Дифференциальные уравнения и их применение реферат

Реферат на тему Роль теории дифференциальных уравнений в современной математике и ее приложениях

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

на тему: Роль теории дифференциальных уравнений в современной математике и ее приложениях

В работе изложены характерные особенности теории дифференциальных уравнений. Эта теория возникла из приложений и в настоящее время самым тесным образом связана с приложениями. Она оказывает большое влияние на развитие других областей математики.

Теория дифференциальных уравнений является одним из самых больших разделов современной математики. Чтобы охарактеризовать ее место в современной математической науке, прежде всего необходимо подчеркнуть основные особенности теории дифференциальных уравнений, состоящей из двух обширных областей математики: теории обыкновенных дифференциальных уравнений и теории уравнений с частными производными.

Первая особенность — это непосредственная связь теории дифференциальных уравнений с приложениями. Характеризуя математику как метод проникновения в тайны природы, можно сказать, что основным путем применения этого метода является формирование и изучение математических моделей реального мира. Изучая какие-либо физические явления, исследователь прежде всего создает его математическую идеализацию или, другими словами, математическую модель, то есть, пренебрегая второстепенными характеристиками явления, он записывает основные законы, управляющие этим явлением, в математической форме. Очень часто эти законы можно выразить в виде дифференциальных уравнений. Такими оказываются модели различных явлений механики сплошной среды, химических реакций, электрических и магнитных явлений и др.

Исследуя полученные дифференциальные уравнения вместе с дополнительными условиями, которые, как правило, задаются в виде начальных и граничных условий, математик получает сведения о происходящем явлении, иногда может узнать его прошлое и будущее. Изучение математической модели математическими методами позволяет не только получить качественные характеристики физических явлений и рассчитать с заданной степенью точности ход реального процесса, но и дает возможность проникнуть в суть физических явлений, а иногда предсказать и новые физические эффекты. Бывает, что сама природа физического явления подсказывает и подходы, и методы математического исследования. Критерием правильности выбора математической модели является практика, сопоставление данных математического исследования с экспериментальными данными.

Для составления математической модели в виде дифференциальных уравнений нужно, как правило, знать только локальные связи и не нужна информация обо всем физическом явлении в целом. Математическая модель дает возможность изучать явление в целом, предсказать его развитие, делать количественные оценки изменений, происходящих в нем с течением времени. Напомним, что на основе анализа дифференциальных уравнений так были открыты электромагнитные волны, и только после экспериментального подтверждения Герцем фактического существования электромагнитных колебаний стало возможным рассматривать уравнения Максвелла как математическую модель реального физического явления.

Как известно, теория обыкновенных дифференциальных уравнений начала развиваться в XVII веке одновременно с возникновением дифференциального и интегрального исчисления. Можно сказать, что необходимость решать дифференциальные уравнения для нужд механики, то есть находить траектории движений, в свою очередь, явилась толчком для создания Ньютоном нового исчисления. Органическая связь физического и математического ясно проявилась в методе флюксий Ньютона. Законы Ньютона представляют собой математическую модель механического движения. Через обыкновенные дифференциальные уравнения шли приложения нового исчисления к задачам геометрии и механики; при этом удалось решить задачи, которые в течение долгого времени не поддавались решению. В небесной механике оказалось возможным не только получить и объяснить уже известные факты, но и сделать новые открытия (например, открытие Леверье в 1846 году планеты Нептун на основе анализа дифференциальных уравнений).

Обыкновенные дифференциальные уравнения возникают тогда, когда неизвестная функция зависит лишь от одной независимой переменной. Соотношение между независимой переменной, неизвестной функцией и ее производными до некоторого порядка составляет дифференциальное уравнение. В настоящее время теория обыкновенных дифференциальных уравнений представляет собой богатую, широко разветвленную теорию. Одними из основных задач этой теории являются существование у дифференциальных уравнений таких решений, которые удовлетворяют дополнительным условиям (начальные данные Коши, когда требуется определить решение, принимающее заданные значения в некоторой точке и заданные значения производных до некоторого конечного порядка, краевые условия и другие), единственность решения, его устойчивость. Под устойчивостью решения понимают малые изменения решения при малых изменениях дополнительных данных задачи и функций, определяющих само уравнение. Важными для приложений являются исследование характера решения, или, как говорят, качественного поведения решения, нахождение методов численного решения уравнений. Теория должна дать в руки инженера и физика методы экономного и быстрого вычисления решения.

Уравнения с частными производными начали изучаться значительно позже. Нужно подчеркнуть, что теория уравнений с частными производными возникла на основе конкретных физических задач, приводящих к исследованию отдельных уравнений с частными производными, которые получили название основных уравнений математической физики. Изучение математических моделей конкретных физических задач привело к созданию в середине XVIII века новой ветви анализа — уравнений математической физики, которую можно рассматривать как науку о математических моделях физических явлений.

Основы этой науки были заложены трудами Д’Аламбера (1717 — 1783), Эйлера (1707 — 1783), Бернулли (1700 — 1782), Лагранжа (1736 — 1813), Лапласа (1749 — 1827), Пуассона (1781 — 1840), Фурье (1768 — 1830) и других ученых. Интересно то, что многие из них были не только математиками, но и астрономами, механиками, физиками. Разработанные ими при исследовании конкретных задач математической физики идеи и методы оказались применимыми к изучению широких классов дифференциальных уравнений, что и послужило в конце XIX века основой для развития общей теории дифференциальных уравнений.

Важнейшими уравнениями математической физики являются: уравнение Лапласа, уравнение теплопроводности, волновое уравнение.

Здесь мы предполагаем, что функция u зависит от t и трех переменных x1 , x2 , x3. Уравнение с частными производными — это соотношение между независимыми переменными, неизвестной функцией и ее частными производными до некоторого порядка. Аналогично определяется система уравнений, когда имеется несколько неизвестных функций.

Разве не удивительным является тот факт, что такое простое по форме уравнение, как уравнение Лапласа, содержит в себе огромное богатство замечательных свойств, имеет самые разнообразные приложения, о нем написаны многие книги, ему посвящены многие сотни статей, опубликованных в течение последних столетий, и, несмотря на это, осталось еще много трудных связанных с ним нерешенных проблем.

К изучению уравнения Лапласа приводят самые разнообразные физические задачи совершенно разной природы. Это уравнение встречается в задачах электростатики, теории потенциала, гидродинамики, теории теплопередачи и многих других разделах физики, а также в теории функций комплексного переменного и в различных областях математического анализа. Уравнение Лапласа является простейшим представителем широкого класса так называемых эллиптических уравнений.

Здесь, может быть, уместно вспомнить слова А. Пуанкаре: «Математика — это искусство давать разным вещам одно наименование». Эти слова являются выражением того, что математика изучает одним методом, с помощью математической модели, различные явления действительного мира.

Так же как и уравнение Лапласа, важное место в теории уравнений с частными производными и ее приложениях занимает уравнение теплопроводности. Это уравнение встречается в теории теплопередачи, в теории диффузии и многих других разделах физики, а также играет важную роль в теории вероятностей. Оно является наиболее простым представителем класса так называемых параболических уравнений. Некоторые свойства решений уравнения теплопроводности напоминают свойства решений уравнения Лапласа, что находится в согласии с их физическим смыслом, так как уравнение Лапласа описывает, в частности, стационарное распределение температуры. Уравнение теплопроводности было выведено и впервые исследовано в 1822 году в знаменитой работе Ж. Фурье «Аналитическая теория тепла», которая сыграла важную роль в развитии методов математической физики и теории тригонометрических рядов.

Волновое уравнение описывает различные волновые процессы, в частности распространение звуковых волн. Оно играет важную роль в акустике. Это представитель класса так называемых гиперболических уравнений.

Изучение основных уравнений математической физики дало возможность провести классификацию уравнений и систем с частными производными. И.Г. Петровским в 30-е годы были выделены и впервые изучены классы эллиптических, параболических и гиперболических систем, которые теперь носят его имя. В настоящее время это наиболее хорошо изученные классы уравнений.

Важно отметить, что для проверки правильности математической модели очень важны теоремы существования решений соответствующих дифференциальных уравнений, так как математическая модель не всегда адекватна конкретному явлению и из существования решения реальной задачи (физической, химической, биологической) не следует существование решения соответствующей математической задачи.

В настоящее время важную роль в развитии теории дифференциальных уравнений играет применение современных электронных вычислительных машин. Исследование дифференциальных уравнений часто облегчает возможность провести вычислительный эксперимент для выявления тех или иных свойств их решений, которые потом могут быть теоретически обоснованы и послужат фундаментом для дальнейших теоретических исследований.

Вычислительный эксперимент стал также мощным средством теоретических исследований в физике. Он проводится над математической моделью физического явления, но при этом по одним параметрам модели вычисляются другие параметры и делаются выводы о свойствах изучаемого физического явления. Цель вычислительного эксперимента — построение с необходимой точностью с помощью ЭВМ за возможно меньшее машинное время адекватного количественного описания изучаемого физического явления. В основе такого эксперимента очень часто лежит численное решение системы уравнений с частными производными. Отсюда происходит связь теории дифференциальных уравнений с вычислительной математикой и, в частности, с такими ее важными разделами, как метод конечных разностей, метод конечных элементов и другие.

