечному существенно меняет характер задачи и методы исследования. Эта проблема относится к теории устойчивости, созданной А.М. Ляпуновым.

Остановимся вкратце на понятии о продолжаемости решения. Пусть имеем систему дифференциальных уравнений

где t — независимая переменная (время); искомые функции; функции, определенные для из некоторой области Если функции

в их области определения непрерывны по совокупности аргументов и имеют ограниченные частные производные по то для системы (3) справедлива локальная теорема существования:

для каждой системы значений

существует единственное решение

системы (3), определенное в некотором интервале изменения t и удовлетворяющее начальным условиям

Введем следующее понятие. Пусть

— решение задачи Коши (3)-(4), определенное на некотором интервале I = (t1,t2). Это решение может бьггь продолжено, вообще говоря, на больший интервал времени. Решение

называется продолжением решения если оно определено на большем интервале и совпадает с при Решение называется неограниченно продолжаемым (неограниченно продолжаемым вправо или влево), если его можно продолжить на всю ось (на полуось или соответственно).

Для дальнейших рассмотрений важен вопрос о существовании решения хi(t), (глобальная теорема существования). Этим свойством обладает линейная система

где — непрерывные функции на Для нее каждое решение существует на (неограниченно продолжаемо вправо) и единственно.

Не все системы обладают таким свойством. Например, для скалярного уравнения

непрерывна и имеет производные всех порядков по х. Нетрудно проверить, что функция

является решением задачи

Однако это решение существует только в интервале зависящем от начального условия, и не-продолжаемо на полуинтервал

Уравнение (5) есть уравнение сверхбыстрого размножения, когда прирост пропорционален числу всевозможных пар. Его решение показывает, что при таком законе прироста населения количество населения становится бесконечным за конечное время (в то время как обычный закон прироста — экспоненциальный).

Задача:

Показать, что решения уравнения

нельзя продолжить неограниченно ни вправо, ни влево.

Устойчивость по Ляпунову. Основные понятия и определения

Рассмотрим дифференциальное уравнение первого порядка

где функция f(t,x) определена и непрерывна для и х из некоторой области D и имеет ограниченную частную производную . Пусть функция

есть решение уравнения (1), удовлетворяющее начальному условию

Пусть, далее, функция

есть решение того же уравнения, удовлетворяющее другому начальному условию

Предполагается, что решения определены для всех неограниченно продолжаемы вправо.

Определение:

Решение уравнения (1) называется устойчивым по Ляпунову при если для любого такое, что для всякого решения х = x(t) этого уравнения из неравенства

для всех (всегда можно считать, что

Это значит, что решения, близкие по начальным значениям к решению остаются близкими и при всех Геометрически это означает следующее. Решение

уравнения (1) устойчиво, если, какой бы узкой ни была е-полоска, содержащая кривую , все достаточно близкие к ней в начальный момент интегральные кривые х = x(t) уравнения целиком содержатся в указанной е-полоске при всех (рис. 1).

Если при сколь угодно малом хотя бы для одного решения х = x(t) уравнения (1) неравенство (3) не выполняется, то решение этого уравнения называется неустойчивым. Неустойчивым следует считать и решение, не продолжаемое вправо при

Определение:

Решение уравнения (1) называется асимптотически устойчивым, если

1) решение устойчиво;

2) существует такое, что для любого решения х = x(t) уравнения (1), удовлетворяющего условию имеем

Это означает, что все решения х = x(t), близкие по начальным условиям к асимптотически устойчивому решению , не только остаются близкими к нему при , но и неограниченно сближаются с ним при

Вот простая физическая модель. Пусть шарик лежит на дне полусферической лунки (находится в положении равновесия). Если малым возмущением вывести шарик из этого положения, то он будет колебаться около него. При отсутствии трения положение равновесия будет устойчивым, при наличии трения колебания шарика будут уменьшаться с возрастанием времени, т. е. положение равновесия будет асимптотически устойчивым.

Пример:

Исследовать на устойчивость тривиальное решение

Решение , очевидно, удовлетворяет начальному условию

Решение уравнения (*), удовлетворяющее начальному условию

Легко видеть (рис. 2), что, какова бы ни была -полоска вокруг интегральной кривой х = 0, существует , например, такое, что любая интегральная кривая для которой целиком содержится в указанной полоске для всех Следовательно, решение устойчиво. Асимптотической устойчивости нет, поскольку решение при не стремится к прямой х = 0.

Пример:

Исследовать на устойчивость тривиальное решение уравнения

Решение уравнения (**), удовлетворяющее начальному условию

Возьмем любое > 0 и рассмотрим разность решений

Поскольку для всех , из выражения (***) следует, что существует например, такое, что при имеем

Согласно определению (1) это означает, что решение уравнения (**) устойчиво. Кроме того, имеем

поэтому решение асимптотически устойчиво (рис. 3).

Пример:

Показать, что решение

В самом деле, при сколь угодно малом решение

этого уравнения не удовлетворяет условию

при достаточно больших t > to. Более того, при любых имеем

Рассмотрим теперь систему дифференциальных уравнений

где функции fi определены для из некоторой области D изменения и удовлетворяют условиям теоремы существования и единственности решения задачи Коши. Предположим, что все решения системы (4) неограниченно продолжаемы вправо при

Определение:

системы (4) называется устойчивым по Ляпунову при если для любого > 0 существует такое, что для всякого решения той же системы, начальные значения которого удовлетворяют условию

для всех т. е. близкие по начальным значениям решения остаются близкими для всех

Если при сколь угодно малом хотя бы для одного решения не все неравенства (5) выполняются, то решение называется неустойчивым.