Итак, первая черта теории дифференциальных уравнений — ее тесная связь с приложениями. Другими словами, можно сказать, что теория дифференциальных уравнений родилась из приложений. В этом своем разделе — теории дифференциальных уравнений — математика прежде всего выступает как неотъемлемая часть естествознания, на которой основывается вывод и понимание количественных и качественных закономерностей, составляющих содержание наук о природе.

Именно естествознание является для теории дифференциальных уравнений замечательным источником новых проблем, оно в значительной мере определяет направление их исследований, дает правильную ориентацию этим исследованиям. Более того, дифференциальные уравнения не могут плодотворно развиваться в отрыве от физических задач. И не только потому, что природа богаче человеческой фантазии. Развитая в последние годы теория о неразрешимости некоторых классов уравнений с частными производными показывает, что даже очень простые по форме линейные уравнения с частными производными с бесконечно дифференцируемыми коэффициентами могут не иметь ни одного решения не только в обычном смысле, но также и в классах обобщенных функций, и в классах гиперфункций, и, следовательно, для них не может быть построена содержательная теория (теория обобщенных функций, обобщающая основное понятие математического анализа — понятие функции, была создана в середине нашего века трудами С.Л. Соболева и Л. Шварца).

Изучение уравнений с частными производными в общем случае — столь сложная задача, что если кто-нибудь наугад напишет какое-нибудь даже линейное дифференциальное уравнение с частными производными, то с большой вероятностью ни один математик не сможет о нем сказать что-либо и, в частности, выяснить, имеет ли это уравнение хотя бы одно решение.

Задачи физики и других естественных наук снабжают теорию дифференциальных уравнений проблемами, из которых вырастают богатые содержанием теории. Однако бывает и так, что математическое исследование, рожденное в рамках самой математики, через значительное время после его проведения находит приложение в конкретных физических проблемах в результате их более глубокого изучения. Таким примером может служить задача Трикоми для уравнений смешанного типа, которая спустя более четверти века после ее решения нашла важные применения в задачах современной газовой динамики при изучении сверхзвуковых течений газа.

Ф. Клейн в книге «Лекции о развитии математики в XIX столетии» писал, что «математика сопровождала по пятам физическое мышление и, обратно, получила наиболее мощные импульсы со стороны проблем, выдвигавшихся физикой».

Второй особенностью теории дифференциальных уравнений является ее связь с другими разделами математики, такими, как функциональный анализ, алгебра и теория вероятностей. Теория дифференциальных уравнений и особенно теория уравнений с частными производными широко используют основные понятия, идеи и методы этих областей математики и, более того, влияют на их проблематику и характер исследований. Некоторые большие и важные разделы математики были вызваны к жизни задачами теории дифференциальных уравнений. Классическим примером такого взаимодействия с другими областями математики являются исследования колебаний струны, проводившиеся в середине XVIII века.

Уравнение колебаний струны было выведено Д’Аламбером в 1747 году. Он получил также формулу, которая дает решение этого уравнения: u(t, x) = F1(x + t) + F2(x — t), где F1 и F2 — произвольные функции. Эйлер получил для него формулу, которая дает для него решение с заданными начальными условиями (задача Коши). (Эта формула в настоящее время называется формулой Д’Аламбера.) Возник вопрос, какие функции считать решением. Эйлер полагал, что это может быть произвольно начерченная кривая. Д’Аламбер считал, что решение должно записываться аналитическим выражением. Д. Бернулли утверждал, что все решения представляются в виде тригонометрических рядов. С ним не соглашались Д’Аламбер и Эйлер. В связи с этим спором возникли задачи об уточнении понятия функции, важнейшего понятия математического анализа, а также вопрос об условиях представимости функции в виде тригонометрического ряда, который позднее рассматривали Фурье, Дирихле и другие крупные математики и изучение которого привело к созданию теории тригонометрических рядов. Как известно, потребности развития теории тригонометрических рядов привели к созданию современной теории меры, теории множеств, теории функций.

При изучении конкретных дифференциальных уравнений, возникающих в процессе решения физических задач, часто создавались методы, обладающие большой общностью и применявшиеся без строгого математического обоснования к широкому кругу математических проблем. Такими методами являются, например, метод Фурье, метод Ритца, метод Галёркина, методы теории возмущений и другие. Эффективность применения этих методов явилась одной из причин попыток их строгого математического обоснования. Это приводило к созданию новых математических теорий, новых направлений исследований. Так возникла теория интеграла Фурье, теория разложения по собственным функциям и, далее, спектральная теория операторов и другие теории.

В первый период развития теории обыкновенных дифференциальных уравнений одной из основных задач было нахождение общего решения в квадратурах, то есть через интегралы от известных функций (этим занимались Эйлер, Риккати, Лагранж, Д’Аламбер и др.). Задачи интегрирования дифференциальных уравнений с постоянными коэффициентами оказали большое влияние на развитие линейной алгебры. В 1841 году Лиувилль показал, что уравнение Риккати y’ + a(x)y + b(x)y2 = c(x) не может быть в общем случае разрешено в квадратурах. Изучение непрерывных групп преобразований в связи с задачами интегрирования дифференциальных уравнений привело к созданию теории групп Ли.

Начало качественной теории дифференциальных уравнений было положено в работах знаменитого французского математика Пуанкаре. Эти исследования Пуанкаре по обыкновенным дифференциальным уравнениям привели его к созданию основ современной топологии.

Таким образом, дифференциальные уравнения находятся как бы на перекрестке математических дорог. С одной стороны, новые важные достижения в топологии, алгебре, функциональном анализе, теории функций и других областях математики сразу же приводят к прогрессу в теории дифференциальных уравнений и тем самым находят путь к приложениям. С другой стороны, проблемы физики, сформулированные на языке дифференциальных уравнений, вызывают к жизни новые направления в математике, приводят к необходимости совершенствования математического аппарата, дают начало новым математическим теориям, имеющим внутренние законы развития, свои собственные проблемы.

В своих «Лекциях о развитии математики в XIX столетии» Ф. Клейн писал: «Математика в наши дни напоминает оружейное производство в мирное время. Образцы восхищают знатока. Назначение этих вещей отходит на задний план.»

Несмотря на эти слова, можно сказать, что нельзя стоять за «разоружение» математики. Вспомним, например, что древние греки изучали конические сечения задолго до того, как было открыто, что по ним движутся планеты. Действительно, созданная древними греками теория конических сечений не находила своего применения почти две тысячи лет, пока Кеплер не воспользовался ею для создания теории движения небесных тел. Исходя из теории Кеплера, Ньютон создал механику, являющуюся основой всей физики и техники.

Другим таким примером может служить теория групп, зародившаяся в конце XVIII века (Лагранж, 1771 год) в недрах самой математики и нашедшая лишь в конце XIX века плодотворное применение сначала в кристаллографии, а позднее в теоретической физике и других естественных науках. Возвращаясь к современности, заметим, что важнейшие научно-технические задачи, такие, как овладение атомной энергией, космические полеты, были успешно решены в Советском Союзе также благодаря высокому теоретическому уровню развития математики в нашей стране.

Таким образом, в теории дифференциальных уравнений ясно прослеживается основная линия развития математики: от конкретного и частного через абстракцию к конкретному и частному.

Как уже говорилось, в XVIII и XIX веках изучались в основном конкретные уравнения математической физики. Из общих результатов теории уравнений с частными производными в этот период следует отметить построение теории уравнений с частными производными первого порядка (Монж, Коши, Шарпи) и теорему Ковалевской.

Теоремы о существовании аналитического (то есть представимого в виде степенного ряда) решения для обыкновенных дифференциальных уравнений, а также для линейных систем уравнений с частными производными были доказаны ранее Коши (Cauchy, 1789 — 1857). Эти вопросы рассматривались им в нескольких статьях. Но работы Коши не были известны Вейерштрассу, который предложил С.В. Ковалевской изучить вопрос о существовании аналитических решений уравнений с частными производными в качестве докторской диссертации. (Отмечу, что Коши опубликовал 789 статей и большое число монографий; его наследие огромно, поэтому неудивительно, что некоторые его результаты могли остаться некоторое время незамеченными.) С.В. Ковалевская в своей работе опиралась на лекции Вейерштрасса, где рассматривалась задача с начальными условиями для обыкновенных дифференциальных уравнений. Исследование Ковалевской придало вопросу о разрешимости задачи Коши для уравнений и систем с частными производными в определенном смысле завершающий характер. Пуанкаре высоко ценил эту работу Ковалевской. Он писал: «Ковалевская значительно упростила доказательство и придала теореме окончательную форму».

Теорема Ковалевской занимает важное место в современной теории уравнений с частными производными. Ей, пожалуй, принадлежит одно из первых мест по числу применений в различных областях теории уравнений с частными производными: теорема Хольмгрена о единственности решения задачи Коши, теоремы существования решения задачи Коши для гиперболических уравнений (Шаудер, Петровский), современная теория разрешимости линейных уравнений и многие другие результаты используют теорему Ковалевской.

Важным достижением теории уравнений с частными производными явилось создание на рубеже XIX века теории интегральных уравнений Фредгольма и решение основных краевых задач для уравнения Лапласа. Можно считать, что основные итоги развития теории уравнений с частными производными XIX века подведены в учебнике Э. Гурса «Курс математического анализа», изданном в 20-е годы нашего века. Следует отметить большой вклад, который внесли в теорию дифференциальных уравнений и математическую физику труды М.В. Остроградского по вариационным методам, труды А.М. Ляпунова по теории потенциала и по теории устойчивости движения, труды В.А. Стеклова по обоснованию метода Фурье и другие.

Тридцатые и последующие годы нашего века были периодом бурного развития общей теории уравнений с частными производными. В работах И.Г. Петровского были заложены основы общей теории систем уравнений с частными производными, выделены классы систем уравнений, которые в настоящее время носят название эллиптических, гиперболических и параболических по Петровскому систем, исследованы их свойства, изучены характерные для них задачи.

В теорию уравнений с частными производными все глубже стали проникать идеи функционального анализа. Было введено понятие обобщенного решения как элемента некоторого функционального пространства. Идея обобщенного решения систематически проводилась в работах С.Л. Соболева. В связи с исследованием дифференциальных уравнений Соболевым в 30-годы была создана теория обобщенных функций, играющая исключительно важную роль в современной математике и физике. С.Л. Соболевым была построена теория вложения функциональных пространств, которые в настоящее время носят название пространств Соболева. А.Н. Тихоновым была построена теория некорректных задач.

Выдающийся вклад в современную теорию дифференциальных уравнений внесли российские математики Н.Н. Боголюбов, А.Н. Колмогоров, И.Г. Петровский, Л.С. Понтрягин, С.Л. Соболев, А.Н. Тихонов и другие.

Влияние на развитие теории уравнений с частными производными в нашей стране оказал семинар, которым в 40-е и 50-е годы руководили И.Г. Петровский, С.Л. Соболев, А.Н. Тихонов. Значительную роль в развитии теории уравнений с частными производными сыграла проблемно-обзорная статья И.Г. Петровского «О некоторых проблемах теории уравнений с частными производными», опубликованная в 1946 году в журнале «Успехи математических наук». В ней изложено состояние теории уравнений с частными производными того времени и намечены пути ее дальнейшего развития. Теперь, спустя почти 50 лет, можно сказать, что развитие теории уравнений с частными производными шло именно по тому пути, который был начертан в этой замечательной статье.

В настоящее время теория дифференциальных уравнений с частными производными представляет собой богатую, сильно разветвленную теорию. Построена теория краевых задач для эллиптических операторов на основе недавно созданного нового аппарата — теории псевдодифференциальных операторов, решена проблема индекса, изучены смешанные задачи для гиперболических уравнений. Важную роль в современных исследованиях гиперболических уравнений играют интегральные операторы Фурье, которые обобщают оператор преобразования Фурье на тот случай, когда фазовая функция в показателе экспоненты, вообще говоря, нелинейно зависит от независимых переменных и частот. С помощью интегральных операторов Фурье изучен вопрос о распространении особенностей решений дифференциальных уравнений, ведущий начало от классических работ Гюйгенса. В последние десятилетия найдены условия корректной постановки краевых задач, исследованы вопросы гладкости решений для эллиптических и параболических систем. Изучены нелинейные эллиптические и параболические уравнения второго порядка и широкие классы нелинейных уравнений первого порядка, исследована для них задача Коши, построена теория разрывных решений. Глубокому изучению были подвергнуты система Навье-Стокса, система уравнений пограничного слоя, уравнения теории упругости, уравнения фильтрации и многие другие важные уравнения математической физики.

Интересным примером привлечения идей и средств из других областей математики является решение в последние годы задачи Коши для уравнения Кортевега-де Фриса с помощью обратной задачи теории рассеяния. На основе возникшего при этом метода найдены новые классы интегрируемых нелинейных уравнений и систем. При этом существенную роль сыграло применение методов алгебраической геометрии, позволившее, в частности, проинтегрировать уравнения Янга-Миллса, играющие важную роль в квантовой теории поля.

В последние десятилетия возник и интенсивно развивается новый раздел теории уравнений с частными производными — теория усреднения дифференциальных операторов. Эта теория возникла под влиянием задач физики, механики сплошной среды и техники, в частности, связанных с изучением композитов (сильно неоднородных материалов, широко используемых в настоящее время в инженерной технике), пористых сред, перфорированных материалов. Такие задачи приводят к уравнениям с частными производными с быстро осциллирующими коэффициентами или в областях со сложной границей. Численное решение такого рода задач крайне затруднительно. Необходим асимптотический анализ задачи, что и приводит к задачам усреднения.

Много работ в последние годы посвящено изучению поведения решений эволюционных уравнений (то есть уравнений, описывающих процессы, развивающиеся во времени) при неограниченном возрастании времени и возникающих при этом так называемых аттракторов. Продолжает привлекать внимание исследователей вопрос о характере гладкости решений краевых задач в областях с негладкой границей, большое число работ в последние годы посвящено изучению конкретных нелинейных задач математической физики.

За последние полтора — два десятка лет сильно изменилось лицо качественной теории обыкновенных дифференциальных уравнений. Одним из важных достижений является открытие предельных режимов, которые получили название аттракторов.

Оказалось, что наряду со стационарными и периодическими предельными режимами возможны предельные режимы совершенно иной природы, а именно такие, в которых каждая отдельная траектория неустойчива, а само явление выхода на данный предельный режим структурно устойчиво. Открытие и подробное изучение для систем обыкновенных дифференциальных уравнений таких предельных режимов, называемых аттракторами, потребовало привлечения средств дифференциальной геометрии и топологии, функционального анализа и теории вероятностей. В настоящее время происходит интенсивное внедрение этих математических понятий в приложения. Так, например, явления, происходящие при переходе ламинарного течения в турбулентное при повышении чисел Рейнольдса, описываются аттрактором. Изучение аттракторов предпринято также и для уравнений с частными производными.

Другим важным достижением теории обыкновенных дифференциальных уравнений явилось изучение структурной устойчивости систем. При использовании любой математической модели возникает вопрос о корректности применения математических результатов к реальной действительности. Если результат сильно чувствителен к малейшему изменению модели, то сколь угодно малые изменения модели приведут к модели с совершенно иными свойствами. Такие результаты нельзя распространять на исследуемый реальный процесс, так как при построении модели всегда проводится некоторая идеализация и параметры определяются лишь приближенно.

Это привело А.А. Андронова и Л.С. Понтрягина к понятию грубости системы обыкновенных дифференциальных уравнений или понятию структурной устойчивости. Это понятие оказалось очень плодотворным в случае малой размерности фазового пространства (1 или 2), и в этом случае вопросы структурной устойчивости были детально изучены.

В 1965 году Смейл показал, что при большой размерности фазового пространства существуют системы, в некоторой окрестности которых нет ни одной структурно устойчивой системы, то есть такой, что при малом изменении векторного поля она остается в определенном смысле эквивалентной первоначальной. Этот результат имеет фундаментальное значение для качественной теории обыкновенных дифференциальных уравнений, так как показывает неразрешимость задачи топологической классификации систем обыкновенных дифференциальных уравнений, и может быть сравним по своему значению с теоремой Лиувилля о неразрешимости дифференциальных уравнений в квадратурах.

К важным достижениям можно отнести построение А.Н. Колмогоровым теории возмущений гамильтоновых систем, обоснование метода усреднения для многочастичных систем, развитие теории бифуркаций, теории возмущений, теории релаксационных колебаний, дальнейшее глубокое изучение показателей Ляпунова, создание теории оптимального управления процессами, описываемыми дифференциальными уравнениями.

Таким образом, теория дифференциальных уравнений в настоящее время представляет собой исключительно богатый содержанием, быстро развивающийся раздел математики, тесно связанный с другими областями математики и с ее приложениями.

Бурбаки, говоря об архитектуре математики, так характеризует ее современное состояние:

«Дать в настоящее время общее представление о математической науке — значит заниматься таким делом, которое, как кажется, с самого начала наталкивается на почти непреодолимые трудности благодаря обширности и разнообразию рассматриваемого материала. Статьи по чистой математике, публикуемые во всем мире в среднем в течение одного года, составляют многие тысячи страниц. Не все они, конечно, имеют одинаковую ценность; тем не менее, после очистки от неизбежных отбросов оказывается, что каждый год математическая наука обогащается массой новых результатов, приобретает все более разнообразное содержание и постоянно дает ответвления в виде теорий, которые беспрестанно видоизменяются, перестраиваются, сопоставляются и комбинируются друг с другом. Ни один математик не в состоянии проследить это развитие во всех подробностях, даже если он посвятит этому всю свою деятельность. Многие из математиков устраиваются в каком-либо закоулке математической науки, откуда они не стремятся выйти и не только почти полностью игнорируют все то, что не касается предмета их исследований, но не в силах даже понять язык и терминологию своих собратьев, специальность которых далека от них». (Н. Бурбаки, «Очерки по истории математики», М.: ИЛ, 1963 г.)