Определение:

системы (4) называется асимптотически устойчивым, если:

1) решение это устойчиво;

2) существует такое, что всякое решение системы, для которого

Пример:

Исходя из определения устойчивости по Ляпунову, показать, что решение системы

удовлетворяющее начальным условиям

устойчиво.

Решение системы (*), удовлетворяющее начальным условиям (**), есть

Решение этой системы, удовлетворяющее условиям имеет вид

Возьмем произвольное > 0 и покажем, что существует такое, что при выполняются неравенства

для всех Это и будет означать, согласно определению, что нулевое решение системы (*) устойчиво по Ляпунову. Очевидно, имеем:

то при будут иметь место неравенства

для всех т.е. действительно нулевое решение системы устойчиво по Ляпунову, но эта устойчивость не асимптотическая.

Из устойчивости нетривиального решения дифференциального уравнения не следует ограниченности этого решения. Рассмотрим, например, уравнение

Решением этого уравнения, удовлетворяющим условию х(0) = 0, является функция

Решение, удовлетворяющее начальному условию имеет вид

Геометрически очевидно (рис.5), что для всякого существует например такое, что любое решение x(t) уравнения, для которого верно неравенство удовлетворяет условию Последнее означает, что решение устойчиво по Ляпунову, однако это решение является неограниченным при

Из ограниченности решений дифференциального уравнения не следует устойчивости решений.
Рассмотрим уравнение

Оно имеет очевидные решения

Интегрируя уравнение (6), находим

Все решения (7) и (8) ограничены на Однако решение неустойчиво при так как при любом имеем

Таким образом, ограниченность и устойчивость решений являются понятиями, независимыми друг от друга.

Замечание:

Исследуемое на устойчивость решение

системы (4) всегда можно преобразовать в тривиальное решение

другой системы заменой

В самом деле, пусть имеем (для простоты) одно дифференциальное уравнение

и пусть требуется исследовать на устойчивость какое-либо решение этого уравнения. Положим, что

(величину называют возмущением). Тогда

и подстановка в (*) приводит к равенству

Но — решение уравнения (*), поэтому

Обозначив здесь правую часть через F(t, у), получим

Это уравнение имеет решение так как при его левая и правая части тождественно по t равны нулю:

Таким образом, вопрос об устойчивости решения уравнения (*) приводится к вопросу об устойчивости тривиального решения уравнения (***), к которому сводится (*). Поэтому в дальнейшем мы будем, как правило, считать, что на устойчивость исследуется тривиальное решение.

Устойчивость автономных систем. Простейшие типы точек покоя

Нормальная система дифференциальных уравнений называется автономной, если ее правые части fi не зависят явно от t, т. е. если она имеет вид

Это значит, что закон изменения неизвестных функций, описываемый автономной системой, не меняется со временем, как это бывает с физическими законами. Пусть имеем автономную систему

и пусть (а1, a2, …, аn) — такая совокупность чисел, что

Тогда система функций

будет решением системы (1). Точку фазового пространства (x1, x2,…, хn) называют точкой покоя (положением равновесия) данной системы. Рассмотрим автономную систему (1) , для которой

есть точка покоя этой системы. Обозначим через S(R) шар

и будем считать, что для рассматриваемой системы в шаре S(R) выполнены условия теоремы существования и единственности решения задачи Коши.

Определение:

Будем говорить, что точка покоя

системы (1) устойчива, если для любого существует такое что любая траектория системы, начинающаяся в начальный момент все время затем остается в шаре Точка покоя асимптотически устойчива, если:

1) она устойчива;

2) существует такое что каждая траектория системы, начинающаяся в точке Mо области стремится к началу координат, когда время t неограниченно растет (рис. 7).

Поясним это определение примерами.

Пример:

Траектории здесь — концентрические окружности

с центром в начале координат — единственной точкой покоя системы. Если взять то любая траектория, начинающаяся в круге , остается все время внутри , а следовательно, и внутри , так что имеет место устойчивость. Однако траектории не приближаются к началу координат при и точка покоя не является асимптотически устойчивой.

Пример:

Пусть дана система

поэтому траекториями являются лучи, входящие в начало координат (рис.8). Можно снова выбрать Любая точка траектории, находившаяся в начальный момент внутри , остается все время в круге и, кроме того, неограниченно приближается к началу координат при Следовательно, наблюдается асимптотическая устойчивость.

Пример:

Возьмем, наконец, систему

и траекториями являются лучи, исходящие из начала координат, но в отличие от примера 2 движение по лучам происходит в направлении от центра. Точка покоя неустойчива.

Простейшие типы точек покоя

Исследуем расположение траекторий в окрестности точки покоя х = 0, у = 0 системы двух линейных однородных уравнений с постоянными коэффициентами:

Решение будем искать в виде

Для определения получаем характеристическое уравнение

Величины с точностью до постоянного множителя определяются из системы

Возможны следующие случаи.