Однако нельзя, как мне кажется, отрицать значение для математических исследований даже тех, кто находится «в закоулке» математической науки. Основное русло математики, как и большой реки, питают прежде всего небольшие ручейки. Крупные открытия, прорыв фронта исследований очень часто обеспечиваются и подготавливаются кропотливым трудом очень многих исследователей. Все сказанное относится не только ко всей математике, но и к одному из самых обширных ее разделов — теории дифференциальных уравнений, которая в настоящее время представляет собой трудно обозримую совокупность фактов, идей и методов, очень полезных для приложений и стимулирующих теоретические исследования во всех других разделах математики.

Многие разделы теории дифференциальных уравнений так разрослись, что стали самостоятельными науками. Можно сказать, что большая часть путей, связывающих абстрактные математические теории и естественнонаучные приложения, проходит через дифференциальные уравнения. Все это обеспечивает теории дифференциальных уравнений почетное место в современной науке.

Реферат: Дифференциальные уравнения I и II порядка

Дифференциальные уравнения I и II порядка

Исследование поведения различных систем (технические, экономические, экологические и др.) часто приводит к анализу и решению уравнений, включающих как параметры системы, так и скорости их изменения, аналитическим выражением которых являются производные. Такие уравнения, содержащие производные, называются дифференциальными. Рассмотрим следующий пример из области рекламного дела.

При организации продажи нового товара торговым предприятиям зачастую приходится прибегать к услугам рекламы. Для того, чтобы последняя была успешной и современной, необходимо знать закон распространения информации о новом товаре среди ее потенциальных покупателей. Найдем вид указанной закономерности при следующих предположениях относительно рассматриваемого процесса.

Пусть N – общее число потенциальных покупателей нового товара,x(t) – число покупателей, знающих к моменту времени t о поступлении в продажу нового товара, [N-x(t)] – число покупателей еще не имеющих информации о товаре.

Предположим, что информация о товаре распространяется среди покупателей посредством их общения между собой. Будем считать, что в течение достаточно малого промежутка времени возможна встреча лишь двух покупателей, и вероятность этой встречи считаем равной P. Вероятность того, что при встрече покупатель, знающий о товаре, встретиться с покупателем, еще не имеющем информации о товаре, равна (N-x)/N. Тогда скорость изменения величины x(t) в момент t равняется px(N-x)/N систематическому ожиданию числа покупателей впервые узнавших о товаре. Таким образом, получаем уравнение

или .

Данное уравнение содержит величину x и ее производную, т.е. является дифференциальным. Решая полученное уравнение, найдем вид зависимости величины x от t:

, где параметр A подбирается, исходя из условия x=x0 в некоторый момент t=t0. Например, если при t=0 величина x(0)=gN (g — доля покупателей, обладающих информацией о товаре к началу рассматриваемого процесса), то. На рис. 1 показан график искомой функции x=x(t). В экономической литературе график известен как логистическая кривая.

Отметим, что логистическая кривая дает также представление о процессе распространения технологических новшеств, эпидемий и даже слухов.

В качестве второго примера рассмотрим задачу представления в виде уравнения однопараметрического семейства кривых, обладающих некоторым общим свойством.

Пусть однопараметрическое семейство кривых задается уравнением Ф(X,Y,C)=0, где C – параметр. Составим дифференциальное уравнение, которое описывает общее свойство присущее всем кривым данного семейства. Предположим, что отдельная кривая семейства заданных функций y=f(x,c). Тогда подставляя ее в общее уравнение семейства получаем тождество .

Предполагая дифференцируемость функции Ф(X,Y,C) и дифференцируя Ф(x,f(x,c),c) по x, получаем

.

Рассматривая последнее вместе с уравнением Ф(x,y,c)=0, т.е. рассматривая систему

,

и исключая в ней параметр C, в результате получим дифференциальной уравнение

,

описывающее свойство присущее всем кривым семейства.

Например, пусть семейство кривых представляет семейство гипербол xy=c.

Дифференцируя данное уравнение по x, получаем .

Так как при этом автоматически произошло исключение параметра c, то последнее уравнение, являясь дифференциальным, представляет семейство вышеуказанных гипербол.

1. Основные понятия и определения .

Определение. Уравнение, связывающее функцию y, ее аргумент x и ее производные, называется обыкновенным дифференциальным уравнением.

Обыкновенное дифференциальное уравнение символически можно записать в виде

или .

Определение. Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение.

А) является дифференциальным уравнением 1-го порядка;

Б)является дифференциальным уравнением 2-го порядка;

В) является дифференциальным уравнением n-го порядка.

Определение. Решением дифференциального уравнения называется всякая функция y=f(x), которая, будучи подставлена в уравнение, обращает его в тождество.

Например, пусть дано дифференциальной уравнение .

Тогда любая функция вида y=c1 sinx+c2 cosx, где c1 , c2 – произвольные постоянные, является решением этого уравнения.

Действительно, дифференцируя уравнение y=c1 sinx+c2 cosx дважды по x получаем . Подставляя выражения для и y в левую часть исходного дифференциального уравнения получаем .

Процесс решения дифференциального уравнения называют интегрированием. Поэтому само решение называют еще интегралом уравнения.

Как правило, дифференциальному уравнению отвечает множество решений (смотрите вышеприведенный пример), задаваемых семейством функций y=f(x,c) в явном виде или Ф(x,y,c)=0 в неявном виде. В этих уравнениях с-параметр семейства. Таких параметров, вообще говоря, может быть несколько.

В общем случае обыкновенному дифференциальному уравнениюn-го порядка

отвечает семейство решений, содержащих n параметров.

Определение. Общим решением дифференциального уравнения n-го порядка называется функция y=f(x, c1 , c2 , …, cn ), зависящая от аргумента x и n произвольных постоянных c1 , c2 , …, cn , которая будучи подставлена в уравнение обращает его в тождество.

Отметим, что эта функция может задаваться и неявным образом, тогда она представляется уравнением Ф(x , y,c1 , c2 , …, cn )=0.

Общее решение дифференциального уравнения называется также общим интегралом.

Чтобы из общего уравнения выделить некоторое конкретное частное решение дифференциального уравнения, необходимо задать значения для параметров c1 , c2 , …, cn . Обычно значения этих произвольных постоянных c1 , c2 , …, cn определяются заданием начальных условий: y(x0 )=y0 , . Эти начальные условия дают соответственно n уравнений

,

,

,

,

решая которые относительно c1 , c2 , …, cn находят значения этих постоянных.

Например, для дифференциального уравнения 1-го порядка общее решение имеет вид y=f(x,c). Тогда начальное условие y(x0 )=y0 выделяет из всего семейства интегральных кривых кривую, проходящую через точку M(x0 ,y0 ).

1. Геометрическая интерпретация.

Геометрическое представление решения дифференциального уравнения рассмотрим на примере уравнения 1-го порядка вида .

В плоскости введем декартову систему координат с осями x и y. Каждой точке M(x,y) плоскости поставим в соответствие вектор , отложенный от точки M.

Таким образом дифференциальное уравнение порождает в плоскости XOY поле направлений (естественно, указанное поле существует только в области определения функции f(x,y)). Тогда решением дифференциального уравнения будет такая кривая, которая в каждой точке касается вектора поля направляющей.

Действительно, пусть y=h(x) уравнение указанной выше кривой. Тогда в каждой точке кривой касательная к ней имеет направление, где a — угол наклона касательной к оси x. Из (условие касания кривой с вектором ) и равенства абсцисс векторов и вытекает тождество , выполняющееся в точках кривой y=h(x). Последнее означает, что y=h(x) является решением уравнения .

И обратно, если y=h(x) решение дифференциального уравнения , то . Последнее соотношение означает, в каждой точке кривой y=h(x) направление ее касательной совпадает с вектором поля направлений, т.е. в каждой точке кривая y=h(x) касается вектора поля направлений.

В качестве иллюстрации возьмем уравнение .

Для построения поля направлений удобно использовать метод изоклин. Изоклина это линия в каждой точке которой вектор поля направлений одинаков. Таким образом, изоклины даются уравнением f(x,y)=l, и каждой точке изоклины соответствует вектор .

Для рассматриваемого дифференциального уравнения изоклины задаются уравнением или y=-lx.

Как видно, изоклинами являются прямые, проходящие через точку начала координат. На рис. 2изображены изоклины отвечающие значениям , черточками изображены направления векторов в таких изоклин. Из рис. 2 видно, что интегральные кривые уравнения напоминают гиперболы. Действительно, как будет показано ниже, общее решение рассматриваемого дифференциального уравнения имеет вид yx=c, т.е. задает семейство гипербол. Параметрам c>0 отвечают гиперболы I и III координатных узлов, значениям c / .

Более общим видом является случай уравнения вида , не разрешимого относительно производной y / .

Допустим, что данное уравнение может быть разрешено относительно y / , и в общем случае это дает несколько вещественных уравнений (k=1,2,…,m).

Если при этом каждая из функций (k=1,2,…,m) удовлетворяет теореме существования и единственности решения, то через точку (x0 ,y0 ) будет проходить m интегральных кривых уравнения . Пусть при этом каждая точка кривой имеет свой наклон касательной, отличный от других кривых. В этом случае также говорят, что задача Коши имеет единственное решение. Общим решением уравнения называют совокупность всех общих решений каждого из уравнений (k=1,2,…,m), т.е. решения y=Yk (x,c) (k=1,2,…,m).

Пример. Рассматривается дифференциальное уравнение вида . Разрешая его относительно y / получаем два уравнения y / =1 и y / =-1, т.е. через каждую точку плоскости xOy проходят две интегральные кривые, касательные к которым имеют два разных угла наклона к оси Ox в 45 0 и 135 0 . Общим решением уравнения будет семейство интегральных кривых y=x+c и y=-x+c.

Особым решением дифференциального уравнения

или

называется решением y=y(x), которое во всех своих точках не обладает свойством единственности. Через каждую точку такого решения проходит не менее двух интегральных кривых, имеющих одинаковое направление касательной.

Отметим, что из сказанного выше следует, что дифференциальное уравнение может иметь решения не являющиеся ни частными, ни особыми, а именно, если эти решения получаются склеиванием кусков из частных и особых решений.

2. Особые решения дифференциального уравнения.

Пусть рассматривается дифференциальное уравнение первого порядка общего вида F(x,y,y / )=0.

Тогда существование его особого решения прежде всего может быть связано с условием , не обеспечивающим представление y / как неявной функции переменных x и y, задаваемой уравнением F(x,y,y / )=0.

Таким образом, формируя систему уравнений

,

и исключая из нее переменную y / , получаем функцию y=y(x), которая может дать особое решение дифференциального уравнения F(x,y,y / )=0.

Определение. Кривая, получаемая исключением параметра p из системы уравнений

,

называется дискретной кривой уравнения F(x,y,y / )=0.

Для того, чтобы дискретная кривая давала особое решение дифференциального уравнения, остается проверить, что она удовлетворяет уравнению F(x,y,y / )=0, и что через каждую ее точку проходит хотя бы одна интегральная кривая общего решения этого уравнения, т.е. проверить, что в точках дискретной кривой нарушается свойство единственности решения дифференциального уравнения.

Пример 1. Дано уравнение .

Как было указано выше его особое решение дается уравнениями y=x+c и y=-x+c. Опреляя для него дискретную кривую имеем систему уравнений

.

Очевидно, данная система решения не имеет, поэтому рассматриваемое дифференциальное уравнение особых решений не имеет.

Пример 2. Рассмотрим решение уравнения

Его общее решение имеет вид . Выписывая систему уравнений

или , (где p=y / )

и исключая из нее переменную p, получаем уравнение дискретной кривой y=0 (ось Ox). Очевидно, она является решением дифференциального уравнения, так как из y=0=const следует y / =0. Кроме того через любую точку M(x0 ;0) этой кривой проходит частное решение дифференциального уравнения, получаемое из общего при c=-x0 . Не трудно убедиться, что касательные в точке M(x0 ;0) дискретной кривой и частного решения совпадают. Таким образом, дискретная кривая y=0 является особым решением исходного дифференциального уравнения.

Ниже на рис. 3 изображено семейство интегральных кривых этого уравнения, являющееся семейством парабол.

Из рисунка видно, что дискретная кривая y=0, являющаяся осью Ox, касается в каждой точке некоторой кривой семейства.

Выше была рассмотрена ситуация, когда уравнение F(x,y,y / )=0 не определяло y / как неявную функцию переменных x и y, так как выполнялось условие .

Предположим теперь, что в области D, где ищется решение дифференциального уравнения, выполняется условие . В этом случае уравнение F(x,y,y / )=0 определяет y / как неявную функцию от x и y, т.е. можно считать y / =f(x,y) или даже явно выразить y / через x и y в виде y / =f(x,y). Тогда особое решение будет связано с нарушением условий приведенной выше в параграфе 3, теоремы Коши существования и единственности решения дифференциального уравнения.

Таким невыполнимым условием, обычно, берется условие Липшица, и геометрическое место точек, в которых оно нарушается, задается условием или, считая , условием .

Пример 3. Рассматривается дифференциальное уравнение (сравните с примером 2). Здесь . Так как , то дискретная кривая отсутствует. Из и условия , находим, что в точках кривой y=0, являющейся осью Ox, нарушается условие теоремы Коши. Следовательно, эта кривая y=0 может быть особым решением. Остается проверить, что она удовлетворяет исходному дифференциальному уравнению и что в ее точках нарушается условие единственности прохождения интегральной кривой. Общее решение данного уравнения имеет вид , т.е. такой же, как и в примере 2. Разбирая пример 2, выполнимость обоих условий была проверена. Следовательно, решение y=0 действительно является особым.

Пример 4. Дано уравнение .

Для него , т.е. дискретной кривой нет. Из и условия , получаем точки кривой y=0, в которых нарушены условия теоремы Коши.

Однако, в данном случае кривая y=0 не удовлетворяет дифференциальному уравнению. Следовательно, это уравнение особых решений не имеет.

Особым решением дифференциального уравнения довольно часто бывают огибающие семейства его интегральных кривых.

Определение. Кривая y=y(x) называется огибающей семейства интегральных кривых интегрального уравнения, задаваемого общим решением Ф(x,y,c)=0, если в каждой точке она касается одной из кривых данного семейства, т.е. имеет с ней в этой точке общую касательную.

Для нахождения огибающей может быть использован следующий подход.

Пусть огибающая задана параметрически уравнениями x=x(t),y=y(t).

Со значением параметра t можно связать значение постоянной c, отвечающей той интегральной кривой семейства Ф(x,y,c)=0, которая касается огибающей в точке M(x(t),y(t)), т.е. величину c можем рассматривать как функцию параметра t, а именно c=c(t).

Подставляя функции x=x(t),y=y(t) и c=c(t) в Ф(x,y,c)=0, получаем тождество

.

Предполагая, что Ф(x,y,c) имеет непрерывные частные производные первого порядка, из тождества вытекает .

Покажем, что . Действительно, k-угловой коэффициент касательной для огибающей в точке x0 =x(t0 ), y0 =y(t0 ) при t=t0 равен

.

Уравнение Ф(x,y,c0 )=0, где c0 =c(t0 ), задает интегральную кривую семейства, проходящую через точку M0 (x0 , y0 ). Угловой коэффициент касательной к данной интегральной кривой в точке M0 (x0 , y0 ) равен , гдеуравнение данной кривой. Рассматривая уравнение Ф(x,y,c0 )=0, как неявное задание уравнения интегральной кривой, значение найдем из соотношения , предполагая .

Из получаем и

или

.

Таким образом, для произвольного значения t0 параметра t выполняется .

Следовательно, из с учетом доказанного соотношения получаем

.

Но так как , ибо , то из последнего вытекает, что в точках огибающей должно выполняться условие .

Таким образом, для нахождения огибающей надо рассмотреть систему уравнений

.

Исключая из нее параметр c, найдем уравнение y=y(x) или Y(x,y)=0 огибающей (исключая точки, где одновременно и ). Окончательно убеждаясь в том, что поперечная кривая является огибающей, проверяя условие касания в каждой ее точке интегральной кривой семейства.

Пример 5. Снова рассмотрим уравнение из примера 2 . Его общее решение имеет вид , т.е. .

Для нахождения огибающей рассмотрим систему

.

Из нее получаем уравнение огибающей y=0. Далее убеждаемся, что y=0 действительно является огибающей, так как через каждую ее точку M(x0 ;0) проходит интегральная кривая со значением параметра c=-x0 .

Пример 6. Рассмотрим дифференциальное уравнение . Его общее решение имеет вид (x-c) 2 +y 2 =1 получаем . Подставляя и (x-c) 2 +y 2 =1 в левую часть уравнения, получим тождество .

Нетрудно видеть, что семейством интегральных кривых являются окружности единичного радиуса с центром в точках (c,0), лежащих на оси Ox.

На рис. 4 изображено семейство этих окружностей.

Из рисунка видно, что семейство интегральных кривых имеет две огибающие y=1 и y=-1, удовлетворяющих диффренциальному уравнению и, следовательно, дающих его два особых решения.

Найдем уравнения огибающих аналитически. Из Ф(x,y,c)=(x-c) 2 +y 2 -1, получаем следующую систему уравнений

.

Исключая из уравнения параметр c, получаем y 2 =1. Данное уравнение дает две огибающих y=1 и y=-1.

Пример 7. Дано уравнение .

Его общее решение будет , представляющем семейство гипербол, изображенных на рис. 5.

Из для нахождения предполагаемых огибающих получаем систему уравнений

.

Исключая из уравнений параметр c получаем уравнение кривой y=0, являющейся осью Ox.

Кривая y=0 удовлетворяет дифференциальному уравнениюи, следовательно, является его решением. Однако, она не является огибающей, так как не имеет общих точек с интегральными кривыми семейства. Таким образом, являясь решением уравнения, она не является его особым решением.

Далее будут рассмотрены методы решения отдельных типов дифференциальных уравнений.

3. Дифференциальное уравнение первого порядка с разделяющимися переменными .

Определение. Дифференциальное уравнение первого порядка

называется уравнением с разделяющимися переменными, если оно может быть представлено в виде или .

Разнося переменные x и y и их дифференциалы в разные стороны такого уравнения, оно может быть записано в виде

(отсюда происходит название данного типа уравнения).