А. Корни характеристического уравнения (3) — действительные и различные. Общее решение системы (2) имеет вид

  1. Пусть Точка покоя (0,0) в этом случае асимптотически устойчива, так как из-за наличия множителей все точки каждой траектории, находившиеся в начальный момент в произвольной окрестности начала координат, при достаточно большом t переходят в точки, лежащие в сколь угодно малой, окрестности начала координат, а при стремятся к этому началу. Такая точка покоя называется устойчивым узлом

При С2 = 0 из (4) получаем

и траекториями являются два луча, входящие в начало координат с угловым коэффициентом

Аналогично, при С1 = 0 получаем еще два луча, входящие в начало координат с угловым коэффициентом

Пусть теперь и (для определенности) Тогда в силу (4)

т. е. все траектории (исключая лучи в окрестности точки покоя О(0,0) имеют направление луча

2. Если то расположение траекторий такое же, как и в предыдущем случае, но точки движутся по траекториям в противоположном направлении. Точка покоя рассматриваемого типа называется неустойчивым узлом (рис. 10).

Пример:

Для нее точка О(0,0) — точка покоя. Характеристическое уравнение

имеет корни так что налицо неустойчивый узел. Перейдем от данной системы к одному уравнению

Оно имеет решения

так что траекториями системы будут лучи падающие с координатными полуосями, семейство парабол, касающихся оси Oх в начале координат (рис. 11)

3. Пусть теперь тогда точка покоя неустойчива.

При С2 = 0 получаем решение

С возрастанием t точка этой траектории движется по лучу

в направлении от начала неограниченно удаляясь от него. При С1 = 0 имеем:

Отсюда видно, что при возрастании t точка движется по лучу

в направлении к началу координат . Если так и при траектория покидает окрестность точки покоя. Точка покоя рассматриваемого типа называется седлом (рис. 12).

Пример:

Исследуем характер точки покоя О(0,0) системы

Характеристическое уравнение системы

имеет корни Перейдем к одному уравнению

интегрируя которое получаем

Уравнение (6) имеет также решения

Таким образом, интегральные кривые этого уравнения (траектории системы (5)) — равнобочные гиперболы и лучи, совпадающие с координатными полуосями.

Б. Корни характеристического уравнения — комплексные: Общее решение системы (2) можно представить в виде

где C1 и C2 — произвольные постоянные, а — некоторые линейные комбинации этих постоянных

  1. Пусть в этом случае множитель стремится к нулю при а вторые множители в (7) — ограниченные периодические функции. Траектории — спирали, асимптотически приближающиеся к началу координат при Точка покоя х = 0, у = 0 асимптотически устойчива. Она называется устойчивым фокусом (рис. 13).,
  2. Если то этот случай переходит в предыдущий при замене t на -t. Траектории не отличаются от траекторий предыдущего случая, но движение по ним при возрастании t происходит в противоположном направлении. Точка покоя неустойчива — неустойчивый фокус.
  3. Если же то решения системы (2) — периодические функции. Траекториями являются замкнутые кривые, содержащие внутри себя точку покоя, называемую в этом случае центром (рис. 14). Центр является устойчивой точкой покоя, однако асимптотической устойчивости нет, так как решение

не стремится к нулю при

Пример. Рассмотрим систему уравнений

Характеристическое уравнение системы

имеет комплексные корни

Перейдем от системы к одному уравнению

и введем полярные координаты Тогда

Используя уравнение (9), находим, что

Эти интегральные кривые являются логарифмическими спиралями, навивающимися на начало координат, которое достигается в пределе при в зависимости от того, будет ли а 0. Налицо точка покоя типа фокуса. В частном случае, когда а = 0, уравнение (9) принимает вид

Интегральные кривые этого уравнения — окружности с центром в начале координат, которое при а = 0 является точкой покоя системы (8) типа центра.

В. Корни характеристического уравнения кратные: Случай этот — скорее исключение, а не правило, так как сколь угодно малое изменение коэффициентов системы разрушает его. Применяя метод исключения, находим, что общее решение системы уравнений (2) имеет вид

( — некоторые линейные комбинации С1, С2).

  1. Если то из-за наличия множителя решения х(t), y(t) стремятся к нулю при Точка покоя х = 0, у = 0 асимптотически устойчива. Ее называют устойчивым вырожденным узлам (рис. 15). Он отличается от узла в случае А. 1 (там одна из траекторий имела касательную, отличную от всех остальных). Возможен также дикритический узел (см. рис. 8).
  2. При замена t на -t приводит к предыдущему случаю, но движение по траекториям происходит в противоположном направлении. Точка покоя в этом случае называется неустойчивым вырожденным узлом.

Пример:

Для системы уравнений

имеет кратные корни Деля второе уравнение системы на первое, найдем

Поэтому все интегральные кривые проходят через начало координат, и все они имеют там ось Оу общей касательной.

Мы перебрали и исчерпали все возможности, поскольку случай исключен условием

Пример:

Исследовать уравнение малых колебаний маятника с учетом трения.

Уравнение малых колебаний маятника в этом случае имеет вид

где x — угол малого отклонения маятника от вертикали, к — коэффициент трения. Заменим уравнение (*) эквивалентной системой

Характеристическое уравнение для системы (**)

Если 0

— частота колебаний, а величины А, а определяются из начальных условий.