Можно следующую интерпретацию происхождения данного уравнения.

Пусть величина Z является с одной стороны функцией величины y, т.е. z=M(y). С другой стороны величина Z является функцией величины x, т.е. z=g(x). Например, если Z-объем выпуска продукции, то с одной стороны z зависит от величины y – объема основных фондов, с другой стороны z может рассматриваться зависимой от величины x – объема затрачиваемых трудовых ресурсов. Таким образом, через соотношения z=H(y) и z=G(x) одна из величин y или x представляется функцией другойвеличины x или, соответственно,y. Исходное дифференциальное уравнение отображает эту функциональную связь через дифференциалы функций H(y) и G(x), уравнивая их, т.е. dz=dH(y)=dG(x). Отсюда можно считать, что .

Таким образом, чтобы найти эту функциональную связь в виде y=y(x),x=x(y) или f(x,y)=0, надо проинтегрировать каждую из частей дифференциального уравнения, получая

, и затем приравнять их H(y)+c1 =G(x)+c2 (имея в виду z=H(y)+c1 , z=G(x)+c2 , и затем z исключается). Вместо двух постоянных c1 и c2 обычно берется одна c=c2 -c1 , и тогда общее решение дифференциального уравнения записывается в виде

Если это возможно, из него одна из величин может быть представлена явно функцией другой y=y(x) или x=x(y).

Пример 1. Рассмотрим дифференциальное уравнение получаемое при моделировании процесса распространения информации о новом товаре

.

Данное уравнение, очевидно, относится к уравнению с разделяющимися переменными. Разнеся переменные x и t и их дифференциалы по разные стороны, уравнение запишем в виде

или .

Проинтегрируем каждую из сторон этого уравнения:

, .

Приравнивая найденные интегралы получаем

или ,

где c=N(c1 -c2 ). Отсюда далее , где . Так как по смыслу задачи , то , итогда . Окончательно общее решение дифференциального уравнения получает вид

, где .

Нетрудно проверить, что дискретной и огибающей кривых дифференциальное уравнение не имеет. Однако беря крайние значения для равные , получаем кривые x=N и x=0, являющиеся решениями уравнения, но не особыми.

Пример 2. Возьмем дифференциальное уранение

или ,

геометрическая иллюстрация решений которого рассматривается в параграфе 2.

Данное уравнение является с разделяющимися переменными> Разнося переменные в разные стороны, записываем уравнение в виде

.

Интегрирование левой и правой частей уравнения, дает общее решение вида , где постоянная взята в виде lnc,c>0. Далее несложно преобразовать данное уравнение к виду

или , где постоянная уже не имеет ограничений на знак.

Как видно получилось семейство гипербол.

Пусть из данного семейства интегральных кривых (гипербол) необходимо выделить кривую (решение) проходящую через точку M(1,1), т.е. выделить решение, удовлетворяющее начальному условию y(1)=1. Для этого в общее решение уравнения подставим значения x=1, y=1, и найдем, отвечающее искомой кривой, значение постоянной . Очевидно, это значение равно . Следовательно, искомое частное решение определяется уравнением

Yx=1 или .

Пример 3. Рассмотрим уравнение , приведенное в параграфе 3. Разрешая его относительно y / , получаем два уравнения y / =1 и y / =-1 или и .

Оба являются с разделяющимися переменными и приводятся к виду dy=dx и dx=-dx. Интегрирование левых и правых частей уравнений дает следующие их общие решения y=x+c и y=-x+c.

Пример 4. Следующим уравнением возьмем уарвнение из примера в параграфе 4.

Разрешая его относительно y / получаем

или .

Разделяя переменные имеем

.

Найдем интегралы от левой и правой частей уравнения:

.

.

Приравнивая интегралы и заменяя две постоянных на одну получаем следующий вид общего решения уравнения

.

Возводя в квадрат обе части данного уравнения, получаем окончательный вид общего решения

Пример 5. Решить дифференциальное уравнение ,

Найти его частное решение при условии .

Разрешая уравнение относительно y / , видим, что оно является уравнением с разделяющимися переменными

.

Разнося переменные по разные стороны уравнения получаем

.

Интегрируя каждую из частей этого уравнения, получаем следующее общее решение исходного дифференциального уравнения

или .

Используя начальное условие , определяем значение константы c для искомого частного решения . Искомое частное решение дается уравнением .

4. Однородное дифференциальное уравнение первого порядка .

Функция f(x,y) называется однородной степени m, если .

Функция f(x,y) называется однородной нулевой степени, если .

Например, функция является однородной второй степени. Действительно,. Функция однородная нулевой степени, так как .

Всякая однородная функция нулевой степени может быть представлена в виде функции от отношения y/x (или отношения x/y). Действительно, пусть f(x,y) – однородная функция нулевой степени, тогда, взяв в качестве , имеем , где может рассматриваться как функция отношения y/x, т.е. .

Определение. Дифференциальное уравнение первого порядка F(x,y,y / )=0, называется однородным, если оно может быть представлено в виде y / =f(x,y) или ., где f(x,y) – однородная функция нулевой степени.

Решение однородного дифференциального уравнения сводится к решению уравнения с разделяющимися переменными заменой y/x=u или y=ux, где u-функция от x.

Подставляя в исходное уравнение и , получаем уравнение вида или , являющиеся с разделяющимися переменными. Если u=g(x,c) или Ф(x,u,c)=0 является его общим решением, то y=xg(x,c) или Ф(x,y/x,c)=0 будет общим решением исходного уравнения.

Пример 1. Рассматривается уравнение

(x 2 -y 2 )dx+2xydy=0.

Перепишем его в виде . Справа стоит функция однородная нулевой степени. Действительно,. Итак, преобразованное уравнение является однородным дифференциальным уравнением. Решаем его заменой y=ux. Получаем

или , т.е. .

Разделяя переменные приходим к уравнению

.

Интегрируем левую и правую части этого уравнения:

.

Приравнивая найденные интегралы, получаем общее решение вспомогательного дифференциального уравнения относительно переменных x и u

или , где c>0.

Потенциируя последнее выражение, общее решение получает вид , где c – произвольная постоянная.

Заменяя u=y/x, получаем общий интеграл исходного дифференциального уравнения или y 2 +x 2 =cx,

Последнее выражение приводится к виду

.

Таким образом, семейством интегральных кривых исходного уравнения является семейство окружностей с центрами в точках , лежащих на оси x, и радиусами . Очевидно, все эти окружности касаются оси y в точке начала координат. На рис. 6 изображено семейство этих окружностей.

Пример 2. Требуется найти частное решение уравнения ,

Удовлетворяющих начальному условию y(1)=0.

Нетрудно видеть (убедиться), что справа стоит однородная функция нулевой степени. Итак, исходное дифференциальное уравнение является однородным.Выполняя замену y=ux, приводим его к виду

или .

Разделяем переменные, получаем

.

Интегрируя обе части этого уравнения, получаем общее решение вспомогательного дифференциального уравнения

или .

Подставим в него и получим . Логарифмируя обе части этого уравнения получаем и далее .

Последнее соотношение дает общее решение исходного дифференциального уравнения. Чтобы найти частное решение, воспользуемся начальными условиями x=1,y=0. Подставим их в общее решение , отсюда и .

Таким образом, искомое частное решение имеет вид .

5. Линейное дифференциальное уравнение первого порядка .

Определение. Линейным дифференциальным уравнением первого порядка называется уравнение вида y / +g(x)y=h(x).

Такое название ему дано в связи с тем, что относительно переменных y и y / его можно рассматривать как линейное.

Если , то уравнение принимает простой вид y / =h(x), и сводится к нахождению неопределенного интеграла . Его общее решение тогда имеет вид .

Если , то уравнение называется однородным линейным. Оно приобретает вид , и, как нетрудно видеть, сводится к решению уравнения с разделяющимися переменными и далее .

Его общее решение имеет вид , где — некоторая первообразная для функции g(x).

Предположим теперь, что , функции g(x) и h(x) являются непрерывными. Пусть y=f(x,c) – искомое общее решение линейного дифференциального уравнения.

Представим исходное уравнение в виде

,

иподставим в выражение, стоящее в квадратных скобках,, т.е. как бы полагая в общем решении . Тогда вышеприведенное уравнение примет вид

,

являясь линейным однородным дифференциальным уравнением (в нем вместо y взята для удобства переменная z, чтобы не возникло путаницы решений этого уравнения с исходным).

Общее решение этого уравнения, как уже отмечалось ранее, может быть представлено в виде

,

где A – произвольная постоянная. Очевидно, является его частным решением, и, следовательно, может быть получено при некотором значении , т.е.

.

Если теперь освободиться от условия фиксирования постоянной , то получаем, что общее решение исходного уравнения имеет вид

.

В нем второй множитель функция является, как нетрудно видеть, частным решением при c=1 однородного линейного уравнения . Первый множитель функция представляет общее решение дифференциального уравнения u / v(x)=h(x).

Действительно, подставляя в это уравнение u / x (x,c), получаем тождество

.

Таким образом, показано, что общее решение линейного дифференциального уравнения

Представляется в виде y=u(x,c)v(x), где v(x) – частное решение однородного уравнения , решаемое при c=1,u(x,c) – общее решение уравнения u / v(x)=h(x).