График решения и фазовая кривая при 0

Сформулируем результаты, касающиеся устойчивости решений системы п линейных однородных дифференциальных уравнений первого порядка с постоянными коэффициентами

Рассмотрим для системы (10) характеристическое уравнение

Справедливы следующие предложения:

1) если все корни характеристического уравнения имеют отрицательную действительную часть, то все решения системы (10) асимптотически устойчивы. Действительно, в этом случае все слагаемые общего решения содержат множители стремящиеся к нулю при

2) если хотя бы один корень характеристического уравнения имеет положительную действительную часть, то все решения системы неустойчивы;

3) если характеристическое уравнение имеет простые корни с нулевой действительной частью (т. е. чисто мнимые или равные нулю корни), а остальные корни, если они есть, имеют отрицательную действительную часть, та все решения устойчивы, но асимптотической устойчивости нет.

Эти результаты относятся и к одному линейному дифференциальному уравнению с постоянными коэффициентами.

Следует обратить внимание на то, что для линейной системы все решения либо устойчивы, либо неустойчивы одновременна

Теорема:

Решения Системы линейных дифференциальных уравнений

либо все одновременно устойчивы, либо неустойчивы.

Преобразуем произвольное частное решение

системы (11) в тривиальное с помощью замены

Система (11) преобразуется при этом в линейную однородную систему относительно yi(t):

Следовательно, все частные решения системы (11) в смысле устойчивости ведут себя одинаково, а именно как тривиальное решение однородной системы (12).

В самом деле, пусть тривиальное решение

системы (12) устойчиво. Это значит, что для любого такое, что для всякого другого решения системы из условия следует, что

Замечая, что получаем, что из условия

для всякого решения исходной системы (11). Согласно определению, это означает устойчивость решения этой системы.

Это предложение не имеет места для нелинейных систем, некоторые решения которых могут быть устойчивыми, а другие — неустойчивыми.

Пример:

Рассмотрим нелинейное уравнение

Оно имеет очевидные решения

Решение x(t) = -1 неустойчиво, а решение x(t) = 1 является асимптотически устойчивым. В самом деле, при все решения

стремятся к +1. Это означает, согласно определению, что решение x(t) = 1 асимптотически устойчиво.

Замечание:

Как и в случае n = 2, можно исследовать расположение траекторий в окрестности точки покоя О(0,0,0) системы (10). Для n = 3 возможны так называемые узлофокусы (рис. 17), седлофокусы (рис. 18) и т. д.

Метод функций Ляпунова

Метод функций Ляпунова состоит в исследовании устойчивости точки покоя системы дифференциальных уравнений с помощью подходящим образом выбранной функции — так называемой функции Ляпунова, причем делается это без предварительного построения решения системы; в этом неоценимое преимущество метода.

Ограничимся рассмотрением автономных систем

для которых Xi = 0, i = 1, 2,…, n, есть точка покоя.

Идея метода состоит в следующем. Предположим, что на устойчивость исследуется точка покоя системы (1). Если бы с возрастанием t точки всех траекторий приближались к началу координат или хотя бы не удалялись от него, то рассматриваемая точка покоя была бы устойчивой. Проверка выполнения этого условия не требует знания решений системы. Действительно, если р — расстояние от точки траектории до начала координат

(производная вдоль траектории): Правая часть в (2) есть известная функция от х1, х2,…, хn, и можно исследовать ее знак. Если окажется, что то точки на всех траекториях не удаляются от начала координат при возрастании t и точка покоя хi = 0, i = 1, 2,…, n, устойчива. Однако точка покоя может быть устойчивой и при немонотонном приближении к ней с возрастанием t точек траекторий (например, в случае, когда траектории — эллипсы). Поэтому А. М. Ляпунов вместо функции р рассматривал функции v (x1, x2, … , хn), являющиеся в некотором смысле «обобщенным расстоянием» от начала координат.

Определение:

Функция v(x1, х2, … xn), определенная в некоторой окрестности начала координат, называется знакоопределенной (знакоположительной или знакоотрицательной), если в области G

где h — достаточно малое положительное число, она может принимать значения только одного определенного знака и обращается в нуль лишь при

Так, в случае n = 3 функции

будут знакоположительными, причем здесь величина h > 0 может быть взята сколь угодно большой.

Определение:

Функция называется знакопостоянной (положительной или отрицательной), если она в области G может принимать значения только одного определенного знака, но может обращаться в нуль и при

будет знакопостоянной (положительной). В самом деле, функцию v(x1, x2, x3) можно представить так:

отсюда видно, что она неотрицательна всюду, но обращается в нуль и при а именно при X3 = 0 и любых, x1, х2 таких, что х1 = -х2.

Пусть — дифференцируемая функция своих аргументов, и пусть

являются некоторыми функциями времени, удовлетворяющими системе дифференциальных уравнений (1). Тогда для полной производной функции v повремени имеем

Определение:

Величина определяемая формулой (3), называется полной производной функции v по времени, составленной в силу системы уравнений (1).

Определение:

Функций обладающую свойствами:

1) дифференцируема в некоторой окрестности начала координат;

2) определенно-положительна в и

3) полная производная функции , составленная в силу системы (1),

всюду в , называют функцией Ляпунова.

Теорема:

Теорема Ляпунова об устойчивости. Если для системы дифференциальных уравнений

существует дифференцируемая знакоопределенная функция , полная производная которой по времени, составленная в силу системы (1), есть знакопостоянная функция (знака, противоположного с v) или тождественно обращается в ноль, то тонка покоя системы (1) устойчива.