Нетрудно видеть, что в обоих случаях приходится решать уравнение с разделяющимися переменными.

Заметим, что хотя при решении однородного уравнения бралось частное решение V(x) однородного уравнения v / +g(x)v=0,

Являющегося уравнением с разделяющимися переменными.

На втором этапе определяется решение u(x,c) дифференциального уравнения u / v(x)=h(x),

Также являющегося уравнением с разделяющимися переменными. После их решений общее решение исходного линейного уравнения представляется в виде

Пример 1. Решить уравнение

Сначала решаем однородное уравнение v / +2v=0.

Из него получаем

или .

Интегрируя его левую и правую части, получаем его общий интеграл (решение) вида

.

Полагая в нем c=0 и потенциируя его, получаем следующее его нетривиальное частное решение .

Далее решаем уравнение вида

или .

Разнося переменные в разные части уравнения и интегрируя их, получаем общее решение этого уравнения

.

.

Рассматривая данное уравнение, как уравнение относительно интеграла, находим его вид

.

Следовательно,.

Тогда общее решение исходного уравнения будет

.

Предположим теперь, что требуется выделить частное решение, проходящее через точку M(0,0), т.е. решение, удовлетворяющее начальному условию y(0)=0. Для этого подставим значения x=0, y=0 в общее решение и найдем соответствующее значение постоянной c:

, отсюда.

Искомым частным решением является

.

Пример 2. Решить уравнение

,

являющееся линейным дифференциальным уравнением.

На первом этапе найдем решение соответствующего линейного однородного уравнения

, или .

Разделяя переменные по разные стороны уравнения, имеем

.

Интегрируя обе части данного уравнения, получаем следующее его частное решение

.

На втором этапе решаем уравнение вида

.

Делая замену , сокращая обе части уравнения на и разделяя переменные, имеем du=x 2 dx.

Интегрируя правую и левую части уравнения, получаем его общее решение

.

Общее решение исходного дифференциального уравнения имеет вид

.

6. Дифференциальное уравнение первого порядка в полных дифференциалах .

Определение. Пусть дифференциальное уравнение первого порядка представлено в виде

Где M(x,y) и N(x,y) – функции двух переменных x и y. Тогда, если левая часть уравнения есть полный дифференциал некоторой функции U(x,y), т.е.

то такое уравнение называется уравнением в полных дифференциалах.

Уравнение в полных дифференциалах кратко можно представить в виде

а поэтому общий интеграл (решение) такого уравнения имеет вид U(x,y)=0.

Дифференциальное уравнение такого типа возникает, когда поведение системы подчинено условию сохранения некоторой величины U(энергии, массы, стоимости и т.д.).

Отметим следующий признак, позволяющий определить является ли рассматриваемое уравнение уравнением в полных дифференциалах.

dU(x,y)=M(x,y)dx+N(x,y)dy, тогда функции M(x,y) и N(x,y) должны быть для U(x,y) частными производными первого порядка, соответственно, по переменным x и y, т.е.

.

Предполагая функции M(x,y) и N(x,y) непрерывными и имеющими непрерывные частные производные, соответственно, по y и x, т.е. выполнение соотношений

,

получаем, что для M(x,y) и N(x,y) должно выполняться условие

.

Полученное условие является не только необходимым, но и достаточным для того, чтобы уравнение M(x,y)dx+N(x,y)dy=0

Было уравнением в полных дифференциалах.

Нахождение общего решения уравнения в полных дифференциалах проводится в два этапа.

На первом этапе функция U(x,y) рассматривается как функция только аргумента x, переменная y получает как бы фиксированное значение. Тогда соотношению

ставится в соответствие дифференциальное уравнение

.

Пусть его общее решение представляется в виде

.

Но так как решение уравнения зависит от y, то в общем решении постоянная c является функцией y, т.е. c=h(y). Следовательно, общее решение предыдущего дифференциального уравнения, снимая с y условие закрепления его значения, имеет вид

На втором этапе находится вид функции h(y). Для этого обратимся к соотношению

,

в котором уже закрепляется как бы значение переменной x.

Используя данное соотношение и вид функции U(x,y), получаем дифференциальное уравнение, связывающее переменные h и y:

или .

Интегрируя это уравнение, находим его общее решение

.

Из , получаем окончательный вид функции U(x,y), а именно

или

.

В последнем двойном интеграле вместо можно взять функцию (т.к. ). Тогда функция U(x,y) получает вид

.

Так как общее решение исходного дифференциального уравнения записывается в виде U(x,y)=c=const, то, заменяя две постоянных на одну, получаем следующий вид общего решения уравнения

или

.

Пример 1. Дано дифференциальное уравнение

(6x 2 y 2 +6xy-1)dx+(4x 3 y+3x 2 y+2y)dy=0.

В нем M(x,y)=6x 2 y 2 +6xy-1, N(x,y)=4x 3 y+3x 2 y+2y. Из и тождества ,

Следует, что данное уравнение является уравнением в полных дифференциалах. Проведем его решение в два этапа.

На первом решаем уравнение

или dU=(6x 2 y 2 +6xy-1)dx,

в котором переменная y считается закрепленной. Интегрируя это уравнение, получаем

U(x,y)=2x 3 y 2 +3x 2 y-x+h(y).

На втором этапе определяем вид функции h(y), используя для этого соотношение

и дифференциальное уравнение для h и y

4x 3 y+3x 2 +h / (y)=4x 3 y+3x 2 +2y или .

Интегрируя последнее, получаем h=y 2 +c. Общий интеграл исходного уравнения тогда можно записать в виде

2x 3 y 2 +3x 2 y-x+y 2 =c.

Пример 2. Найти решение уравнения

2xsinydx+(3y 2 +x 2 cosy)dy=0.

Проверяем, является ли оно уравнением в полных дифференциалах? Для этого из M(x,y)=2xsiny, N(x,y)=3y 2 +x 2 cosy

.

Так как, очевидно, выполняется условие

,

то уравнение есть уравнение в полных дифференциалах.

Сначала решаем уравнение

или dU=2xsinydx,

считая y постоянной. Интегрирование уравнения дает

Затем находим функцию h(y), используя соотношения

, с одной стороны, и , с другой стороны. Соотношения приводят к дифференциальному уравнению

или .

Интегрируя последнее уравнение, получаем h=y 3 +c.

Тогда общий интеграл исходного дифференциального уравнения записывается в виде

Далее рассмотрим понятие интегрирующего множителя. Ранее отмечалось, что уравнение в полных дифференциалах возникает, когда поведение системы сохраняет некоторую величину U, т.е. удовлетворяет соотношению

Дифференциальным аналогом его является уравнение dU(x,y)=0 или

Где .

Предположим теперь, что частные производные функции U(x,y) представимы в виде

.

Тогда соотношению U(x,y)=e будет соответствовать уравнение в полных дифференциалах вида

Если теперь данное уравнение разделить на общий множитель слагаемых g(x,y), то получим уравнение M(x,y)dx+N(x,y)dy=0.

Решение последнего уравнения эквивалентно решению предыдущего, из которого оно получено, однако оно может уже не являться уравнением в полных дифференциалах, также для него возможно будет

.

В то же время после умножения его на множитель g(x,y), оно становится уравнением в полных дифференциалах.

Определение. Функция g(x,y) называется интегрирующим множителем дифференциального уравнения

Если после умножения его на эту функцию оно становится уравнением в полных дифференциалах.

Данный способ решения дифференциального уравнения называется методом интегрирующего множителя.

Найдем условие, которому должен подчиняться интегрирующий множитель g(x,y). Из предложения, что уравнение

Становится уравнением в полных дифференциалах следует выполнение условия

.

Разверернув левую и правую части этого тождества

,

заключаем, что функция g(x,y) должна являться решением уравнения

.

В общем случае решение данного уравнения вызывает затруднения. Отметим два случая, когда его решение становится проще.

Случай первый. Пусть

.

Тогда интегрирующий множитель можно искать в виде функции зависящей только от x.

Действительно, пусть g=g(x). Тогда в виду ; получаем, что искомая функция g(x) является решением дифференциального уравнения

или ,

интегрируя которое, находим

, т.е. .

Второй слуяай относится к аналогичной ситуации, когда

.

Тогда интегрирующий множитель ищется в виде функции только от y, т.е. g=g(y).

Аналогично предыдущему, не трудно видеть, что функция g(y) является решением уравнения

и представляется в виде

.

Пример 3. Дано уравнение

(y 2 -3xy-2x 2 )dx+(xy-x 2 )dy=0.

Из M(x,y)=y 2 -3xy-2x 2 , N(x,y)=xy-x 2 , , следует , т.е. уравнение не является в полных дифференциалах.

Однако из соотношения

вытекает, что можно найти такой интегрирующий множитель g=g(x), после умножения на который исходное уравнение становится уравнением в полных дифференциалах.

Указанный множитель находим из уравнения

,

интегрируя которое получаем , или g=xc. Так как в качестве множителя достаточно взять одну из функций, то положим c=1 и, тогда,g=x.