Приведем идею доказательства. Пусть для определенности есть знакоположительная функция, для которой Так как

причем v = 0 лишь при то начало координат есть точка строгого минимума функции В окрестности начала координат поверхности уровня

функции v являются, Как можно показать, замкнутыми поверхностями, внутри которых находится начало координат. Чтобы картина стала нагляднее, остановимся на случае n = 2. Так как только для то поверхность

в общих чертах напоминает параболоид, вогнутый Вверх (рис. 19).

Линии уровня представляют собой семейство замкнутых кривых, окружающих начало координат. При этом если то линия уровня целиком лежит внутри области, ограниченной линией Зададим При достаточно малом С > 0 линия уровня v = С целиком лежит в е-окрестности начала координат, но не проходит через начало. Следовательно, можно выбрать такое, что окрестность начала координат целиком лежит внутри области, ограниченной линией v = С, причем в этой окрестности v

существует дифференцируемая знакоопределенная функция полная производная которой по времени, составленная в силу системы, есть также знакоопределенная функция знака, противоположного с v, то тонка покоя системы (1) асимптотически устойчива.

Пример:

Исследовать на устойчивость точку покоя О(0,0) системы

Выберем в качестве функции v(x, y) функцию

Эта функция знакоположительная. В силу системы (*) найдем

Из теоремы 3 следует, что точка покоя О(0,0) системы (*) устойчива (центр). Асимптотической устойчивости нет, так как траектория системы (*) — окружности.

Пример 2. Исследовать на устойчивость точку покоя О(0,0) системы

Таким образом, есть знакоотрицательная функция. В силу теоремы 4 точка покоя О(0,0) системы (**) устойчива асимптотически.

Теорема:

О неустойчивости. Пусть для системы дифференциальных уравнений

существует дифференцируемая в окрестности начала координат функция такая, что v(0,0,…, 0) = 0. Если ее полная производная составленная в силу системы (4), есть знакоположительная функция и сколь угодно близко от начала координат имеются точки, в которых функция принимает положительные значения, то точка покоя системы (4) неустойчива.

Пример:

Исследовать на устойчивость точку покоя О(0,0) системы

Для нее функция

знакоположительная. Так как сколь угодно близко к началу координат найдутся точки, в которых v > 0 (например, вдоль прямой у = 0), то выполнены все условия теоремы 5 и точка покоя О(0,0) неустойчива (седло).

Метод функций Ляпунова оказывается универсальным и эффективным для широкого круга проблем теории устойчивости. Недостаток же метода в том, что достаточно общего конструктивного способа построения функций Ляпунова пока нет. В простейших случаях функцию Ляпунова можно искать в виде

Устойчивость по первому (линейному) приближению

Пусть имеем систему дифференциальных уравнений

и пусть есть точка покоя системы, т. е.

Будем предполагать, что функции дифференцируемы в окрестности начала координат достаточное число раз. Применяя формулу Тейлора, разложим функции fi по х в окрестности качала координат

а слагаемые Ri содержат члены не ниже второго порядка малости относительно Система дифференциальных уравнений (1) примет вид

Так как понятие устойчивости точки покоя O(0,0,…, 0) связано с малой окрестностью начала координа’т в- фазовом пространстве, то естественно ожидать, что поведение решения (1) будет определяться главными линейными членами разложения функций fi по х. Поэтому наряду с системой (3) рассмотрим систему

называемую системой уравнений первого (линейного) приближения для системы (3).

Вообще говоря, строгой связи между системами (3) и (4) нет. Рассмотрим, например, уравнение

Здесь f(x) = 0; линеаризированное уравнение для уравнения (5) имеет вид

Решение уравнения (6) является устойчивым. Оно же, будучи решением исходного уравнения (5), не является для него устойчивым. В самом деле, каждое действительное решение уравнения (5), удовлетворяющее начальному условию имеет вид и перестает существовать при (решение не продолжаемо вправо).

Теорема:

Если все корни характеристического уравнения

имеют отрицательные действительные части, то точка покоя системы (4) и системы (3) асимптотически устойчива.

При выполнении условий теоремы возможно исследование на устойчивость по первому приближению.

Теорема:

Если хотя бы один корень характеристического уравнения (7) имеет положительную действительную часть, то точка покоя Xi= 0 системы (4) и системы (3) неустойчива.

В этом случае также возможно исследование на устойчивость по первому приближению.

Наметим идею доказательства теорем 6 и 7.

Пусть для простоты корни характеристического уравнения (7) — действительные и различные. В этом случае существует такая невырожденная матрица Т с постоянными элементами, что матрица будет диагональной:

где — матрица из коэффициентов системы (4). Положим

и система (4) преобразуется к виду

или, в силу выбора матрицы Т,

Система (3) при том же преобразовании перейдет в систему

причем в опять входят члены не ниже второго порядка малости относительно Yi при

Рассмотрим следующие возможности:

1. Все корни — отрицательные. Положим

тогда производная в силу системы (8) будет иметь вид

где малая более высокого порядка, чем квадратичная форма

Таким образом, в достаточно малой окрестности точки O(0, 0,…, 0) функция у(y1,y2, …, yn) знакоположительна, а производная знакоотрицательна, и, значит, точка покоя O (0,0,…, 0) асимптотически устойчива.