Умножая исходное уравнение на множитель g=x, получаем

(xy 2 -3x 2 y-2x 3 )dx+(x 2 y-x 3 )dy=0,

являющееся уже уравнением в полных дифференциалах. Интегрируя его, находим

,

,

затем из U / y =x 2 y-x 3 +h / (x) и U / y =N(x,y)=x 2 y-x 3

получаем x 2 y-x 3 +h / =x 2 y-x 3 , т.е. и,

следовательно,h=c=const. Таким образом, общее решение имеет вид

.

Пример 4. Требуется решить уравнение

(2xy 2 -y)dx+(y 2 +x+y)dy=0.

Из M(x,y)=2xy 2 -y, N(x,y)=y 2 +x+y, следует

.

Однако из соотношения

,

вытекает, что для исходного дифференциального уравнения существует интегрирующий множитель g=g(y), с помощью которого уравнение становится уравнением в полных дифференциалах.

Интегрирующий множитель находится из уравнения

.

Интегрируя его, получаем .

Умножая исходное уравнение на множитель , приходим к уравнению

.

Это уравнение является уже уравнением в полных дифференциалах. Решаем его

,

,

затем из и ,

или .

Интегрируя последнее уравнение, имеем .

Таким образом, общий интеграл исходного уравнения имеет вид

.

7. Дифференциальные уравнения второго порядка .

Обыкновенное дифференциальное уравнение второго порядка имеет следующий общий вид

F(x,y,y / ,y // )=0 или .

Наше знакомство с дифференциальными уравнениями второго порядка будет ограничено рассмотрением линейного дифференциального уравнения второго порядка с постоянными коэффициентами.

Определение. Линейным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

где p и q – числа,h(x) – некоторая функция от x.

Если в этом уравнении , то оно называется однородным линейным дифференциальным уравнением второго порядка.

Рассмотрим решение однородного уравнения

.

Этому явлению может быть поставлено в соответствие квадратное уравнение вида,

Называемое характеристическим. Его корни, как известно, определяются формулами

.

Возможны следующие три случая для вида корней этого уравнения: 1) корни уравнения – действительные и различные; 2) корни – действительные и равные; 3) корни уравнения – комплексно-сопряженные. Для каждого из этих случаев однородное дифференциальное уравнение имеет свой вид общего интеграла.

Случай 1. Дискриминант характеристического уравнения положителен, т.е. p 2 -4q>0. Тогда оба корня действительные и различные. В этом случае общее решение однородного уравнения имеет вид

,

где c1 , c2 – произвольные постоянные.

Действительно, если , то , . Подставляя выражения для y,y / и y // в уравнение получим

.

Случай 2. Дискриминант характеристического квадратного уравнения равен нулю, т.е p 2 -4q=0.

Тогда оба корня действительные и равные, т.е. .

В этом случае общее решение однородного уравнения имеет вид

.

Случай 3. Дискриминант характеристического квадратного уравнения отрицателен, т.е. p 2 -4q // +py / +g(y)\h(x),

где h(x) – некоторая функция от x.

Пусть в этом уравнении q=0, тогда, используя подстановку y / =z, y // =z / , приходим к решению линейного дифференциального уравнения первого порядка z / +pz=h(x).

Тема: Дифференциальные уравнения и их применения . в медицинской практике

Тема: Дифференциальные уравнения и их применения
в медицинской практике

1. Основные понятия и определения дифференциального уравнения

2. Методы решения дифференциальных уравнений.

3. Применение дифференциальных уравнений для решения задач.

1.Основные понятия и определения дифференциального уравнения

Говоря о дифференциальных уравнениях мы должны дать определение дифференциального уравнения.

Опр.: Уравнения, в которых неизвестными являются не только сами функции, но и их производные называются дифференциальными уравнениями

Опр.: Если в уравнение входит независимая переменная, неизвестная функция и её первая производная, то это уравнение называется дифференциальным уравнением I-го порядка.

Опр.: Порядком дифференциального уравнения называется порядок старшей производной неизвестной функции, входящей в это уравнение.

Опр.: Решением дифференциального уравнения называют любую функцию при подстановке, которой в это уравнение получается тождество. Простейшим уравнением первого порядка является уравнение: У’=f (x)

-Что будет являться решением этого уравнения?

У=∫f(х)dx=F(x)+C – это общее решение.

-Как же выглядит геометрически общее решение?

Название: Дифференциальные уравнения I и II порядка
Раздел: Рефераты по математике
Тип: реферат Добавлен 00:55:09 24 марта 2008 Похожие работы
Просмотров: 7487 Комментариев: 22 Оценило: 14 человек Средний балл: 3.9 Оценка: 4 Скачать

Геометрически общее решение представляет собой семейство интегральных кривых, т. е. совокупность линий, соответствующих различным значениям постоянной С.

Опр.: График решения дифференциального уравнения называют интегральной кривой этого уравнения.

Решение: y=5x+C –общее решение диф. уравнения

Зададим начальные условия : х0=0, у0=1 и подставим в общее решение соответственно вместо х и у.

Получаем у=5х+1-это частное решение дифференциального уравнения.

2.Методы решения дифференциальных уравнений

3.Применение дифференциальных уравнений для решения задач

Дифференциальные уравнения занимают важное место при решении задач физико-химического, фармацевтического и медико-биологического содержания. Пользуясь ими, мы устанавливаем связь между переменными величинами, характеризующими процесс или явление.

Решение любой задачи с помощью математического анализа можно разбить на три этапа:

1. перевод условий задачи на язык математики;

2. решение задачи;

3. оценка результатов.

Первая часть работы обычно заключается в составлении дифференциального уравнения и является наиболее трудной, так как общих методов составления дифференциальных уравнений нет и навыки в этой области могут быть приобретены лишь в результате конкретных примеров.

Закон растворения лекарственных форм вещества из таблеток

Скорость растворения лекарственных форм вещества из таблеток пропорциональна количеству лекарственных форм вещества в таблетке. Установить зависимость изменения количества лекарственных форм вещества в таблетке с течением времени.

Обозначим через m количество вещества в таблетке, оставшееся ко времени растворения t. Тогда

где k-постоянная скорости растворения. Минус в уравнении означает, что количество лекарственных форм вещества с течением времени убывает.

Закон размножения бактерий с течением времени

Скорость размножения некоторых бактерий пропорциональна количеству бактерий в данный момент. Установить зависимость изменения количества бактерий от времени.

Обозначим количество бактерий, имеющихся в данный момент, через х. Тогда

где k – коэффициент пропорциональности.

Закон роста клеток с течением времени

Для палочковидных клеток, у которых отношение поверхности клетки к её объёму сохраняется постоянным, скорость роста клетки
dl/dt пропорциональна длине клетки l в данный момент:

где α, β – постоянные, характеризующие процессы синтеза и распада.

Закон разрушения клеток в звуковом поле

Кавитация ультразвуковых волн проявляется в виде разрывов суспензионной среды и образования мельчайших пузырьков и пустот, плотность которых незначительна по сравнению с плотностью воды. Простейшие (бактерии, водоросли, дрожжи, лейкоциты, эритроциты) могут быть разрушены при кавитации, возникающей в интенсивном звуковом поле. Относительные скорости разрушения биологических клеток различных видов остаются постоянными в очень широком диапазоне частот. Эти скорости могут характеризовать относительную хрупкость клеток различных видов. Чтобы выразить это количественно, нужно определить скорость разрушения клетки в постоянном звуковом поле. Изучение этого вопроса показывает, что, пока по крайней мере 1% популяции остаётся неразрушенным, можно записать:

где N – концентрация клеток; t –время; R — постоянная

В теории эпидемий при условии, что изучаемое заболевание носит длительный характер, процесс передачи инфекции значительно более быстрый, чем течение самой болезни, и зараженные особи не удаляются из колонии и передают при встречах инфекцию незараженным особям.

Пусть в начальный момент t=0, а – число зараженных, b – число незараженных особей, x(t), y(t) – соответственно число зараженных и незараженных особей к моменту времени t. В любой момент времени t для промежутка, меньшего времени жизни одного поколения, имеет место равенство

При этих условиях нужно установить закон изменения числа незаражённых особей с течением времени, т. е. найти y=f(x).

Так как инфекция передаётся при встречах зараженных особей с незараженными, то число незараженных особей будет убывать с течением времени пропорционально количеству встреч между зараженными и незараженными особями. Для промежутка времени dt dy=-βxy,

откуда dy/dt= — βxy, где β – коэффициент пропорциональности. Подставив в это уравнение значение х из равенства (1), получим дифференциальное уравнение с разделяющимися переменными:

Контрольные вопросы для закрепления:

1. Дайте понятие дифференциальному уравнению, его решению.

2. Назовите методы решения дифференциальных уравнений, охарактеризуйте каждый.

3. Приведете примеры обыкновенного дифференциального уравнения, уравнения с разделяющими переменными, линейного.

4. Приведите примеры дифференциального уравнения первого, второго, третьего порядка.

5. Каково практическое применение дифференциальных уравнений.

1., Демидова : Компьютерные технологии в медицине. – Ростов н/Д:Феникс, 2008. -588 с. Ил.-(Среднее профессиональное образование)


источники:

http://www.bestreferat.ru/referat-95532.html

http://pandia.ru/text/80/147/43050.php