2. Некоторые из корней положительные, а остальные — отрицательные. Положим

Отсюда видно, что сколь угодно близко к началу координат найдутся точки (например, такие, у которых Что касается производной то, поскольку отрицательны, производная — знакоположительная функция. В силу теоремы 5 точка покоя O (0,0,…, 0) неустойчива.

В критическом случае, когда все действительные части корней характеристического уравнения неположительны, причем действительная часть хотя бы одного корня равна нулю, на устойчивость тривиального решения системы (3) начинают влиять нелинейные члены Ri и исследование на устойчивость по первому приближению становится невозможным.

Пример:

Исследовать на устойчивость по первому приближению точку покоя х = 0, у = 0 системы

Система первого приближения имеет вид

Нелинейные члены удовлетворяют нужным условиям: их порядок не меньше 2. Составляем характеристическое уравнение для системы (**):

Корни характеристического уравнения нулевое решение системы (*) неустойчиво.

Пример:

Исследуем на устойчивость точку покоя О(0, 0) системы

Точка покоя х = 0, у = 0 системы (*) асимптотически устойчива, так как для этой системы функция Ляпунова

удовлетворяет условиям теоремы Ляпунова об асимптотической устойчивости. В частности,

В то же время точка покоя х = 0, у = 0 системы

В самом деле, для функции в силу системы (**) имеем

т.е. — функция знакоположительная. Сколь угодно близко от начала координат 0(0,0) имеются точки, в которых

В силу теоремы 5 заключаем о неустойчивости точки покоя О(0,0) системы (**).

Для системы (*) и (**) система первого приближения одна и та же:

для системы (***) имеет чисто мнимые корни — критический случай (действительные части корней характеристического уравнения равны нулю). Для системы первого приближения (***) начало координат является устойчивой точкой покоя — центром. Системы (*) и (**) получаются малым возмущением правых частей (***) в окрестности начала координат. Однако эти малые возмущения приводят к тому, что для системы (*) точка покоя О(0,0) становится асимптотически устойчивой, а для системы (**) неустойчивой.

Этот пример показывает, что в критическом случае нелинейные члены могут влиять на устойчивость точки покоя.

Задача. Исследовать на устойчивость точку покоя О(0,0) системы

где функция f(х,у) разлагается в сходящийся отеленной ряд и f(0,0) = 0.

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Устойчивость по Ляпунову: основные понятия и определения

Пусть имеем систему дифференциальных уравнений

Решение , системы (1), удовлетворяющее начальным условиям , называется устойчивым no Ляпунову при , если для любого 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAAQBAMAAACb51DZAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/QHAQSFZiDGh0BCgsXHgm/CxLgAAALNJREFUGNNjYCAecHtgF8+vWYFNmEWCoX4DnOcOZ/IuYAhMANJMCiAem00AVFzRgEHxAlDAULYBJKsCk3C8wKD4iYFhborzA4i5xg4Q8QIGRSEGjglwK1gnOyGJm5VvQEgkwMVZPy8OgIufT4CaL8TA3IAw5zDYnI0GICe1w4VVDkPs1QK6/wFD1yalPIhzLKE61UQZHgYwsEsZgl3EZgmzhqn+uRiQCsuAhAPcdibVZxsYAOHLKP4AljeRAAAAAElFTkSuQmCC» /> существует 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAEYAAAAWCAMAAABKfhpBAAAAM1BMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbQS4qAAAAEHRSTlMAQjHgIRHRwaZc8IGRQXGCR+L2IgAAAVVJREFUOMutVNuWwyAINN4Ab+H/v3YjamPitj3bbp4slYGZAZX6x8/qfkh5ioL+G8oOgbEeYprDGtz73Pyo5UA5rADZXPMKvAPRBtEMoNCzgW63wvZGjFCUomDbLy+M1MZ3Eulsx6JdYRJLsS4FsbSBC4cZOAMuknsvJEzThlho+TgKezZydjzTzAg3kiyFgZtMMYlRXLpsacvRN3HiVQu8yjdgXJPJ8ZFludWaRYB0FxX9CZQHzJGIlRmEKkSHoRLHVVgtd/sDyJ0wllO/PmB274dKv8LEs5+T1CYqGtFGYAjnfcAXIEdac+qgojlXWexD4st8mPhcmXpXPBJ/KgFZhW44UtuP1jVdfboZruv/uTaitEdAd86sNgF80H387DR+sK4GmVJCL+Xc8K8dctl6JPnXy3CEiZb4upr0yeu1mVvL8NkrWC5Da4398DVF+uIR/f77AQOYCjg2wpU7AAAAAElFTkSuQmCC» style=»vertical-align: middle;» /> такое, что для всякого решения , системы (1), начальные значения которого удовлетворяют условиям

имеют место неравенства

Если при сколь угодно малом 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAARCAMAAACVS259AAAANlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAR2LVAAAAEnRSTlMA5dARAV6h/4HAIUExsUAQcZHkvQX+AAAAz0lEQVQoz51S0RLDIAgThyJFV/v/Pztx7Wm1W2/zgTshJgEx5o/zeD5+QDu2ZJcbwlZnNDmt39ABQuIDwe5OHorZVFjrydCsu3whA74EIXnfFkodkw1j35FCjduhRZ0ddNaf+3YVjsR6WTkJQV9G4dODcMDVPJdHiYY5SuGY4LYqRU3I2J54jhfsDKiJ6VuXBu+8I+mQNhi5mZueVLgoEiHs4XOruM9dxxdKAwK9l2mQZQdK3atrsya72Xj6pmnb0NvsYQdh7KnD5S7HLMr9Ah4fBg4hVyWJAAAAAElFTkSuQmCC» /> хотя бы для одного решения , неравенства (3) не выполняются, то решение называется неустойчивым .

Если, кроме выполнения неравенств (3) при условии (2) выполняется также условие

то решение , называется асимптотически устойчивым .

Исследование на устойчивость решения , системы (1) можно свести к исследованию на устойчивость нулевого (тривиального) решения , некоторой системы, аналогичной системе (1),

Говорят, что точка , есть точка покоя системы (1′).

Применительно к точке покоя определения устойчивости и неустойчивости могут быть сформулированы так. Точка покоя , устойчива по Ляпунову , если, каково бы ни было 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAAQBAMAAACb51DZAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/QHAQSFZiDGh0BCgsXHgm/CxLgAAALNJREFUGNNjYCAecHtgF8+vWYFNmEWCoX4DnOcOZ/IuYAhMANJMCiAem00AVFzRgEHxAlDAULYBJKsCk3C8wKD4iYFhborzA4i5xg4Q8QIGRSEGjglwK1gnOyGJm5VvQEgkwMVZPy8OgIufT4CaL8TA3IAw5zDYnI0GICe1w4VVDkPs1QK6/wFD1yalPIhzLKE61UQZHgYwsEsZgl3EZgmzhqn+uRiQCsuAhAPcdibVZxsYAOHLKP4AljeRAAAAAElFTkSuQmCC» />, можно найти такое 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAARCAMAAACVS259AAAANlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAR2LVAAAAEnRSTlMA5dARAV6h/4HAIUExsUAQcZHkvQX+AAAAz0lEQVQoz51S0RLDIAgThyJFV/v/Pztx7Wm1W2/zgTshJgEx5o/zeD5+QDu2ZJcbwlZnNDmt39ABQuIDwe5OHorZVFjrydCsu3whA74EIXnfFkodkw1j35FCjduhRZ0ddNaf+3YVjsR6WTkJQV9G4dODcMDVPJdHiYY5SuGY4LYqRU3I2J54jhfsDKiJ6VuXBu+8I+mQNhi5mZueVLgoEiHs4XOruM9dxxdKAwK9l2mQZQdK3atrsya72Xj6pmnb0NvsYQdh7KnD5S7HLMr9Ah4fBg4hVyWJAAAAAElFTkSuQmCC» />, что для любого решения , начальные данные которого , удовлетворят условию

Для случая геометрически это означает следующее. Каким бы малым ни был радиус цилиндра с осью , в плоскости найдется δ-окрестность точки такая, что все интегральные кривые , выходящие из этой окрестности, для всех будут оставаться внутри этого цилиндра (рис. 30).

Если кроме выполнения неравенств (3), выполняется также условие , то устойчивость асимптотическая .

Точка покоя , неустойчива , если при сколь угодно малом 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAARCAMAAACVS259AAAANlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAR2LVAAAAEnRSTlMA5dARAV6h/4HAIUExsUAQcZHkvQX+AAAAz0lEQVQoz51S0RLDIAgThyJFV/v/Pztx7Wm1W2/zgTshJgEx5o/zeD5+QDu2ZJcbwlZnNDmt39ABQuIDwe5OHorZVFjrydCsu3whA74EIXnfFkodkw1j35FCjduhRZ0ddNaf+3YVjsR6WTkJQV9G4dODcMDVPJdHiYY5SuGY4LYqRU3I2J54jhfsDKiJ6VuXBu+8I+mQNhi5mZueVLgoEiHs4XOruM9dxxdKAwK9l2mQZQdK3atrsya72Xj6pmnb0NvsYQdh7KnD5S7HLMr9Ah4fBg4hVyWJAAAAAElFTkSuQmCC» /> хотя бы для одного решения , условие (3′) не выполняется.

Пример 1. Исходя из определения устойчивости по Ляпунову, исследовать на устойчивость решение уравнения, удовлетворяющее начальному условию

Решение. Уравнение (5) есть линейное неоднородное уравнение. Его общее решение . Начальному условию удовлетворяет решение

уравнения (5). Начальному условию удовлетворяет решение

Рассмотрим разность решений (7) и (6) уравнения (5) и запишем ее так:

Отсюда видно, что для всякого 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAAQBAMAAACb51DZAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/QHAQSFZiDGh0BCgsXHgm/CxLgAAALNJREFUGNNjYCAecHtgF8+vWYFNmEWCoX4DnOcOZ/IuYAhMANJMCiAem00AVFzRgEHxAlDAULYBJKsCk3C8wKD4iYFhborzA4i5xg4Q8QIGRSEGjglwK1gnOyGJm5VvQEgkwMVZPy8OgIufT4CaL8TA3IAw5zDYnI0GICe1w4VVDkPs1QK6/wFD1yalPIhzLKE61UQZHgYwsEsZgl3EZgmzhqn+uRiQCsuAhAPcdibVZxsYAOHLKP4AljeRAAAAAElFTkSuQmCC» /> существует 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAARCAMAAACVS259AAAANlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAR2LVAAAAEnRSTlMA5dARAV6h/4HAIUExsUAQcZHkvQX+AAAAz0lEQVQoz51S0RLDIAgThyJFV/v/Pztx7Wm1W2/zgTshJgEx5o/zeD5+QDu2ZJcbwlZnNDmt39ABQuIDwe5OHorZVFjrydCsu3whA74EIXnfFkodkw1j35FCjduhRZ0ddNaf+3YVjsR6WTkJQV9G4dODcMDVPJdHiYY5SuGY4LYqRU3I2J54jhfsDKiJ6VuXBu+8I+mQNhi5mZueVLgoEiHs4XOruM9dxxdKAwK9l2mQZQdK3atrsya72Xj6pmnb0NvsYQdh7KnD5S7HLMr9Ah4fBg4hVyWJAAAAAElFTkSuQmCC» /> (например, ) такое, что для всякого решения уравнения (5), начальные значения которого удовлетворяют условию , выполняется неравенство

для всех . Следовательно, решение является устойчивым. Более того, поскольку

решение является асимптотически устойчивым.

Это решение является неограниченным при .

Приведенный пример показывает, что из устойчивости решения дифференциального уравнения не следует ограниченности решения.

Пример 2. Исследовать на устойчивость решение уравнения

Решение. Оно имеет очевидные решения

Интегрируем уравнение (8): , или , откуда

Все решения (9) и (10) ограничены на . Однако решение неустойчиво при , так как при любом имеем (рис.31).

Следовательно, из ограниченности решений дифференциального уравнения , вообще говоря, не следует их устойчивости . Это явление характерно для нелинейных уравнений и систем.

Пример 3. Исходя из определения устойчивости по Ляпунову, показать, что решение системы, удовлетворяющее начальным условиям , устойчиво

Решение. Решение системы (11), удовлетворяющее заданным начальным условиям, есть . Любое решение этой системы, удовлетворяющее условиям , имеет вид

Возьмем произвольное 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAAQBAMAAACb51DZAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/QHAQSFZiDGh0BCgsXHgm/CxLgAAALNJREFUGNNjYCAecHtgF8+vWYFNmEWCoX4DnOcOZ/IuYAhMANJMCiAem00AVFzRgEHxAlDAULYBJKsCk3C8wKD4iYFhborzA4i5xg4Q8QIGRSEGjglwK1gnOyGJm5VvQEgkwMVZPy8OgIufT4CaL8TA3IAw5zDYnI0GICe1w4VVDkPs1QK6/wFD1yalPIhzLKE61UQZHgYwsEsZgl3EZgmzhqn+uRiQCsuAhAPcdibVZxsYAOHLKP4AljeRAAAAAElFTkSuQmCC» /> и покажем, что существует 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAEYAAAAWCAMAAABKfhpBAAAAM1BMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbQS4qAAAAEHRSTlMAQjHgIRHRwaZc8IGRQXGCR+L2IgAAAVVJREFUOMutVNuWwyAINN4Ab+H/v3YjamPitj3bbp4slYGZAZX6x8/qfkh5ioL+G8oOgbEeYprDGtz73Pyo5UA5rADZXPMKvAPRBtEMoNCzgW63wvZGjFCUomDbLy+M1MZ3Eulsx6JdYRJLsS4FsbSBC4cZOAMuknsvJEzThlho+TgKezZydjzTzAg3kiyFgZtMMYlRXLpsacvRN3HiVQu8yjdgXJPJ8ZFludWaRYB0FxX9CZQHzJGIlRmEKkSHoRLHVVgtd/sDyJ0wllO/PmB274dKv8LEs5+T1CYqGtFGYAjnfcAXIEdac+qgojlXWexD4st8mPhcmXpXPBJ/KgFZhW44UtuP1jVdfboZruv/uTaitEdAd86sNgF80H387DR+sK4GmVJCL+Xc8K8dctl6JPnXy3CEiZb4upr0yeu1mVvL8NkrWC5Da4398DVF+uIR/f77AQOYCjg2wpU7AAAAAElFTkSuQmCC» style=»vertical-align: middle;» /> такое, что при имеют место неравенства

Это и будет означать, согласно определению, что нулевое решение системы (11) устойчиво по Ляпунову. Имеем, очевидно,

для всех . Поэтому, если то и подавно

Следовательно, если, например, взять , то при и в силу (12) будут иметь место неравенства (13) для всех , т.е. действительно нулевое решение системы (11) устойчиво по Ляпунову , но эта устойчивость не асимптотическая.

Теорема. Решения системы линейных дифференциальных уравнений

либо все одновременно устойчивы, либо неустойчивы.

Это предложение не верно для нелинейных систем, некоторые решения которых могут быть устойчивыми, а другие — неустойчивыми.

Пример 4. Исследовать на устойчивость решение нелинейного уравнения

Решение. Оно имеет очевидные решения и .

Решение этого уравнения неустойчиво, а решение является асимптотически устойчивым. В самом деле, при все решения уравнения (14)


источники:

http://lfirmal.com/teoriya-ustoychivosti-differencialnyh-uravneniy/

http://mathhelpplanet.com/static.php?p=ustoichivost-po-lyapunovu